• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Special Curves According to Darboux Frame in the Three Dimensional Lorentz Space

    2018-03-22 09:53:06AbdelAzizandKhalifaSaad
    Computers Materials&Continua 2018年3期

    H. S. Abdel-Azizand M. Khalifa Saad,

    1 Introduction

    The curves and their frames play an important role in differential geometry and in many branches of science such as mechanics and physics, so we are interested here in studying one of these curves which have many applications in Computer Aided Design (CAD),Computer Aided Geometric Design (CAGD) and mathematical modeling. Also, these curves can be used in the discrete model and equivalent model which are usually adopted for the design and mechanical analysis of grid structures [Dincel and Akbarov (2017)].Smarandache Geometry is a geometry which has at least one Smarandachely denied axiom.It was developed by Smarandache [Smarandache (1969)]. We say that an axiom is Smarandachely denied if the axiom behaves in at least two different ways within the same space (i.e. validated and invalided, or only invalidated but in multiple distinct ways).

    As a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian geometries may be united altogether, in the same space, by some Smarandache geometries.Florentin Smarandache proposed a number of ways in which we could explore “new math concepts and theories, especially if they run counter to the classical ones”.

    In a manner consistent with his unique point of view, he defined several types of geometry that are purpose fully not Euclidean and that focus on structures that the rest of us can use to enhance our understanding of geometry in general.

    To most of us, Euclidean geometry seems self-evident and natural. This feeling is so strong that it took thousands of years for anyone to even consider an alternative to Euclid’s teachings. These non-Euclidean ideas started, for the most part, with Gauss, Bolyai, and Lobachevski, and continued with Riemann, when they found counter examples to the notion that geometry is precisely Euclidean geometry. This opened a whole universe of possibilities for what geometry could be, and many years later, Smarandache’s imagination has wandered off into this universe [Howard (2002)]. Curves are usually studied as subsets of an ambient space with a notion of equivalence. For example, one may study curves in the plane, the usual three dimensional space, the Minkowski space, curves on a sphere, etc.In three-dimensional curve theory, for a differentiable curve, at each point a triad of mutually orthogonal unit vectors (Frenet frame vectors) called tangent, normal and binormal can be constructed. In the light of the existing studies about the curves and their properties, authors introduced new curves. One of the important of among curves called Smarandache curve which using the Frenet frame vectors of a given curve. Among all space curves, Smarandache curves have special emplacement regarding their properties,this is the reason that they deserve special attention in Euclidean geometry as well as in other geometries. It is known that Smarandache geometry is a geometry which has at least one Smarandache denied axiom [Ashbacher (1997)]. An axiom is said to be Smarandache denied, if it behaves in at least two different ways within the same space.

    Smarandache geometries are connected with the theory of relativity and the parallel universes and they are the objects of Smarandache geometry.

    By definition, if the position vector of a curve δis composed by Frenet frame’s vectors of another curveβ, then the curve δis called a Smarandache curve [Turgut and Yilmaz(2008)]. The study of such curves is very important and many interesting results on these curves have been obtained by some geometers [Abdel-Aziz and Khalifa Saad (2015, 2017);Ali (2010); Bektas and Yunce (2013); ?etin and Kocayi?it (2013); ?etin, Tun?er and Karacan (2014)); Khalifa Saad (2016)]. Turgut et al. [Turgut and Yilmaz (2008)]introduced a particular circumstance of such curves. They entitled it SmarandacheTB2curves in the space. Special Smarandache curves in such a manner that Smarandache curvesTN1,TN2,N1N2and TN1N2with respect to Bishop frame in Euclidean 3-space have been seeked for by ?etin et al. [?etin, Tun?er and Karacan (2014)]. Furthermore, they worked differential geometric properties of these special curves and they checked out first and second curvatures of these curves. Also, they get the centers of the curvature spheres and osculating spheres of Smarandache curves.

    Recently, Abdel-Aziz et al. [Abdel-Aziz and Khalifa Saad (2015, 2016)] have studied special Smarandache curves of an arbitrary curve such asTN,TB and TNBwith respect to Frenet frame in the three-dimensional Galilean and pseudo-Galilean spaces. Also in Abdel-Aziz et al. [Abdel-Aziz and Khalifa Saad (2017)], authors have studied Smarandache curves of a timelike curve lying fully on a timelike surface according to Darboux frame in Minkowski 3-space.

    In this work, for a given timelike surface and a spacelike curve lying fully on it, we study some special Smarandache curves with reference to Darboux frame in the threedimensional Minkowski space. We are looking forward to see that our results will be helpful to researchers who are specialized on mathematical modeling.

    2 Basic concepts

    Definition 2.1A surface Ψin the Minkowski 3-spaceis said to be spacelike, timelike surface if, respectively the induced metric on the surface is a positive definite Riemannian metric, Lorentz metric. In other words, the normal vector on the spacelike (timelike)surface is a timelike (spacelike) vector [O’'Neil (1983)].

    3 Smarandache curves of a spacelike curve

    Let Ψbe an oriented timelike surface in Minkowski 3-spaceand r=r(s)be a spacelike curve with timelike normal vector lying fully on it. Then, the Frenet equations of r(s)are given by

    where a prime denotes differentiation with respect to s. For this frame the following are satisfying

    Let {T,P,U}be the Darboux frame of r(s), then the relation between Frenet and Darboux frames takes the form [Do Carmo (1976); O’Neil (1983)]:

    where T is the tangent vector of r and U is the unit normal to the surface Ψand P=U×T. Therefore, the derivative formula of the Darboux frame of r(s)is in the following form:

    The vectors T,Pand U satisfy the following conditions:

    In the differential geometry of surfaces, for a curve r=r(s)lying on a surface M, the following are well-known [Do Carmo (1976)]

    1)r(s)is a geodesic curve if and only if κg=0,

    2)r(s)is an asymptotic line if and only if κn=0,

    3)r(s)is a principal line if and only if τg=0.

    Definition 3.1A regular curve in Minkowski space-time, whose position vector is composed by Frenet frame vectors on another regular curve, is called a Smarandache curve[Turgut and Yilmaz (2008)].

    In the following, we investigate Smarandache curvesTP,TU,PUand TPU, and study some of their properties for a curve lies on a surface as follows:

    3.1 TP-Smarandache curves

    Definition 3.2Let Ψbe an oriented timelike surface inand the unit speed spacelike curver=r(s)lying fully on Ψwith Darboux frame {T,P,U}. Then the TPSmarandache curves ofr are defined by

    Theorem 3.1Let r=r(s)be a spacelike curve lying fully on a timelike surface Ψinwith Darboux frame {T,P,U}, and non-zero curvatures;Then the curvature functions of the TP-Smarandache curves ofr satisfy the following equations:

    Proof.Let α=α()be a TP-Smarandache curve reference to a spacelike curve r.From Eq.(4), we get

    So, we have

    this leads to

    Differentiating Eq.(8)with respect to s and using Eq.(7), we obtain

    where

    Then, the curvature is given by

    as denoted by Eq. (5).

    And the principal normal vector field of the curve αis

    On the other hand, we express

    So, the binormal vector of αis given by

    where

    Now, in order to calculate the torsion ofα , we consider the derivatives α′,α′with respect tos as follows

    where

    In the light of the above calculations, the torsion of αis calculated as Eq. (6).

    Lemma 3.1Let α()be a spacelike curve lies on a timelike surface Ψin Minkowski 3-space, then

    1) If αis a geodesic curve, the following hold

    2) If αis an asymptotic line, the following hold

    3) If αis a principal line, the following hold

    3.2 TU-Smarandache curves

    Definition 3.3Let Ψbe an oriented timelike surface inand the unit speed spacelike curver=r(s)lying fully on Ψwith Darboux frame {T,P,U}. Then the TUSmarandache curves ofr are defined by

    Theorem 3.2Let r=r(s)be a spacelike curve lying fully on a timelike surface Ψinwith Darboux frame {T,P,U}, and non-zero curvatures;Then the curvature functions of the TU- Smarandache curves ofr satisfy the following equations:

    Proof.Let β=β()be a TU- Smarandache curve reference to a spacelike curve r.From Eq.(9), we get

    Differentiating Eq.(12)with respect to s , we get

    where

    as denoted by Eq. (10).

    And principal normal vector fieldof βis

    Besides, the binormal vector of βis

    where

    Differentiating βwith respect to s , we get

    similarly,

    where

    It follows that, the torsion of βis expressed as in Eq. (11).

    Lemma 3.2Letβ()be a spacelike curve lies on Ψin Minkowski 3-space, then

    1) If βis a geodesic curve, the following are satisfied

    2) If βis an asymptotic line, then

    3) If βis a principal line, the following are satisfied

    3.3 PU-Smarandache curves

    Definition 3.4Let Ψbe an oriented timelike surface inand the unit speed spacelike curver=r(s)lying fully on Ψwith Darboux frame {T,P,U}. Then the PUSmarandache curves ofr are defined by

    Theorem 3.3Let r=r(s)be a spacelike curve lying fully on a timelike surface Ψinwith Darboux frame {T,P,U}, and non-zero curvatures;Then the curvature functions of the PU-Smarandache curves ofr satisfy the following equations:

    Proof.Let γ=γ()be a PU-Smarandache curve reference to a spacelike curve r. From Eq.(13), we obtain

    Differentiating Eq.(16)with respect to s , we have

    where

    and then, the curvature of γis given by

    which is denoted by Eq. (14).

    Based on the above calculations, we can express the principal normal vector of as follows

    Also,

    where

    The derivatives γ′and γ′as follows

    where

    According to the above calculations, we obtain the torsion of γas in Eq. (15).

    Lemma 3.3Letγ()be a spacelike curve lies on Ψin Minkowski 3-space, then

    1) If γis a geodesic curve, the curvature and torsion of γare, respectively

    2) If γis an asymptotic line, we get

    3)If γis a principal line, the following hold

    3.4 TPU-Smarandache curves

    Definition 3.5Let Ψbe an oriented timelike surface inand the unit speed spacelike curver=r(s)lying fully on Ψwith Darboux frame {T,P,U}. Then the TPUSmarandache curves ofr are defined by

    Theorem 3.4Let r=r(s)be a spacelike curve lying fully on a timelike surface Ψinwith Darboux frame {T,P,U}, and non-zero curvatures;Then the curvature functions of the TPU-Smarandache curves ofr satisfy the following equations:

    Proof.Let δ=δ()be a TPU-Smarandache curve reference to a spacelike curve r .

    Differentiating (21)with respect to s , we get

    where

    Then, the curvature is given by

    as denoted in Eq. (19).

    And the principal normal vector field of δis

    So, the binormal vector of δis

    where

    For computing the torsion of δ, we are going to differentiate δ′with respect to sas follows

    and similarly

    where

    In the light of the above derivatives, the torsion of δis computed as in Eq. (20), where

    Thus the proof is completed.

    Lemma 3.4Let δ()be a spacelike curve lies on Ψin Minkowski 3-space, then

    1) If δis a geodesic curve, the curvature and torsion can be expressed as follows

    2) If δis an asymptotic line, we have

    3) If δis a principal line, we obtain

    4 Computational example

    In this section, we consider an example for a spacelike curve lying fully on an oriented timelike ruled surface in(see Fig. 1(b)), and compute its Smarandache curves.

    Suppose we are given a timelike ruled surface represented as

    where the spacelike base curve is given by (see Fig. 1(a))

    Figure 1: The spacelike curve r(s) on the timelike ruled surface Ψ

    So, we can compute the Darboux frame of Ψas follows

    where

    and

    where

    According to Eq. (3), the geodesic curvatureκg, the normal curvature κnand the geodesic torsionτgof the curve r are computed as follows

    In the case of (s =0and v =0), we have

    TP-Smarandache curve

    For this curveα=α(), (see Fig. 2(a)), we have

    where

    If we choose (s=0)and (v=0), the curvature and torsion of αare

    As the above, we can calculate the other Smarandache curves as follows:

    TU-Smarandache curve

    For this curve (see Fig. 2(b)), we have

    where

    and therefore (s =0and v =0)

    PU-Smarandache curve

    For this curve (see Fig. 3(a)), we have

    TPU-Smarandache curve

    For this curve (see Fig. 3(b)), we have

    it follows that (s =0and v =0)

    Figure 2: The TP and TU-Smarandache curves α and β of the spacelike curve r

    Figure 3: The PU and TPU-Smarandache curves γ and δ of the spacelike curve r

    5 Conclusion

    In this study, Smarandache curves of a given spacelike curve with timelike normal lying on a timelike surface in the three-dimensional Minkowski space are investigated.According to the Lorentzian Darboux frame the curvatures and some characterizations for these curves are obtained. Finally, for confirming our main results, an example is given and plotted.

    Acknowledgment:The authors are very grateful to referees for the useful suggestions and remarks for the revised version.

    Ashbacher,C.(1997): Smarandache geometries.Smarandache Notions Journal, vol. 8,no. 1-3, pp. 212-215.

    Abdel-Aziz, H. S.; Khalifa Saad, M.(2015): Smarandache curves of some special curves in the Galilean 3-space.Honam Mathematical Journal, vol. 37, no. 2, pp. 253-264.

    Abdel-Aziz, H. S.; Khalifa Saad, M.(2017): Computation of Smarandache curves according to Darboux frame in Minkowski 3-space.Journal of the Egyptian Mathematical Society, vol. 25, pp. 382-390.

    Ali, A. T.(2010): Special Smarandache curves in the Euclidean space.International Journal of Mathematical Combinatorics, vol. 2, pp. 30-36.

    Bektas, O.; Yuce, S.(2013): Smarandache curves according to Darboux frame in Euclidean space.Romanian Journal of Mathematics and Computer Science, vol. 3, no. 1,pp. 48-59.

    ?etin, M.; Kocayi?it, H.(2013): On the quaternionic Smarandache curves in Euclidean 3- space.International Journal of Contemporary Mathematical Sciences, vol. 8, no. 3, pp.139-150.

    ?etin, M.; Tun?er, Y.; Karacan, M. K.(2014): Smarandache curves according to Bishop frame in Euclidean space.General Mathematics Notes,vol. 20, no. 2, pp. 50-66.

    Dincel, A. T.; Akbarov, S. D.(2017): Mathematical modelling and 3d fem analysis of the influence of initial stresses on the err in a band crack’s front in the rectangular orthotropic thick plate.Computers, Materials & Continua, vol. 53, no. 3, pp. 249-270.

    Do Carmo, M. P.(1976):Differential geometry of curves and surfaces. Prentice Hall,Englewood Cliffs, NJ.

    Howard, I.(2002):Smarandache manifolds. American Research Press, Rehoboth, NM 87322, USA.

    Khalifa Saad, M.(2016): Spacelike and timelike admissible Smarandache curves in pseudo-Galilean space.Journal of the Egyptian Mathematical Society, vol. 37, pp. 416-423.

    O’Neil, B.(1983):Semi-Riemannian geometry with applications to relativity.Academic Press, London.

    Smarandache, F.(1969):Paradoxist mathematics, collected papers. University of Kishinev Press, vol. 2, pp. 5-28.

    Turgut, M.; Yilmaz, S.(2008): Smarandache curves in Minkowski space-time.International Journal of Mathematical Combinatorics, vol. 3, pp. 51-55.

    Ta?k prü, K.; Tosun, M.(2014): Smarandache curves according to Sabban frame onS2.Boletim da Sociedade Paraneanse de Matematica, vol. 32, no. 1, pp. 51-59.

    U?urlu, H. H.(1997): On the geometry of time-like surfaces.Communications, vol. 46,pp. 211-223.

    免费看a级黄色片| 大片电影免费在线观看免费| 午夜免费观看性视频| 91狼人影院| 亚洲国产日韩一区二区| 插逼视频在线观看| 哪个播放器可以免费观看大片| 国产精品国产三级国产av玫瑰| 高清av免费在线| 成人漫画全彩无遮挡| 能在线免费看毛片的网站| 国产人妻一区二区三区在| 又爽又黄无遮挡网站| av在线老鸭窝| 国产男女超爽视频在线观看| 亚洲av.av天堂| 美女xxoo啪啪120秒动态图| 一区二区三区乱码不卡18| 亚洲欧美日韩另类电影网站 | 91在线精品国自产拍蜜月| 男人和女人高潮做爰伦理| 亚洲成人久久爱视频| 国产久久久一区二区三区| 成人鲁丝片一二三区免费| 日本黄色片子视频| 精品人妻熟女av久视频| 亚洲欧美一区二区三区国产| 老师上课跳d突然被开到最大视频| 免费av观看视频| 你懂的网址亚洲精品在线观看| 久久久久久九九精品二区国产| 五月伊人婷婷丁香| 国产视频首页在线观看| 久久99热这里只频精品6学生| 亚洲精品影视一区二区三区av| 99热全是精品| 国产成人精品一,二区| 日韩,欧美,国产一区二区三区| 大话2 男鬼变身卡| 日韩大片免费观看网站| 天美传媒精品一区二区| 777米奇影视久久| 黑人高潮一二区| 在线观看三级黄色| 男女国产视频网站| 免费播放大片免费观看视频在线观看| 美女内射精品一级片tv| av在线观看视频网站免费| 欧美人与善性xxx| 成人综合一区亚洲| 国产久久久一区二区三区| 久久久久性生活片| 乱系列少妇在线播放| 免费观看无遮挡的男女| 我的女老师完整版在线观看| 日本wwww免费看| 亚洲综合色惰| 久久人人爽av亚洲精品天堂 | av在线天堂中文字幕| 最后的刺客免费高清国语| 秋霞在线观看毛片| av在线老鸭窝| 日韩,欧美,国产一区二区三区| 男人舔奶头视频| 国产精品人妻久久久影院| 亚洲欧美日韩卡通动漫| 三级国产精品片| 在线亚洲精品国产二区图片欧美 | 又黄又爽又刺激的免费视频.| 涩涩av久久男人的天堂| 在线播放无遮挡| av.在线天堂| 婷婷色综合大香蕉| 美女xxoo啪啪120秒动态图| 色婷婷久久久亚洲欧美| 亚洲美女搞黄在线观看| 国产黄片美女视频| 精品一区二区免费观看| 美女xxoo啪啪120秒动态图| 国产淫片久久久久久久久| 久久精品国产a三级三级三级| 十八禁网站网址无遮挡 | 伊人久久国产一区二区| 亚洲无线观看免费| 日本与韩国留学比较| 久久人人爽人人爽人人片va| 国产高清有码在线观看视频| 国产精品久久久久久精品电影小说 | 18禁在线播放成人免费| 最近最新中文字幕免费大全7| 嫩草影院精品99| 久久久久国产精品人妻一区二区| 特级一级黄色大片| 久久久成人免费电影| 欧美日韩国产mv在线观看视频 | 日本-黄色视频高清免费观看| 最新中文字幕久久久久| 观看美女的网站| 久久韩国三级中文字幕| 观看免费一级毛片| 国产毛片a区久久久久| 国产亚洲av片在线观看秒播厂| 卡戴珊不雅视频在线播放| 哪个播放器可以免费观看大片| 亚洲精品日韩在线中文字幕| 精品人妻偷拍中文字幕| 五月开心婷婷网| 三级男女做爰猛烈吃奶摸视频| 插逼视频在线观看| 小蜜桃在线观看免费完整版高清| 天天躁日日操中文字幕| 美女被艹到高潮喷水动态| 哪个播放器可以免费观看大片| 美女高潮的动态| 亚洲精品国产色婷婷电影| 精品久久久久久电影网| 97热精品久久久久久| 亚洲av男天堂| 麻豆乱淫一区二区| 午夜福利视频精品| 97在线人人人人妻| 激情 狠狠 欧美| 国产成人一区二区在线| 午夜福利网站1000一区二区三区| 3wmmmm亚洲av在线观看| 一二三四中文在线观看免费高清| 国产精品一二三区在线看| 成人漫画全彩无遮挡| 国产爱豆传媒在线观看| 各种免费的搞黄视频| 午夜爱爱视频在线播放| 男女啪啪激烈高潮av片| 3wmmmm亚洲av在线观看| 欧美高清性xxxxhd video| 男女边吃奶边做爰视频| 亚洲色图av天堂| 成人免费观看视频高清| 一区二区三区免费毛片| 精品国产乱码久久久久久小说| 七月丁香在线播放| 丝袜脚勾引网站| h日本视频在线播放| 亚洲国产成人一精品久久久| 午夜视频国产福利| 熟女电影av网| 国产成人91sexporn| 精品熟女少妇av免费看| 亚洲美女搞黄在线观看| 白带黄色成豆腐渣| 国产成人免费观看mmmm| 最近最新中文字幕大全电影3| 性插视频无遮挡在线免费观看| 一区二区三区免费毛片| 国产男女内射视频| 亚洲一区二区三区欧美精品 | 欧美日韩视频精品一区| 午夜福利视频1000在线观看| 久久人人爽人人片av| 精品人妻一区二区三区麻豆| 男人和女人高潮做爰伦理| 高清视频免费观看一区二区| 亚洲欧美清纯卡通| 美女内射精品一级片tv| 乱码一卡2卡4卡精品| 美女国产视频在线观看| 成人一区二区视频在线观看| 国产片特级美女逼逼视频| 午夜精品国产一区二区电影 | 麻豆国产97在线/欧美| 女人被狂操c到高潮| 在线观看一区二区三区| 91狼人影院| 极品教师在线视频| 亚洲va在线va天堂va国产| 91精品伊人久久大香线蕉| 性插视频无遮挡在线免费观看| 亚洲精品乱久久久久久| 亚洲性久久影院| 丰满人妻一区二区三区视频av| 国产白丝娇喘喷水9色精品| 成人亚洲精品av一区二区| 26uuu在线亚洲综合色| 精品午夜福利在线看| 日韩欧美精品免费久久| 日本一本二区三区精品| 欧美潮喷喷水| 人妻系列 视频| 午夜激情久久久久久久| 97热精品久久久久久| 国产成人精品久久久久久| 啦啦啦啦在线视频资源| 水蜜桃什么品种好| 女人被狂操c到高潮| 听说在线观看完整版免费高清| 小蜜桃在线观看免费完整版高清| 久久久久久久久久久免费av| 久久久久九九精品影院| 男男h啪啪无遮挡| 在现免费观看毛片| 欧美潮喷喷水| 亚洲精品日韩在线中文字幕| 美女xxoo啪啪120秒动态图| 欧美成人一区二区免费高清观看| 免费看av在线观看网站| 岛国毛片在线播放| 搡女人真爽免费视频火全软件| 日韩av免费高清视频| 亚洲av一区综合| 亚洲欧美清纯卡通| 一级二级三级毛片免费看| 高清视频免费观看一区二区| 人妻系列 视频| 男男h啪啪无遮挡| 国产老妇伦熟女老妇高清| 麻豆乱淫一区二区| 欧美极品一区二区三区四区| 亚洲精华国产精华液的使用体验| 午夜福利在线在线| 欧美性感艳星| 韩国高清视频一区二区三区| 黄色配什么色好看| 草草在线视频免费看| 欧美xxxx黑人xx丫x性爽| 亚洲国产精品国产精品| 久久久久久久久久人人人人人人| 日韩不卡一区二区三区视频在线| 成人无遮挡网站| 一级av片app| 熟妇人妻不卡中文字幕| 青春草亚洲视频在线观看| 成人午夜精彩视频在线观看| 午夜免费观看性视频| 蜜桃亚洲精品一区二区三区| 精品视频人人做人人爽| 日韩欧美 国产精品| 看非洲黑人一级黄片| 免费不卡的大黄色大毛片视频在线观看| 国产高潮美女av| 大又大粗又爽又黄少妇毛片口| 亚洲精品日本国产第一区| 久久99热这里只频精品6学生| 搡老乐熟女国产| 亚洲欧洲日产国产| av卡一久久| 欧美成人精品欧美一级黄| 国产白丝娇喘喷水9色精品| 久久久久久久久大av| 热99国产精品久久久久久7| 亚洲丝袜综合中文字幕| 成人亚洲欧美一区二区av| 日韩不卡一区二区三区视频在线| 男女国产视频网站| 最近中文字幕高清免费大全6| 亚洲高清免费不卡视频| 亚洲人与动物交配视频| 久久国内精品自在自线图片| 欧美日韩视频高清一区二区三区二| 欧美性感艳星| 国产高清国产精品国产三级 | 国产亚洲av嫩草精品影院| 水蜜桃什么品种好| 国产伦在线观看视频一区| 亚洲av成人精品一二三区| 婷婷色综合www| 97在线人人人人妻| 国产爱豆传媒在线观看| 啦啦啦中文免费视频观看日本| 中文字幕亚洲精品专区| av天堂中文字幕网| 欧美少妇被猛烈插入视频| 深爱激情五月婷婷| 建设人人有责人人尽责人人享有的 | 亚洲精品久久久久久婷婷小说| 日本爱情动作片www.在线观看| 成人国产av品久久久| 观看美女的网站| 亚洲国产成人一精品久久久| 成人高潮视频无遮挡免费网站| 亚洲欧洲国产日韩| 精品久久国产蜜桃| 男女那种视频在线观看| av播播在线观看一区| 精品午夜福利在线看| 国产 精品1| 亚洲,欧美,日韩| 国产伦精品一区二区三区视频9| 亚洲欧美清纯卡通| 国产成人一区二区在线| 国产精品一区二区性色av| 亚洲国产欧美人成| 日韩免费高清中文字幕av| 国产综合懂色| 亚洲国产高清在线一区二区三| av免费观看日本| 亚洲精品久久午夜乱码| 亚洲美女搞黄在线观看| 边亲边吃奶的免费视频| 国产精品精品国产色婷婷| 麻豆成人午夜福利视频| 亚洲性久久影院| 777米奇影视久久| 51国产日韩欧美| 亚洲人成网站在线观看播放| 日韩av不卡免费在线播放| 国产黄片视频在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 99久久九九国产精品国产免费| 丰满人妻一区二区三区视频av| 97精品久久久久久久久久精品| 熟女av电影| 亚洲美女视频黄频| 亚洲aⅴ乱码一区二区在线播放| 婷婷色综合大香蕉| 久久久久精品久久久久真实原创| 精品久久久久久久久亚洲| 国产精品福利在线免费观看| 在线看a的网站| 身体一侧抽搐| 亚洲自拍偷在线| 国产精品久久久久久精品电影| 久久久久久国产a免费观看| 18禁在线无遮挡免费观看视频| 如何舔出高潮| 色网站视频免费| 天天躁夜夜躁狠狠久久av| freevideosex欧美| 视频区图区小说| 99热这里只有是精品在线观看| 十八禁网站网址无遮挡 | 亚洲av电影在线观看一区二区三区 | 欧美人与善性xxx| 一级a做视频免费观看| 日本三级黄在线观看| 亚洲天堂av无毛| 麻豆精品久久久久久蜜桃| 亚洲欧美一区二区三区黑人 | 网址你懂的国产日韩在线| 一级二级三级毛片免费看| 国产日韩欧美在线精品| 国产成人91sexporn| 特大巨黑吊av在线直播| 一区二区三区精品91| 真实男女啪啪啪动态图| 在线亚洲精品国产二区图片欧美 | 在线免费十八禁| 日日啪夜夜爽| 久久女婷五月综合色啪小说 | 最近中文字幕高清免费大全6| 亚洲欧美日韩另类电影网站 | 51国产日韩欧美| 天堂网av新在线| 久久精品人妻少妇| 午夜激情久久久久久久| 国产淫片久久久久久久久| 赤兔流量卡办理| 亚洲精品视频女| 午夜激情久久久久久久| 五月天丁香电影| 丝瓜视频免费看黄片| 国产高清三级在线| 看黄色毛片网站| 白带黄色成豆腐渣| av免费观看日本| 听说在线观看完整版免费高清| 亚州av有码| av天堂中文字幕网| 夜夜看夜夜爽夜夜摸| 国产午夜精品久久久久久一区二区三区| 久久女婷五月综合色啪小说 | 你懂的网址亚洲精品在线观看| 国产精品秋霞免费鲁丝片| av国产精品久久久久影院| 99热这里只有是精品在线观看| 精品久久久久久久人妻蜜臀av| 国产免费一级a男人的天堂| 精品午夜福利在线看| 99久久精品国产国产毛片| 老师上课跳d突然被开到最大视频| 亚洲最大成人中文| 神马国产精品三级电影在线观看| 亚洲av二区三区四区| 日韩欧美 国产精品| 亚洲国产欧美在线一区| 97在线视频观看| 久久久色成人| 乱码一卡2卡4卡精品| 国产毛片在线视频| 边亲边吃奶的免费视频| 国产成人免费观看mmmm| 插阴视频在线观看视频| 久久这里有精品视频免费| 日产精品乱码卡一卡2卡三| 久久韩国三级中文字幕| 涩涩av久久男人的天堂| 日韩欧美 国产精品| 青青草视频在线视频观看| 亚洲图色成人| 人妻夜夜爽99麻豆av| 听说在线观看完整版免费高清| 亚洲精品乱码久久久v下载方式| 中文天堂在线官网| 大片电影免费在线观看免费| 直男gayav资源| 九九久久精品国产亚洲av麻豆| 国产乱人偷精品视频| 久久久久久久久大av| 又爽又黄a免费视频| 亚洲综合色惰| 精品一区二区三卡| 久久久久久久午夜电影| 色5月婷婷丁香| 听说在线观看完整版免费高清| 亚洲,欧美,日韩| 综合色丁香网| 五月开心婷婷网| 国产免费视频播放在线视频| 国产男女超爽视频在线观看| 婷婷色综合www| 午夜福利网站1000一区二区三区| 国产精品99久久99久久久不卡 | 国产精品99久久99久久久不卡 | videos熟女内射| 日韩大片免费观看网站| 午夜精品一区二区三区免费看| 亚洲av.av天堂| 久久久a久久爽久久v久久| 国产精品国产三级国产av玫瑰| 欧美极品一区二区三区四区| 久久久成人免费电影| av黄色大香蕉| 一级a做视频免费观看| 国产伦精品一区二区三区四那| 激情五月婷婷亚洲| 国产精品人妻久久久久久| 免费大片18禁| 五月开心婷婷网| 插阴视频在线观看视频| av网站免费在线观看视频| 欧美xxxx性猛交bbbb| 亚洲精品久久久久久婷婷小说| 国产69精品久久久久777片| 哪个播放器可以免费观看大片| 中文字幕亚洲精品专区| 亚洲一级一片aⅴ在线观看| 黄色欧美视频在线观看| 久久久精品欧美日韩精品| 国产一区二区三区综合在线观看 | av黄色大香蕉| 日韩av免费高清视频| 国产午夜精品一二区理论片| 少妇裸体淫交视频免费看高清| 美女国产视频在线观看| 久久久久久久久久久丰满| 99久久中文字幕三级久久日本| 国产日韩欧美在线精品| 亚洲国产欧美人成| 国产成人freesex在线| 女人十人毛片免费观看3o分钟| 亚洲经典国产精华液单| 亚洲精品日本国产第一区| 2022亚洲国产成人精品| 熟妇人妻不卡中文字幕| 免费不卡的大黄色大毛片视频在线观看| 国产色婷婷99| 亚洲精品国产色婷婷电影| 国产毛片在线视频| 亚洲婷婷狠狠爱综合网| 成人毛片a级毛片在线播放| 亚洲精品第二区| 深夜a级毛片| 国产91av在线免费观看| 国产男人的电影天堂91| 国产精品人妻久久久久久| 久久97久久精品| av福利片在线观看| 人妻少妇偷人精品九色| 亚洲自拍偷在线| 国产在线一区二区三区精| 五月玫瑰六月丁香| 国产又色又爽无遮挡免| 一区二区三区四区激情视频| 国产有黄有色有爽视频| 韩国av在线不卡| 亚洲成人中文字幕在线播放| 国产日韩欧美亚洲二区| 精品久久久久久久久av| 国产一区二区三区综合在线观看 | 又黄又爽又刺激的免费视频.| 一级毛片电影观看| 日韩,欧美,国产一区二区三区| 18禁裸乳无遮挡免费网站照片| 交换朋友夫妻互换小说| 建设人人有责人人尽责人人享有的 | 天堂中文最新版在线下载 | 天堂中文最新版在线下载 | 边亲边吃奶的免费视频| 美女视频免费永久观看网站| 七月丁香在线播放| 国产伦精品一区二区三区四那| 亚洲精品久久午夜乱码| 精品熟女少妇av免费看| 99热全是精品| 亚洲综合色惰| 亚洲精品一二三| 国产免费视频播放在线视频| 日韩欧美 国产精品| 免费看日本二区| 最近最新中文字幕免费大全7| 人人妻人人看人人澡| 在线观看免费高清a一片| 寂寞人妻少妇视频99o| 99热全是精品| 久久久久久伊人网av| 国产综合懂色| 日日撸夜夜添| 中文字幕亚洲精品专区| 肉色欧美久久久久久久蜜桃 | 嫩草影院精品99| tube8黄色片| 97人妻精品一区二区三区麻豆| av国产久精品久网站免费入址| 日本一二三区视频观看| 一个人看视频在线观看www免费| 美女国产视频在线观看| 国产人妻一区二区三区在| 在线a可以看的网站| av在线播放精品| 精品人妻一区二区三区麻豆| 午夜福利高清视频| 久久ye,这里只有精品| 亚洲av在线观看美女高潮| 亚洲精品久久久久久婷婷小说| 性色avwww在线观看| 亚洲av二区三区四区| 在线观看免费高清a一片| 亚洲色图av天堂| 毛片一级片免费看久久久久| 欧美老熟妇乱子伦牲交| 国产高清国产精品国产三级 | 国产淫语在线视频| 亚州av有码| 大又大粗又爽又黄少妇毛片口| 亚洲内射少妇av| av专区在线播放| 综合色av麻豆| 欧美高清成人免费视频www| 久久久精品欧美日韩精品| 国产精品99久久久久久久久| 观看美女的网站| 能在线免费看毛片的网站| 1000部很黄的大片| 欧美极品一区二区三区四区| 久久久久久国产a免费观看| h日本视频在线播放| 亚洲成人久久爱视频| 免费播放大片免费观看视频在线观看| 欧美变态另类bdsm刘玥| 美女内射精品一级片tv| 国产精品国产三级专区第一集| 在线观看人妻少妇| 一级二级三级毛片免费看| 亚洲第一区二区三区不卡| 亚洲精品456在线播放app| 亚洲自偷自拍三级| 看免费成人av毛片| 国产人妻一区二区三区在| 精品国产三级普通话版| 国产伦精品一区二区三区四那| 好男人视频免费观看在线| 亚洲精品亚洲一区二区| 国产大屁股一区二区在线视频| 亚洲av电影在线观看一区二区三区 | 美女xxoo啪啪120秒动态图| 亚洲电影在线观看av| 国产乱来视频区| 国产精品一及| 精品少妇黑人巨大在线播放| 丝袜脚勾引网站| 亚洲欧美成人综合另类久久久| 亚洲av中文字字幕乱码综合| 18禁在线无遮挡免费观看视频| 国产精品国产三级专区第一集| 亚洲av成人精品一区久久| 丰满乱子伦码专区| 日韩成人伦理影院| 偷拍熟女少妇极品色| 久久精品国产亚洲av涩爱| av国产精品久久久久影院| 欧美激情国产日韩精品一区| 精品少妇久久久久久888优播| 一个人看的www免费观看视频| 日韩免费高清中文字幕av| 欧美xxⅹ黑人| 国产精品99久久99久久久不卡 | 国产极品天堂在线| 国产精品伦人一区二区| 久久99热这里只有精品18| 免费人成在线观看视频色| 青春草亚洲视频在线观看| 看免费成人av毛片| 一区二区三区乱码不卡18| 男的添女的下面高潮视频| 亚洲成人一二三区av| 成人国产麻豆网| 精品视频人人做人人爽| 18禁在线播放成人免费| 黄色日韩在线| 精品一区二区三区视频在线| 亚洲精品,欧美精品| 亚洲精品乱码久久久v下载方式| 中文精品一卡2卡3卡4更新| 人人妻人人看人人澡| 色播亚洲综合网| 男女啪啪激烈高潮av片| 国产日韩欧美亚洲二区|