• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Separation and identification of Fischer-Tropsch wax by high temperature gas chromatography-mass spectrometry

    2018-04-02 06:50:26GAIQingqingLIUCongyunZHAOShuaiDONGHaifengZHAOXinying00900094
    色譜 2018年3期

    GAI Qingqing, LIU Congyun, ZHAO Shuai, DONG Haifeng, ZHAO Xinying*(. --- , 009, ; . , 00094, )

    The growing demand for clean liquid fuels coupled with the increase in the identification of natural gas reserves has triggered an international effort to develop methods for production and commercialization of these energy resources. The conversion of natural gas to liquid hydrocarbon products is an attractive process for the monetization of natural gas. One of the important coal-to-liquid technologies is the Fischer-Tropsch (FT) synthesis, in which syngas (CO+H2) is used as a raw material to produce hydrocarbons and other chemicals [1-5]. The FT products are typically separated into wax (in hot traps), the oil phase, water phase products (in cold traps) and tail gas [6]. The analysis of FT products is essential for product quality control, catalyst screening, kinetic studies and engineering design. In recent years, there have been some reports on the detailed composition of FT oil and water phase products. A previous study [6] identified 63 components from developed FT cold trap oils using a two-step pretreatment method with column liquid chromatography. Our previous work [7,8] identified 20n-alcohols in oil products and 30 C1-C8alcohols, aldehydes and ketones in aqueous products of FT synthesis by gas chromatography (GC).

    FT wax from hot traps is one of the main products of a FT synthesis reaction, and it is also an important raw material for hydrofining and the production of high quality diesel and lube base oils. However, there are few studies [9-13] that have determined FT composition, which has resulted in little available information. One study [9] attempted to elute linear (normal) alkanes from FT wax up tonC68(641 ℃) by high temperature (HT) GC×GC analysis using a CO2cryogenic modulator. Another study [10] determined the distribution of carbon numbers in FT wax by GC and calculated a chain growth probability of 0.928. But this study provided no detailed information about the exact components of FT wax.

    FT wax is mainly composed of long-chain alkanes (between C5and C100), which have high boiling points and low solubility at room temperature. It is difficult to separate and determine FT wax, since the resulting data on the carbon number distribution (as a reference) are often not precise enough. Unfortunately, there is no simple and convenient method for the accurate analysis of FT wax. Hence, the purpose of this study was to further optimize the chromatographic conditions, building on our previous work and the existing literature [9,10], to elute the heavier groups and completely separate each component of FT wax. By using this improved method, qualitative and quantitative analysis of FT wax has been achieved.

    1 Experimental

    1.1 Materials

    The FT wax was provided by Shenhua Ningmei Chemical Co., Ltd (China), and used to evaluate the elution properties of the chromatographic system. A standard wax sample consisting ofn-alkanes from C5to C100was purchased from SINOPEC Research Institute of Petroleum Processing (China). To identify components by HTGC-mass spectrometry (MS), the FT wax fraction (initial boiling point (IBP)-450 ℃) was cut by true boiling point distillation. Analytical grade CS2was provided by Sinopharm Group Chemical Reagent Co., Ltd (China). Helium (99.999%) and zero air were provided by Air Products (China). Hydrogen (99.999%) was produced by a hydrogen generator (Peaker, Scotland). All of the other chemicals used were analytical grade.

    1.2 Sample pretreatment

    Before analysis, FT wax samples were dissolved in CS2to a mass percentage of 3%-5%. To ensure that the high boiling point components were completely dissolved, the wax samples were heated until clear and transparent before injection. The injection needle was preheated by washing with hot solvent simultaneously; this eliminated the impact of residual samples.

    1.3 HTGC and HTGC-MS operating conditions

    HTGC was carried out using an Agilent 7890 GC (Agilent Technologies) equipped with cool-on-column inlet (0.5 μL auto injection;+3 ℃ track oven mode), a high temperature flame ionization detector (FID) jet (430 ℃), Agilent VF-5HT Ultimetal column (30 m×0.32 mm×0.1 μm) with constant flow mode, and helium carrier gas at 1.5 mL/min. The oven was programmed to rise from 50 ℃ to 410 ℃ at 9 ℃/min with a 15-min hold. The injection volume was 0.2 μL.

    HTGC-MS was carried out with an Agilent 7890 GC coupled to an Agilent 5975C MS (set up similar to the HTGC-FID) fitted with cool-on-column inlet (0.5 μL auto injection;+3 ℃ track oven mode) and Agilent HTDB-5 column (30 m×0.32 mm×0.1 μm). The general operating conditions were helium carrier gas in constant flow mode (1.3 mL/min), oven programmed to rise from 50 ℃ to 380 ℃ at 3 ℃/min with a 5-min hold, the transfer line and ion source at 300 ℃ and the MS in electron ionization mode (70 eV), recording the mass to charge range (m/z) 50-1 050.

    2 Results and discussion

    2.1 Optimization of chromatographic conditions

    The current laboratory procedures for FT wax analysis have shown that the FT wax composition is complex and contains components other thann-alkanes. Under existing experimental conditions, various types of carrier gases and the influence of the chromatographic column were investigated to improve the separation efficiency of the FT wax.

    Table 1 Operating conditions obtained from the literature and optimized in this study

    2.1.1Selection of carrier gas

    In this study, to investigate the composition and content of FT wax samples, the effects of helium and nitrogen as a carrier gas on the separation of FT wax were investigated. The selection of the carrier gas took into account its effect on column efficiency, the requirements of the detector and the nature of carrier gas itself. Nitrogen and helium are commonly used as carrier gases for FID. Nitrogen is most commonly used because of its cheap cost; it is also used in routine analysis of FT wax distillation range determination in our laboratory.

    The experimental results showed that with the use of helium as the carrier gas (while keeping other conditions constant), each chromatographic peak was sharper, the width of the peaks decreased and the column efficiency was obviously improved compared with using nitrogen. It is possible that mass transfer resistance plays a major role in the separation of wax samples under the current chromatographic separation parameters. Carrier gases with smaller molecular weights can reduce mass transfer resistance and improve column efficiency. Thus, helium was determined to be a more suitable carrier gas for complex wax sample separation.

    2.1.2Selection of chromatographic column

    The FT wax is mainly composed of long-chain alkanes (C5to C100) with high boiling points up to 720 ℃. It is therefore necessary to use high temperature conditions to analyze high boiling point compounds by GC, and it is critical to ensure minimal loss of elution and desired high separation efficiency at high temperatures. Thus, the choice of the chromatographic column is especially important.

    HTGC SimDis (ASTM D6352) [14] is a high temperature technique that enables the elution of compounds in their boiling point range for determining the distillation distribution from 174 ℃ to 700 ℃ (boiling point of linear alkanes C10to C90). A wide-bore non-polar column (DB-HT SimDis, 0.53 to 0.75 mm internal diameter) with a thin film of stationary phase (0.10 to 0.20 μm) was used to elute high molecular weight compounds. However, it has poor separation efficiency and the FT wax was not separated. The corresponding operating conditions are detailed in Table 1.

    The DB-HT SimDis column has been used to determine the carbon number distribution of FT wax samples [10], but only for then-alkanes; it was unsuitable for other constituents. The GSD-3 column was used in previous test, but it was very difficult to completely separaten-alkanes from other components. In this study, a more suitable high temperature chromatographic column was chosen to elute heavy compounds in the FT wax sample. A capillary column with a thinner stationary phase can elute low volatility compounds because of its reduced column bleeding [9]; thus, a column with 0.1 μm-thick stationary phase was used to elute heavier compounds. However, it is important to note that longer columns with smaller diameters can also improve separation efficiency.

    Fig. 1 Chromatogram from HTGC of the FT wax sample in previous test a=peak area obtained by tangent integration, a+b=peak area obtained by vertical integration.

    Figs. 1 and 2 show the FT wax chromatograms obtained with different methods. There was an obvious fluctuating baseline in Fig 1, but this has been corrected and there is now a smooth and steady baseline (Fig. 2). This indicates that improved peak shape and baseline separation was achieved in this study compared with our previous work and what was found in literature [10]. Figs. 1 and 2 also show that the heaviestn-alkanes measured from the same FT wax were C80and C93from previous studies and this improved method, respectively. Furthermore, the improved method can elute heavier compounds and separate previously single chromatographic peaks (Fig. 1) into several peaks (Fig. 2). In other words, the improved method demonstrates better performance in the analysis of heavy compounds. Thus, the VF-5HT Ultimetal was selected as the column for our chromatographic system.

    Fig. 2 Chromatogram of the FT wax sample by improved HTGC

    2.2 Determination of the FT wax carbon number distribution

    Referring to the chromatogram of the standard wax sample (C5-C100), the qualitative analysis ofn-alkanes in FT wax was determined using different methods (Figs. 1 and 2). Taking into account the similarities between the correction factors of hydrocarbons from the FID, the area normalization method was used for quantitative analysis. The chromatogram of FT wax in Fig. 1 has obvious baseline fluctuation, which is mainly due to separation difficulties between the mainn-alkanes and other components with similar boiling points. In our previous test, the FT wax carbon number distribution was calculated by the vertical and tangent integration method (Fig. 1). The content ofn-alkanes was related to the peak area obtained by tangent integration, and the content of non-alkanes was related to the peak area difference between vertical and tangent integration. Therefore, the content ofn-alkanes and non-alkanes was calculated as 55.45% and 44.55%, respectively (Table 2), which is inconsistent with the theoretical predicted value ofn-alkanes (~90%) from FT reaction product rules [15]. The FT wax carbon number distribution is shown in Fig. 3a.

    Table 2 Comparison of the total content of n-alkanes and non-alkanes in FT wax

    Fig. 3 Comparison of composition and content by (a) the previous test and (b) the improved HTGC

    In Fig. 2, the area normalization method by tangent integration was directly used for the quantitative analysis of FT wax because of the steady chromatogram baseline and good separation. Then-alkanes in each cluster of chromatographic peaks were distinguished through comparison with the retention time of the standard wax sample (C5-C100). The other chromatographic peaks that only appeared after we used the improved method were believed to be non-alkanes. The FT wax carbon distribution determined by the improved method is shown in Fig. 3b; it shows a normal distribution. The content ofn-alkanes and non-alkanes calculated from the experiment using the improved method were 96.63% and 3.37%, respectively (Table 2), consistent with theoretical prediction values. In addition, the improved method can successfully elute the heavier compounds (up tonC93) from FT wax, andn-alkanes were separated from other unknown compositions, which demonstrates improved results from the previous maximum elution ofnC68[9].

    2.3 Analysis of FT wax fraction (IBP-450 ℃)

    Some small peaks around eachn-alkane were found after the improved HTGC method (Fig. 2), which were thought to be branched alkanes in the FT wax. While there were reports [9] that branched alkanes and alcohols were found in FT wax, this had not been confirmed. We analyzed the unknown components of the FT wax fraction (IBP-450 ℃) by true boiling point distillation and they were identified by HTGC-MS; care was taken to avoid pollution from the ion source.

    Fig. 4 Partial total ion chromatogram of FT wax fraction (IBP-450 ℃) from HTGC-MS Peaks: 1. 7-tetradecene; 2. 1-tetradecene; 3. 3-tetradecene; 4. tetradecane; 5. 2-tetradecene; 6. methyl-6,8-dodecadienyl ether.

    The partial chromatogram of FT fraction is shown in Fig. 4. From comparison to standard libraries, the compounds in each cluster were found to contain alkanes, alkenes and oxygenated compounds. Fig. 4 also shows that there are alkanes, alkenes and esters in a cluster of peaks containing tetradecane. Compounds in FT wax with low carbon numbers (low boiling points) were composed ofn-alkanes, various alkenes and a few oxygenated compounds. Thus, we predict that with increasing FT wax compound carbon numbers, alkane content will increase gradually, alkene content decreases and the other oxygenated compounds are able to be detected. This part of our work is still in progress.

    3 Conclusions

    In this study, the separation and analysis of FT wax was investigated by an improved HTGC method. The improved HTGC method was adapted to elute higher carbon number components, up to C93with good separation efficiency, and to separaten-alkanes from other components with similar thermal properties. Our results showed that the contents ofn-alkanes and non-alkanes were accurately calculated through integrating the peaks in the chromatograms, and were consistent with theoretical prediction values; the elutedn-alkanes also showed a normal distribution for their carbon numbers.

    This represents a great breakthrough in the detailed analysis of FT wax components. The analysis of FT wax fractions (IBP-450 ℃) using HTGC-MS confirmed that there were alkenes and oxygenated compounds in addition ton-alkanes in each cluster of the chromatograms. However, because of the high boiling point of FT wax, there are still further issues for investigation, such as the qualitative analysis of the FT wax fraction (>450 ℃).

    Overall, the method has achieved satisfactory results for the determination of FT wax from Ningxia 4 million tons per year indirect coal liquefaction. Based on this method, the group has applied to the National Energy Bureau for industry standards.

    Acknowledgement

    We are grateful to Chi Langzhu for help on the separation of FT wax. We thank Kara Bogus, PhD, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

    [1]Gao R, Cao D B, Liu S L, et al. Appl Catal A: General, 2013, 468: 370

    [2]Xiong H F, Motchelaho M A, Moyo M, et al. Fuel, 2015, 150: 687

    [3]Hamilton N G, Warringham R, Silverwood I P, et al. J Catal, 2014, 312: 221

    [4]Li T Z, Wang H L, Yang Y, et al. Fuel Process Tech, 2014, 118: 117

    [5]Rina W, Hein P, Nico P, et al. J Chromatogr A, 2011, 1218: 3173

    [6]Fan G X, Li Y, Yang J L, et al. Chinese Journal of Analytical Chemistry, 2007, 35(8): 1092

    [7]Gai Q Q, Wu P, Shi Y L, et al. Chinese Journal of Chromatography, 2015, 33(1): 90

    [8]Gai Q Q, Long Y H, Wu P, et al. Analytical Instrumentation, 2016, 4: 9

    [9]Mahéa L, Courtiadea M, Dartiguelonguea C, et al. J Chromatogr A, 2012, 1229: 298

    [10]Chi L Z, Li Z Y, Jiang Y, et al. China Petroleum Processing Petrochem, 2016, 7(1): 101

    [11]Sutton P A, Wilde M J, Martin S J, et al. J Chromatogr A, 2013, 1297: 236

    [12]Zhou Y Q. Chinese Journal of Chromatography, 1996, 14(5): 403

    [13]Yang R Y, Zhou L P, Gao J H, et al. Catal Today, 2017, 298: 77

    [14]ASTM D6352-2015

    [15]Dry M E. Appl Catal A: General, 1999, 189: 185

    一边摸一边做爽爽视频免费| 看免费成人av毛片| 欧美精品一区二区大全| 亚洲视频免费观看视频| 亚洲人成网站在线观看播放| 久久九九热精品免费| 亚洲三区欧美一区| 亚洲一码二码三码区别大吗| 男女高潮啪啪啪动态图| 午夜精品国产一区二区电影| 国产福利在线免费观看视频| 美女扒开内裤让男人捅视频| 爱豆传媒免费全集在线观看| av电影中文网址| 国产又爽黄色视频| 免费观看人在逋| xxx大片免费视频| 啦啦啦中文免费视频观看日本| 亚洲欧美一区二区三区久久| 在线观看免费视频网站a站| 一区在线观看完整版| 亚洲av男天堂| 日韩电影二区| 日韩制服骚丝袜av| 超碰97精品在线观看| 青草久久国产| 一级a爱视频在线免费观看| 久久久国产精品麻豆| 欧美乱码精品一区二区三区| 欧美+亚洲+日韩+国产| 久久亚洲精品不卡| 欧美人与性动交α欧美软件| 真人做人爱边吃奶动态| 久久久国产欧美日韩av| 在线av久久热| 每晚都被弄得嗷嗷叫到高潮| 婷婷色麻豆天堂久久| 男女床上黄色一级片免费看| 日韩制服丝袜自拍偷拍| 国产精品成人在线| 亚洲图色成人| 欧美另类一区| 如日韩欧美国产精品一区二区三区| 蜜桃在线观看..| 亚洲精品第二区| 久久久久国产一级毛片高清牌| videosex国产| 妹子高潮喷水视频| 精品一区二区三区av网在线观看 | 久久久久久久国产电影| 18禁裸乳无遮挡动漫免费视频| 欧美激情极品国产一区二区三区| 蜜桃国产av成人99| 一级毛片我不卡| 桃花免费在线播放| 欧美日韩亚洲综合一区二区三区_| 国产免费又黄又爽又色| a级毛片黄视频| 久久影院123| 操出白浆在线播放| 亚洲一码二码三码区别大吗| 国产免费现黄频在线看| 性少妇av在线| 一级a爱视频在线免费观看| 亚洲综合色网址| 黄频高清免费视频| 热99久久久久精品小说推荐| 精品国产超薄肉色丝袜足j| 国产高清videossex| 黄色一级大片看看| 日本欧美国产在线视频| 熟女少妇亚洲综合色aaa.| 亚洲熟女精品中文字幕| 99精国产麻豆久久婷婷| 男人添女人高潮全过程视频| 热99国产精品久久久久久7| 人人澡人人妻人| 成人手机av| 成年人免费黄色播放视频| 国产成人欧美| 大片免费播放器 马上看| 久久天躁狠狠躁夜夜2o2o | 久久av网站| 亚洲精品第二区| 亚洲 欧美一区二区三区| 日本av免费视频播放| 日韩制服丝袜自拍偷拍| a 毛片基地| 91老司机精品| 制服诱惑二区| 19禁男女啪啪无遮挡网站| 老熟女久久久| 亚洲自偷自拍图片 自拍| av一本久久久久| 如日韩欧美国产精品一区二区三区| 高清视频免费观看一区二区| 在线观看www视频免费| av天堂久久9| 美女主播在线视频| 亚洲av日韩精品久久久久久密 | 777久久人妻少妇嫩草av网站| 国产一区二区在线观看av| 美女午夜性视频免费| 超碰成人久久| 大片电影免费在线观看免费| 久久中文字幕一级| 国产日韩欧美在线精品| 97人妻天天添夜夜摸| 黑人猛操日本美女一级片| 久久鲁丝午夜福利片| 欧美+亚洲+日韩+国产| netflix在线观看网站| 成人国产av品久久久| 欧美在线黄色| 一区二区三区乱码不卡18| 操美女的视频在线观看| 日韩一本色道免费dvd| 国产在线免费精品| 精品亚洲成国产av| 97精品久久久久久久久久精品| 91精品国产国语对白视频| 久久九九热精品免费| 亚洲av日韩在线播放| 少妇被粗大的猛进出69影院| 日韩电影二区| 国产高清视频在线播放一区 | av天堂久久9| 女警被强在线播放| 日本a在线网址| 人人妻人人爽人人添夜夜欢视频| 纯流量卡能插随身wifi吗| 日本av手机在线免费观看| 一区在线观看完整版| 中文字幕另类日韩欧美亚洲嫩草| 另类亚洲欧美激情| 丁香六月天网| 国产在视频线精品| 青春草亚洲视频在线观看| 精品欧美一区二区三区在线| 亚洲人成电影免费在线| 在现免费观看毛片| 大码成人一级视频| 国产精品偷伦视频观看了| 欧美人与善性xxx| 久久久久国产精品人妻一区二区| 看免费av毛片| 亚洲精品国产一区二区精华液| 老鸭窝网址在线观看| 国产av一区二区精品久久| 国产精品一二三区在线看| 五月天丁香电影| 精品少妇久久久久久888优播| 亚洲国产av影院在线观看| 久久人妻熟女aⅴ| 黄色视频不卡| 精品亚洲成国产av| 王馨瑶露胸无遮挡在线观看| 久久久久久亚洲精品国产蜜桃av| 母亲3免费完整高清在线观看| 国产一区亚洲一区在线观看| 成年美女黄网站色视频大全免费| 好男人电影高清在线观看| 亚洲精品久久久久久婷婷小说| 999久久久国产精品视频| 韩国精品一区二区三区| 蜜桃国产av成人99| 国产亚洲一区二区精品| 亚洲欧美一区二区三区久久| 国产精品免费大片| 99热网站在线观看| 99国产精品一区二区蜜桃av | 日本欧美国产在线视频| 色视频在线一区二区三区| 精品欧美一区二区三区在线| 亚洲激情五月婷婷啪啪| 国产免费福利视频在线观看| 国产精品.久久久| 国产亚洲欧美在线一区二区| 亚洲,欧美,日韩| 91成人精品电影| 国产亚洲一区二区精品| 久久久久久久精品精品| 最新在线观看一区二区三区 | 亚洲av成人精品一二三区| 男的添女的下面高潮视频| 亚洲成色77777| 考比视频在线观看| 午夜福利视频在线观看免费| 午夜视频精品福利| 欧美成人午夜精品| 一本综合久久免费| 一本综合久久免费| 黄色毛片三级朝国网站| 高潮久久久久久久久久久不卡| 精品熟女少妇八av免费久了| a级毛片在线看网站| 国产女主播在线喷水免费视频网站| 肉色欧美久久久久久久蜜桃| 国产女主播在线喷水免费视频网站| 国产福利在线免费观看视频| 少妇裸体淫交视频免费看高清 | 成在线人永久免费视频| 男女床上黄色一级片免费看| 久热爱精品视频在线9| 亚洲一区中文字幕在线| 黄色视频在线播放观看不卡| 免费在线观看视频国产中文字幕亚洲 | 9191精品国产免费久久| 精品少妇内射三级| 最近手机中文字幕大全| 一本久久精品| 亚洲国产最新在线播放| 天天躁日日躁夜夜躁夜夜| 亚洲精品国产av成人精品| 高清欧美精品videossex| 免费日韩欧美在线观看| 水蜜桃什么品种好| 老汉色∧v一级毛片| 好男人电影高清在线观看| 国产无遮挡羞羞视频在线观看| 亚洲一区中文字幕在线| 日韩一区二区三区影片| 久久精品国产a三级三级三级| 一个人免费看片子| 一区二区日韩欧美中文字幕| 尾随美女入室| 色94色欧美一区二区| 国产有黄有色有爽视频| 丝袜美腿诱惑在线| 亚洲国产日韩一区二区| 熟女av电影| 五月开心婷婷网| 纵有疾风起免费观看全集完整版| 免费人妻精品一区二区三区视频| 欧美日韩福利视频一区二区| 啦啦啦在线观看免费高清www| 多毛熟女@视频| 夫妻午夜视频| 在线观看国产h片| 亚洲 欧美一区二区三区| 亚洲成人手机| 日韩免费高清中文字幕av| 国产成人精品久久二区二区免费| 欧美性长视频在线观看| 老司机深夜福利视频在线观看 | 一级片'在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久影院123| 99九九在线精品视频| 水蜜桃什么品种好| 天天躁夜夜躁狠狠躁躁| 免费黄频网站在线观看国产| 国产日韩欧美在线精品| 国产av一区二区精品久久| 国产在线视频一区二区| 色94色欧美一区二区| 欧美xxⅹ黑人| av网站免费在线观看视频| 香蕉国产在线看| 最新在线观看一区二区三区 | 一本大道久久a久久精品| 国产日韩欧美视频二区| 天堂俺去俺来也www色官网| 久久人人97超碰香蕉20202| 巨乳人妻的诱惑在线观看| www.999成人在线观看| 国产高清不卡午夜福利| 日韩av在线免费看完整版不卡| 日本色播在线视频| 七月丁香在线播放| 国产人伦9x9x在线观看| 咕卡用的链子| 亚洲五月色婷婷综合| 亚洲 国产 在线| 少妇被粗大的猛进出69影院| 色网站视频免费| 久久性视频一级片| 日韩制服骚丝袜av| 国产高清videossex| 天天躁日日躁夜夜躁夜夜| 丰满饥渴人妻一区二区三| 韩国精品一区二区三区| 国产xxxxx性猛交| 国产又色又爽无遮挡免| 十八禁网站网址无遮挡| 亚洲av国产av综合av卡| 欧美黄色淫秽网站| 亚洲欧洲精品一区二区精品久久久| 91老司机精品| 久久精品国产综合久久久| 少妇 在线观看| 精品亚洲成a人片在线观看| 欧美激情 高清一区二区三区| 欧美精品一区二区大全| 两性夫妻黄色片| 波多野结衣一区麻豆| 成年女人毛片免费观看观看9 | 日韩 欧美 亚洲 中文字幕| av欧美777| 捣出白浆h1v1| 大型av网站在线播放| 少妇人妻 视频| 亚洲欧洲精品一区二区精品久久久| 亚洲av片天天在线观看| 女性被躁到高潮视频| 女人被躁到高潮嗷嗷叫费观| 一区福利在线观看| 国产精品av久久久久免费| 日本午夜av视频| 免费久久久久久久精品成人欧美视频| 久久久久久久久免费视频了| 一本综合久久免费| 国产一级毛片在线| 一区二区日韩欧美中文字幕| 国产高清不卡午夜福利| 国产精品成人在线| 一级片'在线观看视频| 亚洲成人手机| 久久久精品区二区三区| 91成人精品电影| 久久亚洲国产成人精品v| 美女脱内裤让男人舔精品视频| 国产欧美日韩一区二区三 | 免费在线观看日本一区| 欧美乱码精品一区二区三区| 日韩中文字幕欧美一区二区 | 欧美日韩一级在线毛片| 大码成人一级视频| 咕卡用的链子| 欧美+亚洲+日韩+国产| 午夜福利乱码中文字幕| 欧美xxⅹ黑人| 国产97色在线日韩免费| av国产精品久久久久影院| 亚洲精品第二区| 两个人免费观看高清视频| 精品福利永久在线观看| 日本vs欧美在线观看视频| 午夜免费鲁丝| 亚洲欧美精品综合一区二区三区| 久久精品熟女亚洲av麻豆精品| 黑丝袜美女国产一区| 在线av久久热| 午夜免费鲁丝| 国产精品一二三区在线看| 国产精品麻豆人妻色哟哟久久| 色网站视频免费| 久久这里只有精品19| 99国产精品99久久久久| av天堂在线播放| 午夜福利免费观看在线| 久9热在线精品视频| 两个人看的免费小视频| 下体分泌物呈黄色| 亚洲国产看品久久| cao死你这个sao货| 精品一区在线观看国产| 黄色视频在线播放观看不卡| 欧美97在线视频| 亚洲七黄色美女视频| e午夜精品久久久久久久| 一区二区三区乱码不卡18| 91成人精品电影| 久久人妻福利社区极品人妻图片 | 国产精品久久久久成人av| 精品亚洲乱码少妇综合久久| 国产一区二区激情短视频 | 久久人妻福利社区极品人妻图片 | 亚洲精品国产区一区二| 欧美黄色片欧美黄色片| 91国产中文字幕| 日日夜夜操网爽| 秋霞在线观看毛片| av视频免费观看在线观看| 美女大奶头黄色视频| 国产精品免费大片| 亚洲欧美一区二区三区国产| h视频一区二区三区| 男女免费视频国产| 夫妻午夜视频| 亚洲专区国产一区二区| 国产精品国产av在线观看| 汤姆久久久久久久影院中文字幕| 国产高清国产精品国产三级| 超碰97精品在线观看| 99re6热这里在线精品视频| 国产一区二区三区av在线| 日本av手机在线免费观看| 激情视频va一区二区三区| 亚洲成av片中文字幕在线观看| 美女脱内裤让男人舔精品视频| 波多野结衣一区麻豆| 一级毛片女人18水好多 | 久久人妻熟女aⅴ| 十分钟在线观看高清视频www| 一级毛片电影观看| 麻豆国产av国片精品| 久久人妻熟女aⅴ| 狂野欧美激情性xxxx| 黄色视频在线播放观看不卡| 天堂俺去俺来也www色官网| 下体分泌物呈黄色| 美女福利国产在线| 欧美精品av麻豆av| av一本久久久久| 一区二区三区激情视频| 国产伦人伦偷精品视频| 精品第一国产精品| 老汉色∧v一级毛片| av一本久久久久| 欧美av亚洲av综合av国产av| 免费观看a级毛片全部| av国产精品久久久久影院| 精品人妻一区二区三区麻豆| 欧美日韩视频精品一区| 老司机亚洲免费影院| 欧美日韩综合久久久久久| 久久影院123| 精品视频人人做人人爽| 一区二区av电影网| 国产成人欧美| 亚洲激情五月婷婷啪啪| 97人妻天天添夜夜摸| 美女脱内裤让男人舔精品视频| 日韩av免费高清视频| 欧美av亚洲av综合av国产av| 只有这里有精品99| 欧美精品亚洲一区二区| 视频区欧美日本亚洲| 亚洲国产精品一区三区| 在线观看人妻少妇| 又大又黄又爽视频免费| 一级黄片播放器| 51午夜福利影视在线观看| 国产成人a∨麻豆精品| 人妻一区二区av| 国产精品三级大全| 午夜福利视频在线观看免费| 女警被强在线播放| 一区二区三区激情视频| 日韩一本色道免费dvd| 在线 av 中文字幕| 香蕉丝袜av| 国产免费视频播放在线视频| 国产欧美日韩精品亚洲av| 男女国产视频网站| 午夜影院在线不卡| 女人精品久久久久毛片| 亚洲av成人不卡在线观看播放网 | 亚洲精品美女久久av网站| 国产激情久久老熟女| 久久久国产欧美日韩av| 免费在线观看黄色视频的| 国产精品国产三级国产专区5o| 精品福利永久在线观看| 不卡av一区二区三区| 久久人妻福利社区极品人妻图片 | 午夜福利在线免费观看网站| 校园人妻丝袜中文字幕| 久久亚洲国产成人精品v| 精品第一国产精品| 亚洲精品久久成人aⅴ小说| 国产精品一国产av| 水蜜桃什么品种好| 交换朋友夫妻互换小说| 亚洲色图综合在线观看| 国产成人av教育| 一级片'在线观看视频| 欧美日韩黄片免| 在线看a的网站| 啦啦啦在线免费观看视频4| 精品国产一区二区三区四区第35| 99热国产这里只有精品6| 亚洲午夜精品一区,二区,三区| av有码第一页| 人人妻人人澡人人爽人人夜夜| 亚洲成人手机| 国产高清视频在线播放一区 | 国产xxxxx性猛交| 在线天堂中文资源库| 日本一区二区免费在线视频| 成人18禁高潮啪啪吃奶动态图| 黑人巨大精品欧美一区二区蜜桃| 欧美激情高清一区二区三区| av又黄又爽大尺度在线免费看| 欧美日韩精品网址| 午夜免费男女啪啪视频观看| 久久久久久久久久久久大奶| 久久国产亚洲av麻豆专区| 巨乳人妻的诱惑在线观看| 婷婷色麻豆天堂久久| 久久影院123| 性色av一级| 国产福利在线免费观看视频| www.精华液| 一级毛片我不卡| 亚洲第一av免费看| 纵有疾风起免费观看全集完整版| 国产精品一区二区在线不卡| 超碰97精品在线观看| 叶爱在线成人免费视频播放| 十分钟在线观看高清视频www| 在现免费观看毛片| 久久毛片免费看一区二区三区| 久久精品亚洲av国产电影网| netflix在线观看网站| 高清视频免费观看一区二区| 18禁黄网站禁片午夜丰满| 一区二区三区乱码不卡18| 欧美97在线视频| 中文欧美无线码| 国产成人a∨麻豆精品| 亚洲成人免费av在线播放| 亚洲黑人精品在线| 男女国产视频网站| 999久久久国产精品视频| 亚洲精品日韩在线中文字幕| 我的亚洲天堂| 精品亚洲乱码少妇综合久久| 51午夜福利影视在线观看| 亚洲国产欧美在线一区| 亚洲精品一区蜜桃| 国产色视频综合| 91九色精品人成在线观看| 免费在线观看完整版高清| 亚洲av男天堂| 久久久久国产精品人妻一区二区| 成年人免费黄色播放视频| 99久久精品国产亚洲精品| 老司机在亚洲福利影院| 国产欧美日韩精品亚洲av| 亚洲精品乱久久久久久| 亚洲三区欧美一区| 成人亚洲精品一区在线观看| 久久国产精品人妻蜜桃| 99久久人妻综合| 亚洲av国产av综合av卡| 精品国产国语对白av| 九草在线视频观看| 国产男女内射视频| 女人被躁到高潮嗷嗷叫费观| 免费观看人在逋| 美女福利国产在线| 日韩精品免费视频一区二区三区| 久久精品久久久久久噜噜老黄| 老司机深夜福利视频在线观看 | 亚洲精品国产av成人精品| av国产久精品久网站免费入址| 久久狼人影院| 欧美人与性动交α欧美精品济南到| 一级毛片我不卡| 中文字幕人妻丝袜一区二区| 久久久久精品国产欧美久久久 | 女人久久www免费人成看片| 国产亚洲欧美精品永久| 午夜视频精品福利| 久久性视频一级片| 欧美 亚洲 国产 日韩一| 国产精品二区激情视频| 亚洲伊人久久精品综合| 丝袜在线中文字幕| 国产亚洲精品久久久久5区| 精品一区二区三区av网在线观看 | 亚洲精品国产区一区二| 欧美日本中文国产一区发布| 国产精品人妻久久久影院| 丝袜在线中文字幕| 日本av免费视频播放| 国产成人精品久久二区二区免费| 欧美在线黄色| 国产精品成人在线| 国产精品一区二区免费欧美 | 国产日韩一区二区三区精品不卡| 免费看av在线观看网站| 欧美精品一区二区大全| 99国产精品一区二区三区| 精品少妇黑人巨大在线播放| 少妇的丰满在线观看| 国产欧美日韩一区二区三区在线| 国产精品一国产av| 美女国产高潮福利片在线看| 日韩,欧美,国产一区二区三区| 亚洲精品国产一区二区精华液| 精品一区二区三卡| 老司机午夜十八禁免费视频| 又紧又爽又黄一区二区| 欧美激情 高清一区二区三区| 免费久久久久久久精品成人欧美视频| 狠狠精品人妻久久久久久综合| 交换朋友夫妻互换小说| 日日摸夜夜添夜夜爱| 91精品三级在线观看| 亚洲欧美成人综合另类久久久| 日本欧美国产在线视频| 女人久久www免费人成看片| 日本猛色少妇xxxxx猛交久久| 久久精品熟女亚洲av麻豆精品| 久久这里只有精品19| 美女视频免费永久观看网站| 只有这里有精品99| 在现免费观看毛片| 九草在线视频观看| 熟女少妇亚洲综合色aaa.| 亚洲精品久久成人aⅴ小说| 老司机午夜十八禁免费视频| 亚洲精品中文字幕在线视频| 亚洲色图 男人天堂 中文字幕| 亚洲欧美一区二区三区国产| 天天操日日干夜夜撸| 欧美国产精品va在线观看不卡| 国产一区二区激情短视频 | 亚洲第一青青草原| 中国国产av一级| av欧美777| 可以免费在线观看a视频的电影网站|