• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Management breaks the natural productivity-biodiversity relationship in forests and grassland:an opinion

    2018-03-24 08:10:09SchulzeBouriaudWeberRoscherHessenmoellerKroiherandSchall
    Forest Ecosystems 2018年1期

    E.D.Schulze,O.Bouriaud,U.Weber,C.Roscher,D.Hessenmoeller,F.Kroiherand P.Schall

    Background

    Mankind faces an increasing number of conflicting demands for maintaining global integrity.There is the need for mitigating climate change,the demand for maintaining global diversity,and the necessity to supply an ever increasing amount of biomass for human needs of food,wood,energy and fiber.In this context,the observation that biomass production can be increased by increasing plant diversity is highly important.Hector et al.(1999)summarized the results from a European Grassland Experiment by the simple equation,namely that doubling plant diversity increases biomass production of grasslands by 20%.However,despite an overwhelming confirmation of this observation from other ecosystems(Scherer-Lorenzen in Schulze et al.2017),the acceptance by land-users in agriculture and forestry remains low.Monocultures remain the main source for food and fiber worldwide perhaps of conflicting interpretations of the same results,or because of practical reasons,since maintaining diversity can be very work-demanding.

    Fig.1 a Global map of diversity and of the genetic centers for agricultural crops(Hilger et al.2015).b Global map of Net Primary Production,NPP,in gC?m?2?yr.?1(from Schulze et al.2017,based on Cramer et al.2001)

    In the following we try to explore the basis for these opposing views,namely the demand for increasing biomass production via diversity and the resilience by landusers to discard monocultures.In this process,we should be aware,that the relation between biomass production and diversity is not direct,but mediated by numerous parameters,including human management,and by variations in site conditions.In an initial step we will evaluate global distributions of diversity and productivity in order to re-inspect in a second step grassland and forest experiments.

    Methods

    In this study we re-asses existing data by Bouriaud et al.(2016),Buchmann et al.(2017),Schall et al.(2017)and Liang et al.(2016)specifically in terms of biodiversity effects.In the past,the productivity/diversity relations were studied with a focus on the average change of productivity with plant species numbers.In most cases,an increase with diversity was observed and interpreted by the effects of selection and complementarity(Loreau and Hector 2001).However,Schmidt et al.(2008)already pointed out that average(or 0.5 percentile)functions overestimate the diversity effects due to high numbers of monocultures in experimental assembles.In the present study,we try to overcome the problems of nonnormal distributions of data,by inspecting the maximum value or values of productivity at each level of species number,and we compare this function with the average diversity response.The statistical problem remains that the sample size changes with the level of species number,but taking the maximum values can avoid unwanted effects of management on maximum productivity.

    Results and Discussion

    Global diversity and productivity

    Despite of a general trend with higher plant diversity in tropical and sub-tropical climates than in boreal zones,Hilger et al.(2015)show that biodiversity is not uniformly distributed in any climatic region(Fig.1a).There are“hotspots”of diversity with unusually high species numbers,mainly of endemic plant species.However,even in the tropics there are regions of plant diversity as low as in boreal forest.In addition,there are genetic centers of origin(Vavilov centers)for agricultural crops.It is of interest to see,if the patterns,as observed by Hilger et al.(2015)emerge in global maps of productivity.Taking the global map of net primary production(NPP)of terrestrial ecosystems(Fig.1b),the pattern of decreasing productivity with latitude remains,but,the regions with highest productivity in South America and Africa do not match the hotspots of diversity.Also,in the Mediterranean climate and in the temperate zone,NPP distribution does not match the diversity hotspots.The same discrepancy between plant diversity and productivity emerges with agricultural crops,which reach maximum rates in the temperate zones(West et al.2010).However,agricultural cropping takes place on a different parcel of land than natural diversity,and can therefore not directly be compared.

    The global patterns of diversity and NPP contain variations in numerous additional factors,such as soils,water and nutrient supply,and elevation,which could dim the diversity effect,and increase the variation.Thus,the relation between NPP and vascular plant diversity was investigated on 16,805 hexagonal grid cells(pixels of~7800 km2)for which the presently existing plant diversity(anthropogenic species richness)has been quantified(Ellis et al.2012,Fig.2).Diversity ranges between 0 and about 5000 vascular plant species per pixel,and the 10-year averages of mean annual NPP,as measured by Modis(https://e4ftl01.cr.usgs.gov/MOLT/MOD17A3.055/,accessed 27 July 2017),reach 2500 gC?m?2?yr.?1(equivalent to about 50 t dry weight ha?1?yr.?1).The data show a higher density of datapoints at low diversity.Cumulatively,90%of the species number and about 90%of the total sum of NPP is reached at about 60%of maximum local diversity.The 0.5 percentile dots indicate that following an initial increase with diversity NPP remains constant or even decrease beyond 2500 species per pixel.Diversity levels>2500 species per pixel represent the global hotspots of diversity(Additional file 1:Figure S1).Maximum NPP(0.9 percentile dots)saturates at the same level of diversity.The variation of NPP at each level of diversity is large,and increases with increasing species diversity.In fact,the variation of the 0.9 percentile value gets almost random at high diversity.Thus,high diversity does not enhance NPP beyond a certain level,and the contribution of global diversity hotspots for the global total of NPP appears to be low.

    Obviously,the NPP-diversity relation is not linear across the range of diversity,where the global distribution of diversity is left-skewed towards low diversity.The increasing variation and the final decline of NPP with diversity may be explained by the fact,that many hotspots are located in alpine and semi-arid regions.

    The relation of NPP and global diversity does not allow an assessment of the effects of a loss of species.The effect on NPP may be detrimental,if a dominant species is lost(e.g.Picea abies during forest decline by SO2emissions).In this case NPP may collapse despite high diversity at the pixel level.On the contrary,if an auxiliary species is lost(e.g.Ulmus ssp.,by Duch elm disease)there may be no effect on NPP.Therefore,in the following we try to separately assess the NPP productivity relations for grasslands and for forests at greater detail.

    Grasslands

    Grasslands have been the model system for studying the relation between NPP and diversity.Experimental systems were established by Tilman et al.(1996),by Hector et al.(1999),and by Weisser et al.(2017,the Jena-Experiment)to avoid confounding effects of soils.Here we take the data of Buchmann et al.(2017)because they combine the data of the Jena-Experiment with data from surrounding semi-natural grasslands in the same year(Fig.3).Biomass is taken as measure for aboveground NPP in grasslands.

    Fig.2 Relations between mean annual NPP(10-yr average of Modis)and “anthropogenic species richness”,which is the number of presently existing vascular plant species per grid cell of~7800 km2(Ellis et al.2012),including effects of human land use and land use change.The dots show 10 species averages along the x-axis,and the 0.1(green),0.5(blue)and 0.9(brown)percentiles along the NPP y-axis.The closed lines show the cumulative number of species as fraction of total species number(green line),and the cumulative NPP as fraction of total global NPP(yellow line)

    The data-cloud shows a significant increase of average biomass with increasing plant species number,explaining 21%of the variation.The increase is caused by a selection and by a complementarity effect(Loreau and Hector 2001).However,there is a tendency for more data points at low diversity(monoculture of each species as reference)than at high diversity,which may affect the slope of the NPP/diversity relation(Schmid et al.2008).The analyses of Buchmann et al.(2017)of the mechanisms of this positive relation shows that biomass-production via diversity is mainly determined by the availability of nitrogen,where nitrogen is supplied by legumes.In managed grasslands nitrogen is added by fertilizer.

    Fig.3 Relations between biomass in May 2013 and plant species diversity in the Jena Experiment and semi-natural surrounding grasslands.Biomass is taken as measure for aboveground NPP in grasslands(Buchmann et al.2017).The lower line and the lower equation describes the average response based on all data-points,while the upper line and equation describes the response of biomass with plant species number of the 5 maximum values at 2,10,18,27 and 32 species

    Neither the grassland experiments nor the ambient semi-natural grasslands contain all possible species combinations.Therefore we try to assess the diversity effect in a reverse approach,by viewing selectively the maximum rates at each density level,even though the problem exists that not all species combinations contain the species of highest productivity(a kind of negative selection effect).The highest biomass values(5%percentile)shows decreasing biomass with diversity(r2=0.31),but the number of available data is too small to be significant.The maximum biomass was observed at 10 species mixtures.Biomass of a single species in a 3 species mixture may be as high as the species mixture of 17 and more species,as known from fertilized meadows(Buchgraber and Grindl 2004).The data set does not contain a high-yielding monoculture.The average loss in maximum productivity is 0.5%loss with each absent species,but it remains unclear,if the initial response is linear.A positive effect of species mixtures apparently remains at low species numbers,most likely by over-yielding.

    The two approaches mark the main difference between the “ecological”view of the average trend taking monocultures of all species as baseline,and the“agricultural”view focusing on highest productivity.Also,agriculturist would be interested to know,which features result in highest biomass production.We will not evaluate the two approaches but point at genuine differences.In the case of the Jena-Experiment,the highest NPP was reached by Onobrychis viciifolia(esparsette)as dominant species with few additional subdominant species.Onobrychis also contributes to a large extent to the high NPP at experimental species mixtures.It is a nitrogen fixing species.At the same time,it grows tall and forms a dense canopy of sun-leaves that out-shade most competitors.Obviously,maintaining high yielding grasslands with few species requires additional management(Buchgraber and Grindl 2004).

    Fig.4 Growth of managed age class coniferous and deciduous forest in Thuringia,Germany,and Boisoara,Romanian as related to tree species number(Bouriaud et al.2016).The lower vertical line and equation describes the average change of volume increment with tree species number while the upper blue line and equation describes the change of volume increment with tree diversity of the single highest value at each level of diversity

    Forests

    Relations between forest growth and tree diversity are difficult to assess because,in many studies only stand volumes and not growth are documented,and the main species of the canopy and not all species are recorded.Therefore,we restrict our analysis to temperate zone central European forests where all data are available.

    The relation between stand growth and tree diversity for a regional study in Romania and Germany(Bouriaud et al.2016)based on grid-based inventory of 1000 m2plots in Picea abies and Fagus sylvatica-dominated forests shows for the average of all data no response of growth with increasing tree species number(Fig.4,lower response line).However,there is a significant decrease of the maximum productivity with increasing tree species number of about 10%with each additional tree species(Fig.4,upper response line).Since this is an observational study,the decrease could also be caused by variations of site conditions with respect to nutrition and water supply.Generally,in temperate Europe poor site conditions have more open canopies and thus contain more species at lower productivity.The highest observed productivity is a monoculture of Picea abies in Germany at 30 m3?ha?1?yr.?1.Fagus sylvatica monocultures reach only 40%of the productivity achieved by Picea.The second highest value of productivity is found in a 3 species mixture with>90%spruce and<10%Betula and Sorbus.The most productive mixture including Fagus and Picea is also a 3 species mixture with Sorbus as additional species,but this mixture reaches only about 60%of maximum productivity.Apparently,the grid-based inventory shows various mixture effects but no over-yielding.The closer inspection of the diversity effects indicates that the sheer number of tree species does not reflect the level of mixture,which may be biologically important.The distribution of observations in Fig.4 shows a maximum with monocultures and an exponentially decreasing number of plots with increasing tree species numbers.The observation of decreasing productivity capacity with increasing mixtures is confirmed by a biodiversity experiment of Van der Plas et al.(2016a)who compared European forest types and found the highest levels of ecosystem functions related to production for monocultures of Picea abies.Also results from long-term experimental plots similarly concluded to a higher maximum productivity in monocultures of Picea abies in deciduous temperate forests(Pretzsch,2009).More generally though,tree species diversity can promote the simultaneous delivery of multiple ecosystem functions.The so-called “Jack-of-all-trades”effect in European forests generates a low level of functioning in highly diverse forest stands(Van der Plas 2016b).

    The observations at regional scale are confirmed by the National Forest Inventory of Germany.There is no effect of tree diversity on average tree volume increments,but the upper border line of the data shows a steady decrease with tree diversity of about 8%(Fig.5).Similar to the study at regional scale,increasing species numbers are associated with site conditions,mainly water limitations.The highest growth rate was reached in monocultures of Picea abies.

    Fig.5 Growth of forests in Germany based on data from the National Forest Inventory(BWI 3:https://www.forstwirtschaft-in-deutschland.de/forstwirtschaft/bwi3/)encompassing 52,263 datasets.The lower vertical line and equation describes the average change of volume increment with tree species number while the upper blue line and equation describes the change of volume increment with tree diversity of the 10 highest values at each level of diversity.Positive numbers indicate an increase in stand volume over the repeated inventory over 10 years,while negative numbers indicate a loss in stand volume,mainly by harvest

    The inventory study in a temperate European forest reached 9 tree species per inventory plot as highest level of tree diversity on 1000 m2plots.We would expect that this number would be higher in East Asia or North America having higher regional tree diversity(Schulze et al.2015).In order to make sure that the tree species number reached in Figs.3 and 4 is representative,we analyzed the data of Schall et al.(2017)on 1 ha plots in the same region of Germany,but confined to deciduous forest(See Additional file 1:Figure S3).This study reached 8 tree species as maximum tree diversity.Thus,the small inventory plots and the relatively low level of tree diversity are representative for European forests.

    In the regional study and in the national inventory,stand volumes reached highest levels with monocultures of Picea abies(Fig.6).In order to discard the possibility that the highest volumes were only reached by management,we included data from Nera,an old National Park in Romania(presently named as Semenik),for which only volume data exist,and it can be seen that highest volumes were reached also in the case of a national parks with monocultures of Fagus sylvatica(Turcu 2012).

    Apparently,in forests,tree diversity is maintained either by disturbances,including human management(Reich et al.2001;Schulze et al.2009),or by open canopies when environmental conditions are limiting,and it could be both,namely that NPP determines diversity(Reich et al.2001)or that species composition determines NPP(Schulze et al.2009).

    Fig.6 Stand volumes as related to species numbers in age class forests of Picea and Fagus dominated stands in Germany,and of the national Parks Hainich in Germany and Nera in Romania

    Global biodiversity data

    The most comprehensive assessment of growth and tree diversity was made by Liang et al.(2016)who observe,after filtering a large global dataset,that productivity increased with biodiversity(Fig.7).The maximum rates of growth are fairly low,when compared to the growth rates shown in Fig.5.The biodiversity/productivity relationship reached an asymptote at 8 m3?ha?1?yr.?1which is only 13%of the maximum shown in Fig.5 for temperate forest.Figure 7 also includes managed monocultures of specific high yielding species growing in temperate and tropical climates.These monocultures reach growth rates which are far beyond the growth level of the most diverse natural stands,and which are higher than the maximum rates of managed forests in Europe.In fact,these data indicate that the natural vegetation of Europe,which assembled more or less by chance after the Pleistocene,has not reached its growth potential.

    It is of interest to note that the full dataset of Liang et al.(2016)shows a distinct peak at low and at intermediate diversity(see Additional file 1:Figure S2).The full dataset apparently contains a mixture of volumes and growth rates and thus remains difficult to interpret.Nevertheless,it remains interesting to see that an envelope function(of volumes)would decline with diversity,indicating reduced stand growth with increasing diversity.There appears to be a second lower peak at intermediate diversity.

    Conclusions

    Fig.7 Forest productivity as related to tree species richness based on a global survey(Liang et al.2016)and productivity of a selection of fast growing monocultures(Liang et al.2016,supplement)

    The data indicate that the maximum growth rate of specific monocultures and mixtures is higher than the average diversity effect on productivity.This may be taken as the main incentive of land-users to using monocultures.In forests the loss in maximum productivity is about 10%for each added species,and this is less than the potential gain of average productivity in a random mixture.Highly productive monoculture-treesare also very strong competitors(e.g.Picea and Fagus)and keeping admixture species alive requires frequent interventions by management.

    Food industry and bio-economy are additional strong drivers for monocultures because of a demand for a uniform supply of substrate wanted for uniform products.This is even true for forestry,where saw mills are specialized to use specific tree species only.Thus,from the economic side there are few incentives to promote species mixtures.

    Opposite to the incentives for monocultures in managed systems,there are also ecological incentives for species mixtures,especially in long-lived forests.A mixture of species results in reduced risk against environmental extreme events(wind-throw)and diseases(insects).It also buffers the temporal variations of climate on productivity(Jucker et al.2014;Isbell et al.2015).Thus,in temperate forests,a species mixture is anticipated in modern forestry,but the level of mixture is generally low.

    Estimates of the cost of losses of species cannot be based on the average growth/biodiversity function,neither at global nor at local scale,but must contain the fact,that management will select the most productive species or species combination,which produce biomass beyond the level of the growth/biodiversity function.

    This study does not intend to clarify the ultimate causes for correlations between NPP and biodiversity or NPP and biodiversity,but to point out that by management NPP can be increased beyond the level offered by natural mixtures of species.

    Additional file

    Additional file 1:Figure S1.Distribution of areas with plant species diversity>2500/pixel,matching the global diversity hotspots.Figure S2.Volume growth versus tree diversity on 1 ha plots of Fagus sylvatica in Thuringia,Germany(Schall et al.2017).Figure S3.Full dataset of the Liang et al.(2016)database of productivity(P)and tree species richness(S),and the extracted productivity/diversity relationship.The very large values of P indicate that these data may be stand volumes rather than growth rates.The analysis of Liang et al.is driven by a very large number of plots of low productivity at low diversity.(ZIP 667 kb)

    Acknowledgements

    We like to thank Prof Dr.Alexandra Weigelt,Dr.Anne Ebeling,Dr.Tina Buchmann for making the grassland dataset available.These data were collected in the context of the Jena Experiment with Prof.Dr.Nico Eisenhauer,Prof.Dr.Wolfgang Weisser,and Prof.Dr.Berhard Schmid as PIs,and we thank these persons for maintaining this project.We thank Uli Pruschitzki and Lulian Iulian D?nil? for organizing the forest inventories.

    Authors’contributions

    EDS:wrote the 1st draft and all revisions of this paper,OB:analyzed the Romanian forest inventory date,UW:developed the global analysis of NPP vs.biodiversity,CR:analyzed the grassland data,DH analyzed the German forest inventory data,FK contributed the data of the German national forest inventory;PS made statistical analyses;FK supplied the data of the German National Forest Inventory.All authors jointly discussed this broad dataset,and agreed to the final version.

    Competing interest

    The authors declare that they have no competing interest.

    Author details

    1MPI Biogeochemistry,Box 100164,07701 Jena,Germany.2National Forest Inventory,National Research and Development Institute for Forestry INCDS,Eroilor Bd.128,Voluntari,Romania and University Stefan cel Mare of Suceava,13 Universitati Str,720229 Suceava,Romania.3UFZ,Hemholtz Centre for environmental Research,Physiological Diversity,Permoserstr.15,04318 Leipzig,Germany.4Forstamt Schmalkalden,Thueringen Forst,Schlossberg 11,98574 Schmalkalden,Germany.5Thünen-Institut für Wald?kosysteme,Adolf M?ller Str 1,16225 Eberswalde,Germany.6Department Silviculture and Forest Ecology of the Temperate Zones,University of G?ttingen,D-37077 G?ttingen,Germany.

    Bouriaud O,Marin G,Bouriaud L,Hessenm?ller D,Schulze ED(2016)Romanian legal management rules limit wood production in Norway spruce and beech forests.Forest Ecosystems 3:20

    Buchgraber K,Grindl G(2004)zeitgem??e Grünlandbewirtschaftung.Stoker Leopold Verlag,Germany

    Buchmann T,Schumacher J,Ebeling A,Eisenhauer N,Fischer M,Gleixner G,Hacker N,Lange N,Oelmann Y,Schmidt B,Schulze ED,Weigelt A,Weisser WW,Roscher C(2017)Connecting experimental biodiversity to real-world grasslands.Perspect Plant Ecol(in review)

    Cramer W,Bondeau A,Woodward FI,Prentice IC,Betts RA,Brovkin V,Cox PM,Fisher V,Foley JA,Friend AD,Kucharik C,Lomas MR,Ramankutty N,Sitch S,Smith B,White A,Young-Molling C(2001)Global response of terrestrial ecosystem structure and function to CO2and climate change:results from six dynamic global vegetation models.Glob Chang Biol 7:357–373

    Ellis EC,Antill EC,Kreft H(2012)All is not loss:plant diversity in the anthopocene.PLoS One 7(1):e30535 https://doi.org/10.1371/journal.pone.0030535.Accessed 12 Sep 2017

    Hector A,Schmid B,Beierkuhnlein C,Caldeira MC,Diemer M,Dimitrakopoulos PG,Finn JA,Freitas H,Giller PS,Good J,Harris R,H?gberg P,Huss-Danell K,Joshi J,Jumpponen A,K?rner C,Leadley PW,Loreau M,Minns A,Mulder CPH,O’Donovan G,Otway SJ,Pereira JS,Prinz A,Reas DJ,Scherer-Lorenzen M,Schulze E-D,Siamantziouras A-SD,Spehn EM,Terry AC,Troumbis AY,Woodward FI,Yachi S,Lawton JH(1999)Plant diversity and productivity experiments in European grasslands.Science 286:1123–1127

    Hilger T,Lewandowski I,Winkler B,Ramsperger B,Kageyama P,Colombo C(2015)Seeds of change –plant genetic resources and people’s livelihood.INTECH 5:123–146 http://creativecommons.org/licences/by/3.0.Accessed 12 Sep 2017

    Isbell F,Craven D,Connolly J,Loreau M,Schmid B,Beierkuhnlein C,Bezemer TM,Bonin C,Bruelheide H,De Luca E,Ebeling A,Griffin JN,Guo Q,Hautier Y,Hector A,Jentsch A,Kreyling J,Lanta V,Manning P,Meyer ST,Mori AS,Naeem S,Niklaus PA,Polley HW,Reich PB,Roscher C,Seabloom EW,Smith MD,Thakur MP,Tilman DT,Tracy BF,Van Der Putten WH,Van Ruijven J,Weigelt A,W Weisser WW,Wilsey B,Eisenhauer N(2015)Biodiversity increases the resistance of ecosystem productivity to climate extremes.Nature 526:574–577

    Jucker T,Bouriaud O,Avacaritei D,Coomes DA(2014)Stabilizing effects of diversity on aboveground wood production in forest ecosystems:linking patterns and processes.Ecol Lett 17(12):1560–1569

    Liang J,Crowther TW,Picard N,Wiser S,Zhou M,Alberti G,Schulze ED,McGuire A,Bozzato F,Pretzsch H,de-Miguel S,Paquette A,Hérault B,Scherer-Lorenzen M,Barrett C,Glick H,Hengeveld G,Nabuurs GJ,Pfautsch S,Viana H,Vibrans AC,Ammer C,Schall P,Verbyla D,Tchebakova N,Fischer M,Watson JV,Chen HH,Lei X,Schelhaas M,Lu H,Gianelle D,Parfenova E,Salas C,Lee E,Lee B,Kim H,Bruelheide H,Coomes D,Piotto D,Sunderland T,Schmid B,Gourlet-Fleury S,Sonké B,Tavani R,Zhu J,Brandl S,Vayreda J,Kitahara F,Searle EB,Neldner V,Ngugi M,Baraloto C,Frizzera L,Ba?azy R,Oleksyn J,Zawi?a-Nied?wiecki T,Bouriaud O,Bussotti F,Finér L,Jaroszewicz B,Jucker T,Valladares F,Jagodzinski A,Peri P,Gonmadje C,Marthy W,O’Brien T,Martin E,Marshall A,Rovero F,Bitariho R,Niklaus P,Alvarez-Loayza P,Chamuya N,Valencia R,Mortier F,Wortel V,Engone-Obiang N,Ferreira L,Odeke D,Vasquez R,Lewis S,Reich P(2016)Positive biodiversity-productivity relationship predominant in global forests.Science 354:196–208

    Loreau M,Hector A(2001)Partitioning selection and complementarity in biodiversity experiments.Nature 412:72–76

    Pretzsch H(2009)Diversity and productivity in forests.In:Scherer-Lorenzen M,K?rner C,Schulze ED(eds)(2005)Forest diversity and function,Ecological Studies,vol,vol 176.Springer,Heidelberg,pp 41–64

    Reich PB,Bakken P,Carlson D,Frelich LE,Friedmann SK,Grigal DF(2001)Influence of logging,fire,and forest type on biodiversity and productivity in southern boreal forests.Ecology 82:2731–2748

    Schall P,Gossner MM,Heinrichs S,Fischer M,Boch S,Prati D,Jung K,Baumgartner V,Blaser S,B?hm S,Buscot F,Daniel R,Goldmann K,Kaiser K,Kahl T,Lange M,Müller J,Overmann J,Renner SC,Schulze ED,Sikorski J,Tschapka M,Türke M,Weisser WW,Wernheuer B,Wubet T,Ammer C(2017)The impact of even-aged and unevenaged forest management on regional biodiversity of multiple taxa in European beech forests.J Appl Ecol https://doi.org/10.1111/1365-2664.12950

    Schmidt B,Hector A,Daha P,Loreau M(2008)Biodiversity effects and transgressive overyielding.Plant Ecol 1:95–102

    Schulze ED,Hessenm?ller D,Knohl A,Luyssaert S,Boerner A,Grace J(2009)Temperate and boreal old-growth forests:how do their growth dynamics and biodiversity differ from young stands and managed forests?Ecol Stud 207:343–366

    Schulze ED,Aas G,Grimm GW,Gossner MM,Walentowski H,Ammer C,Kühn I,Bouriaud O,von Gadow K(2015)A review on plant diversity and forest management of European beech forest.Eur J Forest 135:51–67.https://doi.org/10.1007/s10342-015-0922-y

    Schulze ED,Beck E,Buchmann N,Clemens S,Müller-Hohenstein K,Scherer-Lorenzen M(2017)Plant ecology.2nd edition,Springer Verlag,Heidelberg(in print)

    Tilman D,Wedin D,Knops J(1996)Productivity and sustainability influenced by biodiversity in grassland ecosystems.Nature 379:718–720

    Turcu DO(2012)Cercet?ri privind dinamica structurii f?getelor virgine ?i a mortalit??ii arborilor din Rezerva?ia Natural?“Izvoarele Nerei”/research on the structural dynamics of virgin beech forests and mortality of trees in the“Izvoarele Nerei”nature reserve.PhD thesis,University Bra?ov,Transilvania,p 156

    Van der Plas F,Manning P,Soliveres S,Allan E,Fischer M,Scherer-Lorenzen M,Verheyen K,Wirth C,Zavala M,Ampoorter E,Baeten L,Barbaro L,Bauhus J,Benavides R,Benneter A,Bonal D,Bouriaud O,Bruelheide H,Bussotti F,Carnol M,Castagneyrol B,Charbonnier Y,Coomes D,Coppi A,Bastias CC,Dawud SM,Wandeler HD,Domisch T,Finér L,Gessler A,Granier A,Grossiord C,Guyot V,H?ttenschwilery S,Jactel H,Jaroszewicz B,Joly F,Jucker T,Koricheva J,Milligan H,Mueller S,Muys B,Nguyen D,Pollastrini M,Ratcliffe S,Raulund-Rasmussen K,Selvi F,Stenlid J,Valladares F,Vesterdal L,Zielinski D,Fischer M(2016a)Biotic homogenization can decrease landscape-scale forest multifunctionality.Proc Natl Acad Sci 113(13):3557–3562.https://doi.org/10.1073/pnas.1517903113

    Van Der Plas F,Manning P,Allan E,Scherer-Lorenzen M,Verheyen K,Wirth C,Zavala MA,Hector A,Ampoorter E,Baeten L,Barbaro L,Bauhus J,Benavides R,Benneter A,Berthold F,Bonal D,Bouriaud O,Bruelheide H,Bussotti F,Carnol M,Castagneyrol B,Charbonnier Y,Coomes D,Coppi A,Bastias CC,Dawud SM,De Wandeler H,Domisch T,Finér L,Gessler A,Granier A,Grossiord C,Guyot V,H?ttenschwiler S,Jactel H,Jaroszewicz B,Joly F,Jucker T,Koricheva J,Milligan H,Müller S,Muys B,Nguyen D,Pollastrini M,Raulund-Rasmussen K,Selvi F,Stenlid J,Valladares F,Vesterdal L,Zielínski D,Fischer M(2016b)Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests.Nat Commun 4:7.https://doi.org/10.1038/ncomms11109

    Weisser WW,Roscher C,Meyer ST,Ebeling A,Luo GJ,Allan E,Bebler H,Barnard RL,Buchmann N,Buscot F,Engels C,Fischer C,Fischer M,Gessler A,Gleixner G,Halle S,Hildebrandt A,Hillebrand H,de Kroon H,Lange M,Leimer S,Le Roux X,Milcu A,Mommer L,Niklaus PA,Oelmann Y,Proulx R,Roy J,Scherber C,Scherer-Lorenzen M,Scheu S,Tscharntke T,Wachendorf M,Wagg C,Weigelt A,Wilcke W,Wirth C,Schulze ED,Schmid B,Eisenhauer N(2017)Biodiversity effects on ecosystem functioning in a 15-year grassland experiment:patterns,mechanisms,and open questions.Basic Appl Ecol 23:1–73

    West PC,Gibbs HK,Monfreda C,Wagner J,Barford CC,Carpender SR,Foley JA(2010)Trading carbon for food:global comparison of carbon stocks vs crop yields on agricultural land.PNAS 107:19645–19648

    日本三级黄在线观看| 国产精品98久久久久久宅男小说| 91九色精品人成在线观看| 一本精品99久久精品77| 久久久国产成人精品二区| 亚洲成a人片在线一区二区| 国产精华一区二区三区| 亚洲国产色片| 日本撒尿小便嘘嘘汇集6| 午夜精品在线福利| 在线观看午夜福利视频| 免费看十八禁软件| 免费大片18禁| 免费观看人在逋| 亚洲国产欧美人成| 国产三级黄色录像| 亚洲性夜色夜夜综合| 麻豆国产97在线/欧美| 90打野战视频偷拍视频| 舔av片在线| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产欧美一区二区综合| 亚洲av第一区精品v没综合| 日本免费a在线| 男女之事视频高清在线观看| 免费观看的影片在线观看| 最新在线观看一区二区三区| 亚洲欧美日韩高清在线视频| 老熟妇仑乱视频hdxx| 国产精品免费一区二区三区在线| 欧美乱妇无乱码| 国产 一区 欧美 日韩| 老司机在亚洲福利影院| 国产精品久久久久久精品电影| 日日干狠狠操夜夜爽| 性欧美人与动物交配| 亚洲成av人片在线播放无| 国产三级中文精品| 听说在线观看完整版免费高清| 精品熟女少妇八av免费久了| 黑人操中国人逼视频| 男人舔女人的私密视频| 久久久久久久午夜电影| 国产69精品久久久久777片 | 哪里可以看免费的av片| 美女cb高潮喷水在线观看 | 99在线人妻在线中文字幕| 男插女下体视频免费在线播放| 成熟少妇高潮喷水视频| 午夜两性在线视频| 十八禁网站免费在线| 免费观看的影片在线观看| 精品99又大又爽又粗少妇毛片 | 中亚洲国语对白在线视频| 成熟少妇高潮喷水视频| 日韩中文字幕欧美一区二区| 一进一出好大好爽视频| 青草久久国产| 国产又黄又爽又无遮挡在线| 麻豆成人av在线观看| 国产伦精品一区二区三区视频9 | 国产亚洲av嫩草精品影院| 日韩欧美国产在线观看| 日韩中文字幕欧美一区二区| 97超视频在线观看视频| 麻豆国产av国片精品| 啦啦啦韩国在线观看视频| 悠悠久久av| 中文字幕人妻丝袜一区二区| 无人区码免费观看不卡| 一级毛片高清免费大全| 一级a爱片免费观看的视频| 欧美日韩乱码在线| 日本在线视频免费播放| 午夜福利在线观看免费完整高清在 | 亚洲av熟女| 99久国产av精品| 国产伦一二天堂av在线观看| 国产亚洲av高清不卡| 亚洲中文字幕日韩| 久久香蕉国产精品| 久久久久国内视频| 婷婷丁香在线五月| 国产亚洲精品一区二区www| 97碰自拍视频| 琪琪午夜伦伦电影理论片6080| 日本 欧美在线| xxxwww97欧美| 日本三级黄在线观看| 成人国产综合亚洲| 国产一区二区在线观看日韩 | 91字幕亚洲| 国产精品久久久人人做人人爽| 九色成人免费人妻av| 国产一区二区三区在线臀色熟女| 青草久久国产| 中文字幕最新亚洲高清| 成人永久免费在线观看视频| 悠悠久久av| 国产精品免费一区二区三区在线| 天堂动漫精品| 国产精品久久久久久人妻精品电影| 精品欧美国产一区二区三| 欧美成人一区二区免费高清观看 | 国产精品久久久久久久电影 | avwww免费| 老汉色av国产亚洲站长工具| 欧美日韩乱码在线| 午夜福利视频1000在线观看| 日本撒尿小便嘘嘘汇集6| 黄色丝袜av网址大全| 亚洲国产欧美网| 在线十欧美十亚洲十日本专区| 三级国产精品欧美在线观看 | 国产探花在线观看一区二区| 国产精品影院久久| 亚洲黑人精品在线| 中文字幕久久专区| 精品久久久久久,| 男女之事视频高清在线观看| 国产高清三级在线| 亚洲精品在线观看二区| 亚洲国产精品成人综合色| 日本在线视频免费播放| av在线蜜桃| 九色成人免费人妻av| 国产真实乱freesex| 午夜精品一区二区三区免费看| 久久精品91蜜桃| 日本精品一区二区三区蜜桃| 免费观看的影片在线观看| 亚洲人成网站高清观看| av在线蜜桃| 国产欧美日韩精品亚洲av| 亚洲国产色片| 久久久久久久久中文| 亚洲av成人不卡在线观看播放网| 我要搜黄色片| 级片在线观看| 999久久久精品免费观看国产| 波多野结衣高清作品| 在线观看日韩欧美| 亚洲无线观看免费| 国产高清激情床上av| 免费人成视频x8x8入口观看| 久久久久精品国产欧美久久久| 在线观看免费视频日本深夜| 国产午夜精品久久久久久| 麻豆国产av国片精品| 久久久久久久久中文| 国产野战对白在线观看| 男女视频在线观看网站免费| 日本一本二区三区精品| av中文乱码字幕在线| 综合色av麻豆| 亚洲精品456在线播放app | 欧美+亚洲+日韩+国产| 国产黄a三级三级三级人| 操出白浆在线播放| 欧美高清成人免费视频www| 亚洲成人精品中文字幕电影| tocl精华| 日韩精品中文字幕看吧| 国产成年人精品一区二区| 国内精品久久久久久久电影| 亚洲精品一卡2卡三卡4卡5卡| 美女高潮喷水抽搐中文字幕| 精品久久蜜臀av无| 成人av一区二区三区在线看| 欧美黑人巨大hd| 精品一区二区三区av网在线观看| 亚洲成人中文字幕在线播放| 1024手机看黄色片| 久久久久国产精品人妻aⅴ院| 亚洲av免费在线观看| 午夜激情欧美在线| 小说图片视频综合网站| 国产精品女同一区二区软件 | 亚洲精品美女久久av网站| 99久久精品国产亚洲精品| 婷婷亚洲欧美| 精品久久久久久久毛片微露脸| 亚洲男人的天堂狠狠| 不卡一级毛片| 亚洲av熟女| 高潮久久久久久久久久久不卡| 亚洲精品在线观看二区| 香蕉国产在线看| 国产精品99久久久久久久久| 欧美黄色片欧美黄色片| 色视频www国产| 亚洲人成网站在线播放欧美日韩| 日本免费a在线| 久久热在线av| 美女免费视频网站| 在线观看免费午夜福利视频| 国产视频一区二区在线看| 亚洲国产欧美人成| www.熟女人妻精品国产| 女人高潮潮喷娇喘18禁视频| 亚洲欧美日韩高清专用| 一个人看视频在线观看www免费 | 99在线视频只有这里精品首页| 超碰成人久久| 亚洲中文av在线| 人妻久久中文字幕网| 日本黄大片高清| 久久中文字幕人妻熟女| 亚洲欧美日韩高清在线视频| 久久久成人免费电影| 国产精品美女特级片免费视频播放器 | 91在线观看av| 亚洲片人在线观看| 久久这里只有精品19| 久久国产精品影院| 欧美成人性av电影在线观看| 99精品在免费线老司机午夜| 日韩欧美一区二区三区在线观看| 亚洲人成伊人成综合网2020| 欧美三级亚洲精品| 久久久久久久精品吃奶| 国产亚洲精品综合一区在线观看| 国产精品久久久人人做人人爽| 亚洲人成伊人成综合网2020| 亚洲中文字幕日韩| 免费人成视频x8x8入口观看| 波多野结衣巨乳人妻| 草草在线视频免费看| 成人av在线播放网站| 亚洲色图av天堂| 欧美一区二区国产精品久久精品| 亚洲第一电影网av| www日本黄色视频网| 好男人在线观看高清免费视频| 一个人看视频在线观看www免费 | 在线免费观看不下载黄p国产 | 久久九九热精品免费| 韩国av一区二区三区四区| 久久久成人免费电影| av片东京热男人的天堂| 每晚都被弄得嗷嗷叫到高潮| 18美女黄网站色大片免费观看| netflix在线观看网站| 宅男免费午夜| 国产激情久久老熟女| 亚洲 国产 在线| 99riav亚洲国产免费| 国产亚洲精品av在线| 88av欧美| 天堂影院成人在线观看| 美女午夜性视频免费| 国产麻豆成人av免费视频| 国产乱人伦免费视频| 成在线人永久免费视频| 一级毛片高清免费大全| 国产av不卡久久| 蜜桃久久精品国产亚洲av| 99国产极品粉嫩在线观看| 性色avwww在线观看| 亚洲欧美日韩东京热| 色综合站精品国产| 免费在线观看日本一区| 香蕉av资源在线| 国产成人欧美在线观看| 日本五十路高清| 男人和女人高潮做爰伦理| 日韩精品中文字幕看吧| 精品免费久久久久久久清纯| 看黄色毛片网站| 久久精品国产清高在天天线| 欧美极品一区二区三区四区| 日本五十路高清| 后天国语完整版免费观看| 亚洲国产精品合色在线| a级毛片a级免费在线| 制服人妻中文乱码| 国产一区在线观看成人免费| 欧美黄色淫秽网站| 999久久久国产精品视频| 一本久久中文字幕| 国语自产精品视频在线第100页| 国产精品自产拍在线观看55亚洲| 国产欧美日韩精品一区二区| 99热只有精品国产| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩无卡精品| aaaaa片日本免费| 欧美三级亚洲精品| 男插女下体视频免费在线播放| 激情在线观看视频在线高清| av视频在线观看入口| 久久精品国产综合久久久| 国产高清视频在线观看网站| 九色国产91popny在线| 啦啦啦免费观看视频1| 亚洲欧美激情综合另类| 国产精品影院久久| 99热6这里只有精品| 亚洲国产高清在线一区二区三| 国产高清有码在线观看视频| 超碰成人久久| 一夜夜www| 在线国产一区二区在线| 国产亚洲欧美在线一区二区| 国产欧美日韩精品一区二区| 哪里可以看免费的av片| 精品国内亚洲2022精品成人| 99精品欧美一区二区三区四区| 国产精品久久电影中文字幕| 一区福利在线观看| 色av中文字幕| 国产精品香港三级国产av潘金莲| 女人被狂操c到高潮| 精品电影一区二区在线| 给我免费播放毛片高清在线观看| 黑人巨大精品欧美一区二区mp4| 狠狠狠狠99中文字幕| 亚洲国产日韩欧美精品在线观看 | tocl精华| 欧美日韩黄片免| 日韩高清综合在线| 亚洲熟女毛片儿| 亚洲五月天丁香| 国产毛片a区久久久久| 极品教师在线免费播放| 国产亚洲精品av在线| 亚洲国产欧美人成| 小蜜桃在线观看免费完整版高清| 欧美性猛交黑人性爽| 天堂网av新在线| 丰满的人妻完整版| 亚洲天堂国产精品一区在线| 色吧在线观看| 国产综合懂色| 在线免费观看的www视频| 国产激情久久老熟女| 啦啦啦免费观看视频1| 国产视频内射| 久久久国产欧美日韩av| 狂野欧美激情性xxxx| 国产精品影院久久| 桃色一区二区三区在线观看| 亚洲成人精品中文字幕电影| 免费看日本二区| 色在线成人网| 国产v大片淫在线免费观看| av中文乱码字幕在线| 无人区码免费观看不卡| 久久久久久九九精品二区国产| 给我免费播放毛片高清在线观看| 不卡一级毛片| 别揉我奶头~嗯~啊~动态视频| 中文亚洲av片在线观看爽| 狠狠狠狠99中文字幕| 99国产精品一区二区三区| 精品国产乱码久久久久久男人| 可以在线观看毛片的网站| 哪里可以看免费的av片| 精品久久久久久久人妻蜜臀av| 十八禁网站免费在线| 国产高清三级在线| 亚洲av成人av| 国产精品电影一区二区三区| 成人特级av手机在线观看| 麻豆一二三区av精品| 国产精品一区二区三区四区久久| 成人一区二区视频在线观看| 久久久久久久午夜电影| 欧美高清成人免费视频www| 午夜福利免费观看在线| 欧美日本视频| 亚洲无线在线观看| 亚洲午夜理论影院| 国产私拍福利视频在线观看| 免费看日本二区| 2021天堂中文幕一二区在线观| 禁无遮挡网站| 亚洲av五月六月丁香网| 亚洲七黄色美女视频| 欧美日韩瑟瑟在线播放| 国产黄色小视频在线观看| 亚洲av成人一区二区三| 一个人免费在线观看的高清视频| 国产伦一二天堂av在线观看| 国产成人精品久久二区二区91| netflix在线观看网站| 久久久国产精品麻豆| 在线国产一区二区在线| 日本免费a在线| 在线十欧美十亚洲十日本专区| 成人午夜高清在线视频| 国产乱人伦免费视频| 一个人观看的视频www高清免费观看 | 亚洲乱码一区二区免费版| 亚洲一区高清亚洲精品| 色噜噜av男人的天堂激情| 精品午夜福利视频在线观看一区| 少妇丰满av| 熟女少妇亚洲综合色aaa.| 国产不卡一卡二| 日本三级黄在线观看| 亚洲激情在线av| 一本精品99久久精品77| 亚洲精品色激情综合| 啦啦啦观看免费观看视频高清| 久久精品影院6| 国产1区2区3区精品| 淫秽高清视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 啪啪无遮挡十八禁网站| 久久香蕉精品热| 男人的好看免费观看在线视频| 久久国产精品影院| 成年人黄色毛片网站| 99久久久亚洲精品蜜臀av| 麻豆成人午夜福利视频| 嫩草影视91久久| 国产亚洲欧美98| 美女免费视频网站| 伦理电影免费视频| 免费高清视频大片| 中文字幕高清在线视频| 观看美女的网站| 少妇熟女aⅴ在线视频| 欧美激情在线99| 三级男女做爰猛烈吃奶摸视频| 在线观看午夜福利视频| 成人av一区二区三区在线看| 97超级碰碰碰精品色视频在线观看| 国产成人系列免费观看| 高清在线国产一区| 亚洲精品美女久久av网站| 少妇的逼水好多| 香蕉丝袜av| 欧美精品啪啪一区二区三区| 最近最新免费中文字幕在线| 不卡一级毛片| 日本撒尿小便嘘嘘汇集6| 国产精品久久久av美女十八| 在线播放国产精品三级| 欧美黑人欧美精品刺激| 亚洲国产欧美网| 成在线人永久免费视频| 老熟妇乱子伦视频在线观看| 午夜福利视频1000在线观看| 亚洲专区中文字幕在线| 亚洲第一欧美日韩一区二区三区| 久久精品aⅴ一区二区三区四区| 久久午夜综合久久蜜桃| 深夜精品福利| 亚洲av中文字字幕乱码综合| 18禁美女被吸乳视频| 黄色日韩在线| 午夜精品久久久久久毛片777| 国产精品影院久久| 精品久久久久久成人av| 在线免费观看的www视频| 一级毛片精品| 51午夜福利影视在线观看| 国产乱人伦免费视频| 国产亚洲精品久久久com| 一区二区三区高清视频在线| 女人被狂操c到高潮| 久久这里只有精品中国| 国产精品一区二区免费欧美| 国产一区二区三区在线臀色熟女| 免费观看人在逋| 亚洲午夜理论影院| 色播亚洲综合网| 欧美三级亚洲精品| 老司机午夜十八禁免费视频| av欧美777| 亚洲在线自拍视频| or卡值多少钱| 网址你懂的国产日韩在线| a在线观看视频网站| 午夜福利在线观看免费完整高清在 | 国产又色又爽无遮挡免费看| 两个人看的免费小视频| 最近视频中文字幕2019在线8| 色老头精品视频在线观看| 国产精品久久视频播放| 18禁观看日本| 欧美黄色淫秽网站| 91麻豆精品激情在线观看国产| 精品国产乱子伦一区二区三区| 视频区欧美日本亚洲| 老司机深夜福利视频在线观看| 母亲3免费完整高清在线观看| 午夜两性在线视频| 很黄的视频免费| 在线观看一区二区三区| 亚洲欧美日韩高清在线视频| 久久中文字幕一级| 亚洲人成网站在线播放欧美日韩| 午夜激情福利司机影院| 精品国产三级普通话版| 国产精品电影一区二区三区| а√天堂www在线а√下载| 亚洲成人免费电影在线观看| 亚洲欧美激情综合另类| 久久精品aⅴ一区二区三区四区| 日韩大尺度精品在线看网址| 国产亚洲欧美98| 国产精品久久久人人做人人爽| 成人欧美大片| 精品免费久久久久久久清纯| 动漫黄色视频在线观看| 色视频www国产| 他把我摸到了高潮在线观看| 人人妻人人看人人澡| av视频在线观看入口| 国产99白浆流出| 亚洲一区高清亚洲精品| 精品乱码久久久久久99久播| 成人一区二区视频在线观看| 岛国在线免费视频观看| 老汉色∧v一级毛片| 少妇的丰满在线观看| 18禁国产床啪视频网站| 看黄色毛片网站| 天天躁日日操中文字幕| 国产高清视频在线播放一区| 老司机福利观看| 十八禁网站免费在线| 免费在线观看视频国产中文字幕亚洲| 久久性视频一级片| 日韩欧美精品v在线| 最新美女视频免费是黄的| 国产精品自产拍在线观看55亚洲| 女同久久另类99精品国产91| 日本撒尿小便嘘嘘汇集6| 他把我摸到了高潮在线观看| 9191精品国产免费久久| 性色avwww在线观看| 亚洲精品在线观看二区| 级片在线观看| 久久中文字幕人妻熟女| 日本黄色视频三级网站网址| 欧美色欧美亚洲另类二区| 他把我摸到了高潮在线观看| 国产亚洲精品av在线| www.www免费av| 国产三级中文精品| 伦理电影免费视频| 成在线人永久免费视频| 亚洲成人免费电影在线观看| 欧美3d第一页| 亚洲熟妇中文字幕五十中出| 欧美日韩瑟瑟在线播放| av女优亚洲男人天堂 | 真实男女啪啪啪动态图| 极品教师在线免费播放| 中文亚洲av片在线观看爽| 国产97色在线日韩免费| 中文字幕人妻丝袜一区二区| 国产探花在线观看一区二区| 亚洲av免费在线观看| 国产成人精品久久二区二区免费| 久久久水蜜桃国产精品网| 亚洲av片天天在线观看| 91在线精品国自产拍蜜月 | 欧美黑人欧美精品刺激| 又黄又粗又硬又大视频| 麻豆国产av国片精品| 色噜噜av男人的天堂激情| 免费一级毛片在线播放高清视频| 亚洲精华国产精华精| www.自偷自拍.com| 国产精品永久免费网站| 欧美性猛交╳xxx乱大交人| 夜夜看夜夜爽夜夜摸| 亚洲精品456在线播放app | 国产精品亚洲美女久久久| 香蕉国产在线看| 国产不卡一卡二| 少妇的逼水好多| 高清毛片免费观看视频网站| 美女大奶头视频| 女人被狂操c到高潮| 男女那种视频在线观看| 国产视频内射| 黑人巨大精品欧美一区二区mp4| 97碰自拍视频| 在线观看午夜福利视频| 在线国产一区二区在线| 男女床上黄色一级片免费看| 午夜福利成人在线免费观看| 又粗又爽又猛毛片免费看| 欧美成人一区二区免费高清观看 | 99热6这里只有精品| 熟女电影av网| 青草久久国产| 久久香蕉精品热| 亚洲精品久久国产高清桃花| 国语自产精品视频在线第100页| 极品教师在线免费播放| 亚洲 欧美一区二区三区| 国产高清视频在线观看网站| 最近最新中文字幕大全电影3| 色综合亚洲欧美另类图片| www.熟女人妻精品国产| 噜噜噜噜噜久久久久久91| 三级男女做爰猛烈吃奶摸视频| 三级毛片av免费| 久久精品aⅴ一区二区三区四区| 亚洲国产欧美网| 免费观看的影片在线观看| 91av网一区二区| 亚洲 欧美一区二区三区| 麻豆av在线久日| 国产野战对白在线观看| 国内精品久久久久精免费| 一个人观看的视频www高清免费观看 | 久久香蕉精品热|