• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Separation and identification of Fischer-Tropsch wax by high temperature gas chromatography-mass spectrometry

    2018-04-02 06:50:26GAIQingqingLIUCongyunZHAOShuaiDONGHaifengZHAOXinying00900094
    色譜 2018年3期

    GAI Qingqing, LIU Congyun, ZHAO Shuai, DONG Haifeng, ZHAO Xinying*(. --- , 009, ; . , 00094, )

    The growing demand for clean liquid fuels coupled with the increase in the identification of natural gas reserves has triggered an international effort to develop methods for production and commercialization of these energy resources. The conversion of natural gas to liquid hydrocarbon products is an attractive process for the monetization of natural gas. One of the important coal-to-liquid technologies is the Fischer-Tropsch (FT) synthesis, in which syngas (CO+H2) is used as a raw material to produce hydrocarbons and other chemicals [1-5]. The FT products are typically separated into wax (in hot traps), the oil phase, water phase products (in cold traps) and tail gas [6]. The analysis of FT products is essential for product quality control, catalyst screening, kinetic studies and engineering design. In recent years, there have been some reports on the detailed composition of FT oil and water phase products. A previous study [6] identified 63 components from developed FT cold trap oils using a two-step pretreatment method with column liquid chromatography. Our previous work [7,8] identified 20n-alcohols in oil products and 30 C1-C8alcohols, aldehydes and ketones in aqueous products of FT synthesis by gas chromatography (GC).

    FT wax from hot traps is one of the main products of a FT synthesis reaction, and it is also an important raw material for hydrofining and the production of high quality diesel and lube base oils. However, there are few studies [9-13] that have determined FT composition, which has resulted in little available information. One study [9] attempted to elute linear (normal) alkanes from FT wax up tonC68(641 ℃) by high temperature (HT) GC×GC analysis using a CO2cryogenic modulator. Another study [10] determined the distribution of carbon numbers in FT wax by GC and calculated a chain growth probability of 0.928. But this study provided no detailed information about the exact components of FT wax.

    FT wax is mainly composed of long-chain alkanes (between C5and C100), which have high boiling points and low solubility at room temperature. It is difficult to separate and determine FT wax, since the resulting data on the carbon number distribution (as a reference) are often not precise enough. Unfortunately, there is no simple and convenient method for the accurate analysis of FT wax. Hence, the purpose of this study was to further optimize the chromatographic conditions, building on our previous work and the existing literature [9,10], to elute the heavier groups and completely separate each component of FT wax. By using this improved method, qualitative and quantitative analysis of FT wax has been achieved.

    1 Experimental

    1.1 Materials

    The FT wax was provided by Shenhua Ningmei Chemical Co., Ltd (China), and used to evaluate the elution properties of the chromatographic system. A standard wax sample consisting ofn-alkanes from C5to C100was purchased from SINOPEC Research Institute of Petroleum Processing (China). To identify components by HTGC-mass spectrometry (MS), the FT wax fraction (initial boiling point (IBP)-450 ℃) was cut by true boiling point distillation. Analytical grade CS2was provided by Sinopharm Group Chemical Reagent Co., Ltd (China). Helium (99.999%) and zero air were provided by Air Products (China). Hydrogen (99.999%) was produced by a hydrogen generator (Peaker, Scotland). All of the other chemicals used were analytical grade.

    1.2 Sample pretreatment

    Before analysis, FT wax samples were dissolved in CS2to a mass percentage of 3%-5%. To ensure that the high boiling point components were completely dissolved, the wax samples were heated until clear and transparent before injection. The injection needle was preheated by washing with hot solvent simultaneously; this eliminated the impact of residual samples.

    1.3 HTGC and HTGC-MS operating conditions

    HTGC was carried out using an Agilent 7890 GC (Agilent Technologies) equipped with cool-on-column inlet (0.5 μL auto injection;+3 ℃ track oven mode), a high temperature flame ionization detector (FID) jet (430 ℃), Agilent VF-5HT Ultimetal column (30 m×0.32 mm×0.1 μm) with constant flow mode, and helium carrier gas at 1.5 mL/min. The oven was programmed to rise from 50 ℃ to 410 ℃ at 9 ℃/min with a 15-min hold. The injection volume was 0.2 μL.

    HTGC-MS was carried out with an Agilent 7890 GC coupled to an Agilent 5975C MS (set up similar to the HTGC-FID) fitted with cool-on-column inlet (0.5 μL auto injection;+3 ℃ track oven mode) and Agilent HTDB-5 column (30 m×0.32 mm×0.1 μm). The general operating conditions were helium carrier gas in constant flow mode (1.3 mL/min), oven programmed to rise from 50 ℃ to 380 ℃ at 3 ℃/min with a 5-min hold, the transfer line and ion source at 300 ℃ and the MS in electron ionization mode (70 eV), recording the mass to charge range (m/z) 50-1 050.

    2 Results and discussion

    2.1 Optimization of chromatographic conditions

    The current laboratory procedures for FT wax analysis have shown that the FT wax composition is complex and contains components other thann-alkanes. Under existing experimental conditions, various types of carrier gases and the influence of the chromatographic column were investigated to improve the separation efficiency of the FT wax.

    Table 1 Operating conditions obtained from the literature and optimized in this study

    2.1.1Selection of carrier gas

    In this study, to investigate the composition and content of FT wax samples, the effects of helium and nitrogen as a carrier gas on the separation of FT wax were investigated. The selection of the carrier gas took into account its effect on column efficiency, the requirements of the detector and the nature of carrier gas itself. Nitrogen and helium are commonly used as carrier gases for FID. Nitrogen is most commonly used because of its cheap cost; it is also used in routine analysis of FT wax distillation range determination in our laboratory.

    The experimental results showed that with the use of helium as the carrier gas (while keeping other conditions constant), each chromatographic peak was sharper, the width of the peaks decreased and the column efficiency was obviously improved compared with using nitrogen. It is possible that mass transfer resistance plays a major role in the separation of wax samples under the current chromatographic separation parameters. Carrier gases with smaller molecular weights can reduce mass transfer resistance and improve column efficiency. Thus, helium was determined to be a more suitable carrier gas for complex wax sample separation.

    2.1.2Selection of chromatographic column

    The FT wax is mainly composed of long-chain alkanes (C5to C100) with high boiling points up to 720 ℃. It is therefore necessary to use high temperature conditions to analyze high boiling point compounds by GC, and it is critical to ensure minimal loss of elution and desired high separation efficiency at high temperatures. Thus, the choice of the chromatographic column is especially important.

    HTGC SimDis (ASTM D6352) [14] is a high temperature technique that enables the elution of compounds in their boiling point range for determining the distillation distribution from 174 ℃ to 700 ℃ (boiling point of linear alkanes C10to C90). A wide-bore non-polar column (DB-HT SimDis, 0.53 to 0.75 mm internal diameter) with a thin film of stationary phase (0.10 to 0.20 μm) was used to elute high molecular weight compounds. However, it has poor separation efficiency and the FT wax was not separated. The corresponding operating conditions are detailed in Table 1.

    The DB-HT SimDis column has been used to determine the carbon number distribution of FT wax samples [10], but only for then-alkanes; it was unsuitable for other constituents. The GSD-3 column was used in previous test, but it was very difficult to completely separaten-alkanes from other components. In this study, a more suitable high temperature chromatographic column was chosen to elute heavy compounds in the FT wax sample. A capillary column with a thinner stationary phase can elute low volatility compounds because of its reduced column bleeding [9]; thus, a column with 0.1 μm-thick stationary phase was used to elute heavier compounds. However, it is important to note that longer columns with smaller diameters can also improve separation efficiency.

    Fig. 1 Chromatogram from HTGC of the FT wax sample in previous test a=peak area obtained by tangent integration, a+b=peak area obtained by vertical integration.

    Figs. 1 and 2 show the FT wax chromatograms obtained with different methods. There was an obvious fluctuating baseline in Fig 1, but this has been corrected and there is now a smooth and steady baseline (Fig. 2). This indicates that improved peak shape and baseline separation was achieved in this study compared with our previous work and what was found in literature [10]. Figs. 1 and 2 also show that the heaviestn-alkanes measured from the same FT wax were C80and C93from previous studies and this improved method, respectively. Furthermore, the improved method can elute heavier compounds and separate previously single chromatographic peaks (Fig. 1) into several peaks (Fig. 2). In other words, the improved method demonstrates better performance in the analysis of heavy compounds. Thus, the VF-5HT Ultimetal was selected as the column for our chromatographic system.

    Fig. 2 Chromatogram of the FT wax sample by improved HTGC

    2.2 Determination of the FT wax carbon number distribution

    Referring to the chromatogram of the standard wax sample (C5-C100), the qualitative analysis ofn-alkanes in FT wax was determined using different methods (Figs. 1 and 2). Taking into account the similarities between the correction factors of hydrocarbons from the FID, the area normalization method was used for quantitative analysis. The chromatogram of FT wax in Fig. 1 has obvious baseline fluctuation, which is mainly due to separation difficulties between the mainn-alkanes and other components with similar boiling points. In our previous test, the FT wax carbon number distribution was calculated by the vertical and tangent integration method (Fig. 1). The content ofn-alkanes was related to the peak area obtained by tangent integration, and the content of non-alkanes was related to the peak area difference between vertical and tangent integration. Therefore, the content ofn-alkanes and non-alkanes was calculated as 55.45% and 44.55%, respectively (Table 2), which is inconsistent with the theoretical predicted value ofn-alkanes (~90%) from FT reaction product rules [15]. The FT wax carbon number distribution is shown in Fig. 3a.

    Table 2 Comparison of the total content of n-alkanes and non-alkanes in FT wax

    Fig. 3 Comparison of composition and content by (a) the previous test and (b) the improved HTGC

    In Fig. 2, the area normalization method by tangent integration was directly used for the quantitative analysis of FT wax because of the steady chromatogram baseline and good separation. Then-alkanes in each cluster of chromatographic peaks were distinguished through comparison with the retention time of the standard wax sample (C5-C100). The other chromatographic peaks that only appeared after we used the improved method were believed to be non-alkanes. The FT wax carbon distribution determined by the improved method is shown in Fig. 3b; it shows a normal distribution. The content ofn-alkanes and non-alkanes calculated from the experiment using the improved method were 96.63% and 3.37%, respectively (Table 2), consistent with theoretical prediction values. In addition, the improved method can successfully elute the heavier compounds (up tonC93) from FT wax, andn-alkanes were separated from other unknown compositions, which demonstrates improved results from the previous maximum elution ofnC68[9].

    2.3 Analysis of FT wax fraction (IBP-450 ℃)

    Some small peaks around eachn-alkane were found after the improved HTGC method (Fig. 2), which were thought to be branched alkanes in the FT wax. While there were reports [9] that branched alkanes and alcohols were found in FT wax, this had not been confirmed. We analyzed the unknown components of the FT wax fraction (IBP-450 ℃) by true boiling point distillation and they were identified by HTGC-MS; care was taken to avoid pollution from the ion source.

    Fig. 4 Partial total ion chromatogram of FT wax fraction (IBP-450 ℃) from HTGC-MS Peaks: 1. 7-tetradecene; 2. 1-tetradecene; 3. 3-tetradecene; 4. tetradecane; 5. 2-tetradecene; 6. methyl-6,8-dodecadienyl ether.

    The partial chromatogram of FT fraction is shown in Fig. 4. From comparison to standard libraries, the compounds in each cluster were found to contain alkanes, alkenes and oxygenated compounds. Fig. 4 also shows that there are alkanes, alkenes and esters in a cluster of peaks containing tetradecane. Compounds in FT wax with low carbon numbers (low boiling points) were composed ofn-alkanes, various alkenes and a few oxygenated compounds. Thus, we predict that with increasing FT wax compound carbon numbers, alkane content will increase gradually, alkene content decreases and the other oxygenated compounds are able to be detected. This part of our work is still in progress.

    3 Conclusions

    In this study, the separation and analysis of FT wax was investigated by an improved HTGC method. The improved HTGC method was adapted to elute higher carbon number components, up to C93with good separation efficiency, and to separaten-alkanes from other components with similar thermal properties. Our results showed that the contents ofn-alkanes and non-alkanes were accurately calculated through integrating the peaks in the chromatograms, and were consistent with theoretical prediction values; the elutedn-alkanes also showed a normal distribution for their carbon numbers.

    This represents a great breakthrough in the detailed analysis of FT wax components. The analysis of FT wax fractions (IBP-450 ℃) using HTGC-MS confirmed that there were alkenes and oxygenated compounds in addition ton-alkanes in each cluster of the chromatograms. However, because of the high boiling point of FT wax, there are still further issues for investigation, such as the qualitative analysis of the FT wax fraction (>450 ℃).

    Overall, the method has achieved satisfactory results for the determination of FT wax from Ningxia 4 million tons per year indirect coal liquefaction. Based on this method, the group has applied to the National Energy Bureau for industry standards.

    Acknowledgement

    We are grateful to Chi Langzhu for help on the separation of FT wax. We thank Kara Bogus, PhD, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

    [1]Gao R, Cao D B, Liu S L, et al. Appl Catal A: General, 2013, 468: 370

    [2]Xiong H F, Motchelaho M A, Moyo M, et al. Fuel, 2015, 150: 687

    [3]Hamilton N G, Warringham R, Silverwood I P, et al. J Catal, 2014, 312: 221

    [4]Li T Z, Wang H L, Yang Y, et al. Fuel Process Tech, 2014, 118: 117

    [5]Rina W, Hein P, Nico P, et al. J Chromatogr A, 2011, 1218: 3173

    [6]Fan G X, Li Y, Yang J L, et al. Chinese Journal of Analytical Chemistry, 2007, 35(8): 1092

    [7]Gai Q Q, Wu P, Shi Y L, et al. Chinese Journal of Chromatography, 2015, 33(1): 90

    [8]Gai Q Q, Long Y H, Wu P, et al. Analytical Instrumentation, 2016, 4: 9

    [9]Mahéa L, Courtiadea M, Dartiguelonguea C, et al. J Chromatogr A, 2012, 1229: 298

    [10]Chi L Z, Li Z Y, Jiang Y, et al. China Petroleum Processing Petrochem, 2016, 7(1): 101

    [11]Sutton P A, Wilde M J, Martin S J, et al. J Chromatogr A, 2013, 1297: 236

    [12]Zhou Y Q. Chinese Journal of Chromatography, 1996, 14(5): 403

    [13]Yang R Y, Zhou L P, Gao J H, et al. Catal Today, 2017, 298: 77

    [14]ASTM D6352-2015

    [15]Dry M E. Appl Catal A: General, 1999, 189: 185

    在线观看免费视频网站a站| 亚洲精品日韩在线中文字幕| 爱豆传媒免费全集在线观看| 免费观看无遮挡的男女| 热re99久久精品国产66热6| 精品一区二区三卡| 国产成人精品久久二区二区91 | 日韩av不卡免费在线播放| 91国产中文字幕| 91aial.com中文字幕在线观看| 日本vs欧美在线观看视频| 日韩成人av中文字幕在线观看| 女性被躁到高潮视频| 涩涩av久久男人的天堂| 一级毛片黄色毛片免费观看视频| 99久久中文字幕三级久久日本| 大片免费播放器 马上看| 中文字幕亚洲精品专区| videosex国产| 26uuu在线亚洲综合色| 综合色丁香网| 国产乱来视频区| 80岁老熟妇乱子伦牲交| 日产精品乱码卡一卡2卡三| 男女边吃奶边做爰视频| 精品少妇一区二区三区视频日本电影 | 色吧在线观看| 国产片特级美女逼逼视频| 婷婷色av中文字幕| 日本黄色日本黄色录像| 如日韩欧美国产精品一区二区三区| 激情五月婷婷亚洲| 丰满饥渴人妻一区二区三| 午夜福利乱码中文字幕| 亚洲av国产av综合av卡| 国产精品欧美亚洲77777| 国产在视频线精品| 久久久精品区二区三区| 国产一级毛片在线| 男女高潮啪啪啪动态图| 亚洲精品国产一区二区精华液| 又粗又硬又长又爽又黄的视频| 亚洲国产精品一区三区| 精品久久久久久电影网| 欧美av亚洲av综合av国产av | 一级a爱视频在线免费观看| 欧美日韩av久久| 免费看av在线观看网站| 国产爽快片一区二区三区| videos熟女内射| 老熟女久久久| 亚洲视频免费观看视频| 高清视频免费观看一区二区| 亚洲精品第二区| 美女国产高潮福利片在线看| 少妇人妻精品综合一区二区| 麻豆精品久久久久久蜜桃| 韩国精品一区二区三区| 另类精品久久| 中文字幕制服av| 久久狼人影院| 美女高潮到喷水免费观看| 欧美精品一区二区大全| 最黄视频免费看| 亚洲精品国产一区二区精华液| 国产av国产精品国产| 在线 av 中文字幕| 婷婷成人精品国产| tube8黄色片| 欧美人与善性xxx| 肉色欧美久久久久久久蜜桃| 汤姆久久久久久久影院中文字幕| 亚洲欧美成人综合另类久久久| 免费久久久久久久精品成人欧美视频| 校园人妻丝袜中文字幕| 日日摸夜夜添夜夜爱| 久久影院123| 久久97久久精品| 又黄又粗又硬又大视频| 国产 精品1| 欧美日韩亚洲高清精品| 伊人久久大香线蕉亚洲五| 男女无遮挡免费网站观看| av片东京热男人的天堂| 一本—道久久a久久精品蜜桃钙片| 黄片播放在线免费| 久久97久久精品| 久久国内精品自在自线图片| 久久狼人影院| 成人黄色视频免费在线看| 啦啦啦视频在线资源免费观看| 中文字幕亚洲精品专区| 亚洲成人av在线免费| 免费不卡的大黄色大毛片视频在线观看| 99久国产av精品国产电影| 国产免费又黄又爽又色| 国产成人精品在线电影| 亚洲欧洲国产日韩| 国产在视频线精品| 伊人久久大香线蕉亚洲五| 捣出白浆h1v1| 日韩人妻精品一区2区三区| 亚洲欧洲国产日韩| 免费不卡的大黄色大毛片视频在线观看| 天美传媒精品一区二区| 久久精品久久精品一区二区三区| 91精品国产国语对白视频| av电影中文网址| 免费黄色在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 成人午夜精彩视频在线观看| 热re99久久精品国产66热6| 国产成人欧美| 久久久国产欧美日韩av| 蜜桃在线观看..| 国产免费福利视频在线观看| 人人妻人人澡人人看| 中国国产av一级| 久久久久人妻精品一区果冻| 人人澡人人妻人| 超碰成人久久| 国产一级毛片在线| 丝袜喷水一区| 欧美激情 高清一区二区三区| 日本免费在线观看一区| 亚洲熟女精品中文字幕| xxx大片免费视频| 国产成人免费无遮挡视频| 久久久久久免费高清国产稀缺| 不卡视频在线观看欧美| 啦啦啦在线观看免费高清www| 97精品久久久久久久久久精品| 熟女av电影| 国产熟女午夜一区二区三区| 国产精品久久久久成人av| 精品一品国产午夜福利视频| 欧美bdsm另类| 国产黄色视频一区二区在线观看| 欧美激情极品国产一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av免费高清在线观看| 国产av一区二区精品久久| 中文欧美无线码| 国产1区2区3区精品| 男女午夜视频在线观看| 天天操日日干夜夜撸| 搡老乐熟女国产| 丰满饥渴人妻一区二区三| 成人免费观看视频高清| 男女国产视频网站| 国产在线一区二区三区精| 国产成人精品久久二区二区91 | 亚洲av成人精品一二三区| av电影中文网址| 人妻 亚洲 视频| 91aial.com中文字幕在线观看| 国产免费一区二区三区四区乱码| 免费少妇av软件| 亚洲精品自拍成人| 欧美日韩国产mv在线观看视频| 在线观看免费视频网站a站| 波多野结衣一区麻豆| 中文字幕av电影在线播放| 亚洲婷婷狠狠爱综合网| 日本av免费视频播放| 性少妇av在线| 精品少妇久久久久久888优播| 最近手机中文字幕大全| 性色av一级| 久久久久久久亚洲中文字幕| 女人久久www免费人成看片| 久久久亚洲精品成人影院| 各种免费的搞黄视频| 在线观看美女被高潮喷水网站| 欧美国产精品va在线观看不卡| 999久久久国产精品视频| 男女无遮挡免费网站观看| 波野结衣二区三区在线| 国产精品国产三级专区第一集| 国产亚洲午夜精品一区二区久久| 一区二区三区激情视频| 成年美女黄网站色视频大全免费| 中文字幕av电影在线播放| 国产成人精品一,二区| 亚洲人成电影观看| 亚洲av免费高清在线观看| 伦精品一区二区三区| 成人国产av品久久久| 午夜激情av网站| 亚洲国产日韩一区二区| 免费av中文字幕在线| 晚上一个人看的免费电影| 亚洲成色77777| 日韩av不卡免费在线播放| av线在线观看网站| 在线精品无人区一区二区三| 日韩av不卡免费在线播放| 亚洲欧洲精品一区二区精品久久久 | 亚洲三级黄色毛片| 黑丝袜美女国产一区| 一区在线观看完整版| 两个人看的免费小视频| 国产av一区二区精品久久| 丝袜美腿诱惑在线| 七月丁香在线播放| 久久午夜福利片| 久久人人97超碰香蕉20202| 精品人妻熟女毛片av久久网站| 亚洲人成电影观看| 久久久久人妻精品一区果冻| 一级黄片播放器| 国产成人午夜福利电影在线观看| 欧美精品一区二区免费开放| 久久久久人妻精品一区果冻| 三级国产精品片| 亚洲精品一二三| 丝袜人妻中文字幕| 国产视频首页在线观看| 一二三四在线观看免费中文在| 午夜免费观看性视频| 免费高清在线观看视频在线观看| 国产精品一区二区在线不卡| 久久99精品国语久久久| 久久影院123| av不卡在线播放| 精品亚洲成a人片在线观看| 久久久久国产网址| 只有这里有精品99| av有码第一页| 婷婷色麻豆天堂久久| 亚洲精品乱久久久久久| 午夜老司机福利剧场| 精品亚洲成a人片在线观看| 免费观看av网站的网址| 亚洲成国产人片在线观看| av不卡在线播放| 日韩电影二区| 电影成人av| www.熟女人妻精品国产| 少妇 在线观看| 亚洲视频免费观看视频| 国产精品成人在线| 国产综合精华液| 黄色 视频免费看| 大香蕉久久网| 日本wwww免费看| av电影中文网址| 精品国产一区二区三区四区第35| 成人毛片a级毛片在线播放| 国产男女内射视频| 韩国av在线不卡| 国产探花极品一区二区| 免费播放大片免费观看视频在线观看| 99久久综合免费| 丝袜喷水一区| 边亲边吃奶的免费视频| 国产视频首页在线观看| 国产无遮挡羞羞视频在线观看| 国产一区二区三区综合在线观看| 26uuu在线亚洲综合色| 一级毛片我不卡| 久久狼人影院| 大香蕉久久成人网| 天美传媒精品一区二区| 日韩制服丝袜自拍偷拍| 欧美日韩一区二区视频在线观看视频在线| 午夜激情久久久久久久| 久久人人爽人人片av| 国产成人精品福利久久| 国产精品秋霞免费鲁丝片| 欧美日韩亚洲国产一区二区在线观看 | 精品人妻偷拍中文字幕| 国产精品人妻久久久影院| a 毛片基地| 亚洲国产精品999| 中文欧美无线码| 男男h啪啪无遮挡| 国产又爽黄色视频| 日产精品乱码卡一卡2卡三| 啦啦啦在线免费观看视频4| 亚洲少妇的诱惑av| 亚洲精品aⅴ在线观看| 中文字幕最新亚洲高清| 中文字幕亚洲精品专区| 狠狠婷婷综合久久久久久88av| 多毛熟女@视频| 国产精品久久久久久久久免| 叶爱在线成人免费视频播放| 久久久国产一区二区| 丰满饥渴人妻一区二区三| 90打野战视频偷拍视频| 爱豆传媒免费全集在线观看| 国产精品免费视频内射| 十八禁网站网址无遮挡| av免费在线看不卡| 日韩 亚洲 欧美在线| 亚洲成av片中文字幕在线观看 | 啦啦啦在线免费观看视频4| 精品亚洲成a人片在线观看| 一级片免费观看大全| 精品少妇久久久久久888优播| 在线亚洲精品国产二区图片欧美| 久久国产精品大桥未久av| 久久久国产一区二区| 国产精品一二三区在线看| 亚洲成色77777| 欧美中文综合在线视频| 国产无遮挡羞羞视频在线观看| 成人亚洲欧美一区二区av| 熟女少妇亚洲综合色aaa.| 国产精品久久久久久精品古装| 国产高清不卡午夜福利| 有码 亚洲区| 国产成人欧美| 亚洲欧美精品自产自拍| 精品第一国产精品| av在线app专区| 男女边摸边吃奶| 免费观看无遮挡的男女| 精品国产一区二区三区四区第35| 日本av免费视频播放| 春色校园在线视频观看| 亚洲精品一二三| 久久久久久伊人网av| 97精品久久久久久久久久精品| 日韩熟女老妇一区二区性免费视频| 在线观看三级黄色| 精品国产超薄肉色丝袜足j| 午夜福利在线免费观看网站| 激情五月婷婷亚洲| 熟妇人妻不卡中文字幕| 成人毛片60女人毛片免费| 黄色怎么调成土黄色| 国产野战对白在线观看| 男女啪啪激烈高潮av片| 在线观看免费高清a一片| videos熟女内射| 国产极品天堂在线| 高清不卡的av网站| 巨乳人妻的诱惑在线观看| 亚洲精品,欧美精品| 一区二区三区乱码不卡18| 久久久欧美国产精品| 国产麻豆69| 97精品久久久久久久久久精品| 女人久久www免费人成看片| 免费久久久久久久精品成人欧美视频| 999精品在线视频| 人体艺术视频欧美日本| 亚洲av电影在线观看一区二区三区| 天天躁夜夜躁狠狠躁躁| 中文天堂在线官网| 卡戴珊不雅视频在线播放| 成年动漫av网址| 婷婷色综合大香蕉| 亚洲精品日本国产第一区| 日本黄色日本黄色录像| 午夜激情久久久久久久| 女的被弄到高潮叫床怎么办| 制服丝袜香蕉在线| 看免费av毛片| 成年女人在线观看亚洲视频| 69精品国产乱码久久久| 美女国产高潮福利片在线看| 黄色一级大片看看| 国产精品欧美亚洲77777| 久久精品国产亚洲av天美| 天天躁夜夜躁狠狠久久av| 国产成人a∨麻豆精品| 欧美变态另类bdsm刘玥| 久久这里只有精品19| 少妇熟女欧美另类| 你懂的网址亚洲精品在线观看| 国产激情久久老熟女| 999久久久国产精品视频| 1024视频免费在线观看| 久久韩国三级中文字幕| 两个人免费观看高清视频| 亚洲国产av新网站| 黄网站色视频无遮挡免费观看| 日本免费在线观看一区| 日韩成人av中文字幕在线观看| 欧美在线黄色| 久久精品国产自在天天线| 97人妻天天添夜夜摸| 免费高清在线观看日韩| 美女xxoo啪啪120秒动态图| 一个人免费看片子| 97在线人人人人妻| 久久国产精品大桥未久av| 亚洲综合色网址| 热re99久久精品国产66热6| 成人免费观看视频高清| 桃花免费在线播放| 国产精品一二三区在线看| 久久久久网色| 亚洲国产日韩一区二区| 亚洲精品国产色婷婷电影| 精品亚洲成国产av| 国产一区二区三区av在线| 成年人午夜在线观看视频| 国产精品一区二区在线观看99| 两个人看的免费小视频| 男人添女人高潮全过程视频| 日韩不卡一区二区三区视频在线| 侵犯人妻中文字幕一二三四区| 最近中文字幕2019免费版| 日韩成人av中文字幕在线观看| 精品人妻在线不人妻| 中国三级夫妇交换| 亚洲国产欧美日韩在线播放| 美女大奶头黄色视频| 一区二区三区乱码不卡18| 在线天堂中文资源库| 久久午夜综合久久蜜桃| 欧美97在线视频| 一级毛片 在线播放| 在线亚洲精品国产二区图片欧美| 91国产中文字幕| 亚洲欧美一区二区三区国产| 你懂的网址亚洲精品在线观看| av国产精品久久久久影院| 国产又色又爽无遮挡免| 在线观看三级黄色| 新久久久久国产一级毛片| 国产精品一国产av| 最近2019中文字幕mv第一页| 中文字幕人妻丝袜制服| 国产成人免费无遮挡视频| 亚洲国产精品999| 免费av中文字幕在线| 一级爰片在线观看| 性少妇av在线| 久久久久久久国产电影| 国产极品天堂在线| 777久久人妻少妇嫩草av网站| 中文字幕人妻丝袜制服| 嫩草影院入口| 捣出白浆h1v1| 一级毛片电影观看| 精品一区二区三卡| 一本色道久久久久久精品综合| 久久久久久人人人人人| 91aial.com中文字幕在线观看| 免费黄色在线免费观看| 人成视频在线观看免费观看| 欧美人与性动交α欧美软件| 日韩熟女老妇一区二区性免费视频| 色视频在线一区二区三区| a级片在线免费高清观看视频| 国产激情久久老熟女| 亚洲第一av免费看| 日韩大片免费观看网站| 老熟女久久久| 又大又黄又爽视频免费| 黄色毛片三级朝国网站| 久久精品熟女亚洲av麻豆精品| 一本色道久久久久久精品综合| 久久精品国产a三级三级三级| 日韩中字成人| 亚洲精品在线美女| 免费人妻精品一区二区三区视频| 水蜜桃什么品种好| 欧美精品一区二区大全| 国产老妇伦熟女老妇高清| 成年美女黄网站色视频大全免费| av卡一久久| 国产成人一区二区在线| 伦理电影免费视频| 久久精品aⅴ一区二区三区四区 | 啦啦啦中文免费视频观看日本| 日韩在线高清观看一区二区三区| 中文字幕色久视频| 熟妇人妻不卡中文字幕| 婷婷色综合大香蕉| 青春草国产在线视频| 1024视频免费在线观看| 人妻少妇偷人精品九色| 男女免费视频国产| 欧美人与性动交α欧美软件| 久久久久久久久久久免费av| 免费观看性生交大片5| 国产伦理片在线播放av一区| 夫妻午夜视频| 日韩电影二区| 久久久国产一区二区| 免费少妇av软件| 中文字幕色久视频| 久久久国产欧美日韩av| 成年女人毛片免费观看观看9 | av不卡在线播放| 亚洲欧美一区二区三区黑人 | 永久网站在线| 咕卡用的链子| 大陆偷拍与自拍| 一本久久精品| 叶爱在线成人免费视频播放| 99九九在线精品视频| 美女脱内裤让男人舔精品视频| 国产成人a∨麻豆精品| 国产成人精品在线电影| 99久久综合免费| 熟女电影av网| 午夜老司机福利剧场| 大陆偷拍与自拍| 人妻人人澡人人爽人人| 叶爱在线成人免费视频播放| 欧美日韩国产mv在线观看视频| 亚洲人成77777在线视频| 久久午夜福利片| 亚洲成人av在线免费| 咕卡用的链子| 精品国产乱码久久久久久男人| 精品久久久精品久久久| 欧美激情高清一区二区三区 | 一区二区三区激情视频| 免费人妻精品一区二区三区视频| 99热全是精品| 成人手机av| 老汉色∧v一级毛片| 日本色播在线视频| 18禁动态无遮挡网站| 国产极品粉嫩免费观看在线| 天天躁夜夜躁狠狠躁躁| 精品国产一区二区久久| 自线自在国产av| 日韩一卡2卡3卡4卡2021年| 久久精品国产a三级三级三级| 久久99蜜桃精品久久| 欧美 亚洲 国产 日韩一| 久久女婷五月综合色啪小说| 黄色毛片三级朝国网站| 热99久久久久精品小说推荐| 日韩三级伦理在线观看| 欧美97在线视频| 多毛熟女@视频| 亚洲欧美成人精品一区二区| 成人漫画全彩无遮挡| 亚洲,欧美,日韩| 久久青草综合色| 国产一区二区激情短视频 | 久久久国产欧美日韩av| 日韩中文字幕视频在线看片| 亚洲三级黄色毛片| 黑人猛操日本美女一级片| kizo精华| 9色porny在线观看| 精品少妇黑人巨大在线播放| 国精品久久久久久国模美| 久久女婷五月综合色啪小说| 一本久久精品| 国产成人精品无人区| 午夜激情av网站| 日产精品乱码卡一卡2卡三| 亚洲av综合色区一区| 久久精品久久久久久噜噜老黄| 乱人伦中国视频| 最近最新中文字幕免费大全7| 美女午夜性视频免费| 国产精品三级大全| 国产一区有黄有色的免费视频| 欧美+日韩+精品| 中国国产av一级| 宅男免费午夜| 搡老乐熟女国产| 国产一区二区激情短视频 | 久久久精品94久久精品| 一本久久精品| 亚洲av欧美aⅴ国产| 久久久精品区二区三区| 久久久久精品久久久久真实原创| av在线app专区| 亚洲内射少妇av| 免费在线观看完整版高清| 国产成人免费无遮挡视频| 欧美日韩一区二区视频在线观看视频在线| 男人爽女人下面视频在线观看| 汤姆久久久久久久影院中文字幕| 18禁动态无遮挡网站| 成人国产av品久久久| 免费观看无遮挡的男女| 99国产综合亚洲精品| av女优亚洲男人天堂| 超色免费av| 免费黄网站久久成人精品| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品久久成人aⅴ小说| 成人18禁高潮啪啪吃奶动态图| 人妻一区二区av| 亚洲 欧美一区二区三区| 午夜福利在线免费观看网站| 久久国内精品自在自线图片| 伊人亚洲综合成人网| 日韩中文字幕欧美一区二区 | 免费少妇av软件| 国产精品一区二区在线不卡| 黄色一级大片看看| 超碰成人久久| 免费高清在线观看视频在线观看| 午夜精品国产一区二区电影| 一级毛片 在线播放| 一区二区日韩欧美中文字幕| 精品第一国产精品| 亚洲av电影在线进入| 国产精品久久久久久精品电影小说| av在线观看视频网站免费| 久久久久久人妻| 又粗又硬又长又爽又黄的视频| 亚洲国产精品999| 亚洲欧美一区二区三区久久| 男女啪啪激烈高潮av片| 亚洲精品国产av蜜桃| 免费不卡的大黄色大毛片视频在线观看| 热99久久久久精品小说推荐| 亚洲,一卡二卡三卡|