• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum Polynomial-Time Fixed-Point Attack for RSA

    2018-03-13 06:25:34YahuiWangHuanguoZhangHouzhenWang
    China Communications 2018年2期

    Yahui Wang, Huanguo Zhang*, Houzhen Wang

    School of computer, Wuhan University, Wuhan 430072, Hubei Province, China

    Key Laboratory of Aerospace Information security and trusted computing Ministry of Education, Wuhan University, Wuhan 430072, China

    I. INTRODUCTION

    Advances in quantum computation present a serious challenge to existing public-key cryptosystems: the RSA public-key cryptosystem can be attacked by Shor’s algorithm.Researching cryptanalysis in the quantum computing environment is thus of great significance [1]. It is well known that the security of RSA essentially depends on only the computational intractability of the Integer Factorization Problem (IFP), and in particular, it is only secured if the IFP does not have an efficient algorithm. That is, anyone who can solve the IFP in polynomial-time can break the RSA cryptographic system in polynomial-time.The IFP has been studied since ancient times,and exponential-time algorithms for it have been developed, including Lehman’s method,Shanks’SQU are FOrm Factorization method,Shanks’ class group method, the continued fraction method, Pollard’sρmethod [2]. With the invention of RSA public-key cryptography in 1978 [3], the problem became important and attracted a great deal of attention.

    There are many methods for attacking RSA,such as the integer factorization attacks, the discrete logarithm attacks, the public exponent attacks, the private exponent attacks and side channel attacks [4][5]. The computers we are using at present are called classical computers.The most powerful method for breaking RSA is to use the Number Field Sieve (NFS) [6] to factorn, which runs in subexponential-timewherec≈1.92. In fact, all the existing factoring algorithms up to this point, such as the NFS and theρmethods, are inefficient and cannot run in polynomial-time. The ineffectiveness of factoring makes it useful for constructing unbreakable cryptography. However, a polynomial-time quantum factoring algorithm,proposed by Shor in 1994 [7,8], can solve the IFP in a time proportional to Ο((logn)2+ε).The idea of Shor’s quantum factoring algorithm is a straightforward programming consequence of the following proposition: to factorn, it suffices to findr, which is the smallest integer, satisfyingar≡1(modn), whereThe factors are then given byIt is best to implement the full version of Shor’s algorithm to factorn. The most straightforward method for attacking RSA is to factorn.Shor showed that both integer factorization based cryptography and discrete logarithm based cryptography can be totally broken in polynomial-time on practical quantum computers. If a quantum computer with several thousand quantum bits can be built, many existing public-key cryptosystems such as RSA,ElGamal and ECC, will no longer be secure,threatening cyberspace security [1,9].

    The emergence of Shor’s algorithm has injected new vitality into research on quantum computation, and has led to an upsurge of quantum computation and quantum computer research over the last twenty years [9-14]. Tremendous efforts have been made to develop practical quantum computers and to improve Shor’s algorithm using different techniques. In[15] a compiled version for factoring 15 using quantum entanglement was proposed, while[16] provided an experimental demonstration of a factoring method with a temporal Talbot effect for factoring the number 19403. For a more compiled version of Shor’s algorithm,please refer to the references [17-22]. Recent research has sought to reduce the number of quantum bits and to make it easy to run on a quantum computer with fewer quantum bits.For example, [23] constructed simplified quantum circuits and gave an example for factoring the numbers 51 and 85 with 8 qubits, and [24]proposed a quantum computing idea to find the numberasuch thatFor more information, please refer to the references [25,26].

    It has nevertheless been known for a long time that there is no need to factornif the only aim is to attack RSA. In fact, to recoverMfromC, it is enough to compute the order,r, of the fixed pointC. Once the orderrhas been found, the plaintextMis simply the elementmodn. In classical computing,this computation is equivalent to factoringn,which is believed to be hard. In this paper, we present a new polynomial-time quantum algorithm that can be used to attack RSA without factoring the modulusn.

    II. PRELIMINARIES

    We first present some basic concepts of the RSA problem, the RSA fixed-point and Quantum Fourier Transform(QFT); for more related information, please refer to the references[2,27].

    Definition 1 (The RSA Problem)Given the RSA public-key (e,n) and the RSA ciphertextC, find the corresponding RSA plaintextM. That is,

    Definition 2Let 0≤x<n. If

    thenxis called a fixed-point ofRSA(e,n)and the smallestrsatisfying (1) is the order of the fixed-point.

    Theorem 1LetCbe the fixed-point ofRSA(e,n) with orderr, such that

    Then

    whereMis the plaintext,Cis ciphertext, andeis the encryption key.

    Proof Please refer to the reference [2].

    Definition 3(Quantum Fourier Transform(QFT))The quantum Fourier Transform on an orthonormal basisdefined to be a linear operator with the following action on the basis states,

    Equivalently, the action on an arbitrary state may be written as

    In addition, for reference, we state the action of the quantum inverse Fourier transform (denoted QFT-1) on the basis states

    Accordingly, the phase can be easily estimated using the quantum inverse Fourier transform. This is, of course, based on the basic assumptions of quantum mechanics [27].

    III. THE NEW ALGORITHM

    Shor discovered a polynomial-time quantum integer factorization algorithm in 1994. For a given numbern, he provided an algorithm for finding the order of the elementato get the factors ofn, and further, to attack RSA.If the integer factorization problem is solved,RSA can be broken; however, attacking RSA does not require factoringn. Therefore, in this section, using the fixed point property of RSA and based on the quantum inverse Fourier transform and phase estimation, we present a new polynomial-time quantum algorithm for directly recovering the RSA plaintextMfrom the ciphertextC, without explicitly factoring the modulusn. The specific steps of the algorithm steps are as follows.

    3.1 Algorithm design

    We present a quantum algorithm for computing the order of the fixed pointC, enabling breaking RSA in polynomial-time without factoring.

    Algorithm 1 Given the RSA public-key(e,n) and RSA ciphertextC, this algorithm tries to find the orderrof the fixed-pointCsuch thatbased on the quantum inverse Fourier transform and phase estimation. Once such anris found,

    Input:C,e,n

    Output:M

    Step 1. Find a numberq=2k, where

    Step 2. Give twokdimensional quantum registers whose initial state are

    Step 3. Perform a Hadamard transform on the first register, yielding

    Step 4. Perform the unitary transformon the second register, giving

    whereris the order of the fixed pointC.

    Step 5. Perform QFT-1on the first register,giving

    Step 6. Measure the first register; suppose we observe the stateusing the continued fractions algorithm to getr1satisfying

    Step 7. Repeat Steps 1-5; suppose we observe the stateusing the continued fractions algorithm to getr2satisfying

    As we can see, Algorithm 1 breaks RSA without factoringnand without using any knowledge of the trap-door informationwhich only recovers the plaintextMfrom the ciphertextC. Moreover,obtaining the ciphertextCis also the most easily satisfied condition in the real break, so the attack for Algorithm 1 belongs to the category of ciphertext-only attacks. It changes the practices by which cryptanalysts try to recover the private-key, directly from recovering the plaintextMto start, Algorithm 1 gives a ciphertext-only attacks of RSA.

    Algorithm 1 breaks RSA from the angle of non-factorization. That is, attacking RSA in Algorithm 1 does not pass through factorization from the traditional mathematical method of RSA itself, whereas traditional methods for breaking RSA all pass through factorization.

    3.2 Algorithm analysis

    First, we give a complexity analysis of Algorithm 1 as follows.

    The dominant computation of the algorithm is that of the inverse quantum Fourier transform, which takes time proportional towhereas the gcd computation takes timeTherefore, in total, the computation time of the algorithm is proportional to

    That is, Algorithm 1 recoversMfromCin quantum polynomial-time Ο((logn)2+ε).

    We next analyze the correctness of Algorithm 1.

    From the literature [27], we know that the Hadamard transform we use in Step 3 of Algorithm 1 is a unitary transform. The transformused in Step 4 is constructed as follows:

    For a given positive integerC, which is prime ton, there exists a unitary transformand the unitary transform UCcan be performed efficiently. Thus,

    Consider the following state:

    wheresis a positive integer satisfying 0 ≤s≤r-1.

    Consider

    Notice that becauseris the order of the fixed pointmodn. The amplitude of the statein the above state is then the sum over the terms for whicht=0. That is,

    Thus the amplitude of the stateis 1,and consequently the amplitude of all other basis states must be 0. Therefore, we have

    Performing the unitary transform UCon the quantum state

    Performing the unitary transformon the quantum statewe get

    Then substituting (16) and (18) intoof (8), we get

    That is (10).

    From [27], we known that the quantum inverse Fourier transform is a unitary transform.The transforms we use in Algorithm 1 satisfy the reversible conditions required by the quantum computing algorithm. Thus in terms of the transforms used in Algorithm 1, the algorithm is correct. Figure 1 presents a circuit for implementing the Algorithm 1.

    Finally, we analyze the success probability of Algorithm 1 as follows.

    By (12) in Step 5, ifr|q,

    Accordingly, the amplitude of the quantum stateis zero, and does not satisfyφs=c/q; that is, after Step 5, the quantum statesleaving in the first register satisfyφs=c/q. By Step 5, the probability Prob(c)that the machine reaches the state

    whereφs=c/q, so at this time each state of the quantum superposition that we require is observed with the probability

    Ifrq,we can see from Figure 2 thatcsatisfying

    When satisfying (22), it is easy to learn that the phase is concentrated in the upper or lower part of the complex plane, while at the same time, the summation ofxcan lead to the superposition of phases. If it does not satisfy(22) at this point, the summation ofxcan lead to the offset of phases by each other, with its size being almost negligible. Therefore, the probability of observing the statecis

    Fig. 1. Circuit for implementing the quantum part of Algorithm 1.

    Fig. 2.The search for r in the case q.Thus, the probability of the observed stateis approximated toin case ofrq.Similarly, the statesatisfying gcd(c,r)=1 only has?(r) possible values. Thus the probability of outputting the correct statein Step 6 is

    that is, whenrq, the probability of success of Algorithm 1 is

    Accordingly, the probability of success of Algorithm 1 depends on the order of the fixed pointC. In particular, whenris a prime number, the probability of Algorithm 1 is similar to (r-1)/r; that is, asrincreases,the probability of success approaches 1. Further, we show that the probability of success of Algorithm 1 is higher than that of Shor’s algorithm. In fact, the probability of success of Shor’s algorithm for breaking RSA isFrom the above analysis, we know that for Algorithm 1,whenr|q, the probability of success of Algorithm 1 isand whenrq, the probability of success of Algorithm 1 isBecausethe probability of success of Algorithm 1 is higher than that of Shor’s algorithm.

    We now more clearly distinguish the features of Algorithm 1 from those of its predecessor in attacking RSA. Table 1 compares time complexity, the probability of success,required quantum qubits, theoretical basis, and type of attack for both algorithms .

    In Table 1, we can see that Algorithm 1 has the following properties: 1) it recovers the RSA plaintextMfrom the ciphertextCwithout factoringn; 2) it does not require the order of the element to be even; 3) it has higher probability of success; 4) it is the first quantization algorithm for an RSA fixed-point attack based on the current literature.

    IV. CONCLUSION

    Because the RSA cryptosystem is widely used in industry and government, quickly cracking RSA has become an important research direction for modern cryptanalysis. The essential trick to attacking the RSA public-key cryptosystem is a method for factoring modulusnefficiently. If the only goal, however, is to break RSA, we can compute the orderrof the fixed-pointCdirectly without factoring. This paper thus presents a new quantum algorithm for finding the orderrof the fixed-pointCof the given RSA public-keybased on the QFT-1and phase estimation. Because onceris found, the RSA plaintextMcan be immediately obtained by computingRSA can be attacked without factoring the modulusn. The probability of success of Algorithm 1 is higher than that of Shor’s algorithm, and the algorithm runs in polynomial time. Moreover, our algorithm for breaking RSA does not require randomly choosing an integerxsuch that the order ofxmodulonis even; it only needs to find the order of the fixed-pointC, regardless of its parity.

    Until now, only Shor’s algorithm has been suitable for quickly solving some periodic problems, such as the integer factorization problem, discrete logarithm problem, elliptic curve discrete logarithm problem, and Pell equation. However, the question of whether Shor’s algorithm can also solve non-periodic problems is a meaningful research direction,which remains a problem for further study.

    ACKNOWLEDGEMENT

    This work is partially supported by he State Key Program of National Natural Science of China No. 61332019, Major State Basic Research Development Program of China (973 Program) No. 2014CB340601, the National Science Foundation of China No. 61202386,61402339, the National Cryptography Development Fund No. MMJJ201701304.

    [1] H.G Zhang, W.B Han, X.J Lai, et al., “Survey on cyberspace security”,SCIENCE CHINA:Information Science, vol. 58, no. 11, 2015, pp. 1-43.

    [2] S.Y Yan, “Quantum computational number theory”,Berlin: Springer, 2015.

    [3] R.L Rivest, A. Shamir, L. Adleman, “A method for obtaining digital signatures and public key cryptosystems”,Communications of the ACM,vol. 21, no. 2, 1978, pp. 120-126.

    [4] F. Jia, D. Xi, “A unified method based on SPA and timing attacks on the improved RSA”,China Communications, vol. 13, no. 4, 2016, pp. 89-96.

    [5] P. Zhou, T. Wang, G. Li, F. Zhang, X.J Zhao,“Analysis on the parameter selection method for FLUSH+RELOAD based cache timing attack on RSA”,China Communications, vol. 12, no. 6,2015, pp. 33-45.

    [6] A.K Lenstra, H.W Lenstra, M.S Manasse, J.M Pollard, “The number field sieve”,Lecture Notes in Mathematics, Berlin: Springer, vol. 1554, 1993,pp. 11-42.

    [7] P.W Shor, “Algorithms for quantum computation: discrete logarithms and factoring”,Proc.35th Annual Symposium on Foundations ofComputer Science, 1994, pp. 124-134.

    [8] P.W Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”,SIAM Journal on Computing, vol. 26, no. 5, 1997, pp. 1484-1509.

    [9] W.Q Wu, H.G Zhang, H.Z Wang, et al., “A public key cryptosystem based on data complexity under quantum environment”,SCIENCE CHINA:Information Science, vol. 58, no. 11, 2015, pp.1-11.

    [10] H.F Wang, “Quantum algorithm for obtaining the eigenstates of a physical system”,Physical Review A, vol. 93, 2016, pp. 052334.

    [11] S.W Mao, H.G Zhang, W.Q Wu, et al. "Key exchange protocol based on tensor decomposition problem",China Communications, vol. 13,no. 3, 2016, pp. 174-183.

    [12] W.Q Wu, H.G Zhang, H.Z Wang, S.W Mao,“Polynomial-time quantum algorithms for finding the linear structures of boolean function”,Quantum Information Process, vol. 14, no. 4,2015, pp. 1215-1226.

    [13] H.G Zhang, S.W Mao, W.Q Wu, et al., “Overview of quantum computation complexity theory”,Chinese Journal of Computers, vol. 39, no. 12,2016, pp. 2403-2428.

    [14] S. Wang, X.H Song, X.M Niu, “Quantum cosine transform based watermarking scheme for quantum images”,Chinese Journal of Electronics, vol. 24, no. 2, 2015, pp. 321-325.

    [15] B.P Lanyon, T.J Weinhold, N.K Langford, “Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement”,Physical Review Letters, vol. 99, no. 25, 2007, pp.250505.

    [16] M.R Geller, Z.Y Zhou, “Factoring 51 and 85 with 8 qubits”,Scientific Reports, vol. 3, no. 3023,2013, pp. 1-5.

    [17] Z.J Cao, Z.F Cao, “On Shor’s factoring algorithm with more registers and the problem to certify quantum computers”,arXiv:1409.7352v1 [cs.DS]10 Sep 2014.

    [18] C. Lu, D. Browne, T. Yang, et al., “Demonstration of a compiled version of Shor’s quantum algorithm using photonic qubits”,Physical Review Letters, vol. 99, no. 25, 2007, pp. 250504.

    [19] E. Lucero, R. Barends, Y. Chen, et al., “Computing prime factors with a Josephson phase qubit quantum processor”,Nature Physics, vol. 8, no.10, 2012, pp. 719-723.

    [20] X.H Peng, Z.Y Liao, N.Y Xu, et al., “Quantum adiabatic algorithm for factorization and its experimental implementation”,Physical Review Letters, vol. 101, no. 22, 2008, pp. 220405.

    [21] N.Y Xu, J. Zhu, D.W Lu, et al., “Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system”,Physical Review Letters,vol.108, no.13, 2012, pp. 130501.

    [22] T. Lawson, “Odd orders in Shor’s factoring algorithm”,Quantum Information Process,vol. 14,no. 3, 2015, pp. 831-838.

    [23] D. Bigourd, B. Chatel, W.P Schleich, et al., “Factorization of numbers with the Temporal Talbot effect: optical implementation by a sequence of shaped Ultrashort pulse”,Physical Review Letters, vol. 100, no. 3, 2008, pp. 030202.

    [24] J.A Smolin, G. Smith, A. Vargo, “Oversimplifying quantum factoring”,Nature, vol. 499, 2013, pp.163-165.

    [25] N.S Dattani, N. Bryans, “Quantum factorization of 56153 with only 4 qubits”,http://arxiv.org/pdf/1411.6758, 27 Nov 2014,6 pages, 2014.

    [26] E. Martin-Lopez, A. Laing, T. Lawson, et al., “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling”,Nature Photonics,vol. 6, no. 11, 2012, pp. 773-776.

    [27] M.A Nielsen and I.L Chuang, “Quantum computation and quantum information”,10th anniversary edition, Cambridge: Cambridge University Press, 2010.

    [28] L.H Liu and Z.J Cao, “On computing ordn(2) and its application”,Information and Computation,vol. 204, no. 7, 2006, pp. 1173-1178.

    黄色怎么调成土黄色| 亚洲美女视频黄频| 26uuu在线亚洲综合色| 国产伦精品一区二区三区视频9| 久久久成人免费电影| 国产精品久久久久久精品电影| 最近中文字幕2019免费版| 大陆偷拍与自拍| 国产伦在线观看视频一区| 成年人午夜在线观看视频| 99久久精品热视频| 午夜日本视频在线| 在线天堂最新版资源| 国产成人午夜福利电影在线观看| 国产成人a区在线观看| 日本三级黄在线观看| 韩国高清视频一区二区三区| 国产人妻一区二区三区在| 欧美zozozo另类| 最近手机中文字幕大全| 99热这里只有是精品50| 最近中文字幕2019免费版| 国产精品av视频在线免费观看| 国精品久久久久久国模美| 国产视频内射| 伊人久久精品亚洲午夜| 久久精品久久久久久噜噜老黄| 综合色丁香网| 国产久久久一区二区三区| 国产一区二区三区综合在线观看 | 神马国产精品三级电影在线观看| 狂野欧美激情性xxxx在线观看| 麻豆成人午夜福利视频| 赤兔流量卡办理| 中文天堂在线官网| 国产高清国产精品国产三级 | 人妻 亚洲 视频| 成人毛片60女人毛片免费| 国产成人91sexporn| 色哟哟·www| 亚洲av不卡在线观看| 国产亚洲一区二区精品| 国产美女午夜福利| 男人和女人高潮做爰伦理| 男人和女人高潮做爰伦理| 日韩欧美精品免费久久| 大香蕉97超碰在线| 亚洲国产最新在线播放| 欧美成人a在线观看| 成人无遮挡网站| 日本一二三区视频观看| 欧美成人一区二区免费高清观看| 精品一区二区三区视频在线| 久久久欧美国产精品| 日韩av不卡免费在线播放| 一边亲一边摸免费视频| 麻豆精品久久久久久蜜桃| 少妇的逼水好多| 日韩av在线免费看完整版不卡| 在线观看三级黄色| 日韩大片免费观看网站| 色视频www国产| 大片电影免费在线观看免费| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久午夜电影| 一级片'在线观看视频| 亚洲一级一片aⅴ在线观看| 精品国产三级普通话版| 国产精品福利在线免费观看| 日本与韩国留学比较| 午夜福利在线在线| 亚洲精品自拍成人| 只有这里有精品99| 国产极品天堂在线| 亚洲av国产av综合av卡| 国产黄色免费在线视频| 在线观看一区二区三区| 亚洲欧美清纯卡通| 亚洲在线观看片| 免费观看在线日韩| 亚洲国产欧美人成| 一级av片app| 国产一区二区三区综合在线观看 | 亚洲精品色激情综合| 国产在视频线精品| 国产伦精品一区二区三区四那| 涩涩av久久男人的天堂| 人体艺术视频欧美日本| 亚洲欧洲日产国产| 青春草国产在线视频| 91精品一卡2卡3卡4卡| 免费看a级黄色片| 18禁在线播放成人免费| 日本三级黄在线观看| 国产av码专区亚洲av| 亚洲自偷自拍三级| 亚洲欧美一区二区三区国产| 欧美人与善性xxx| 日本色播在线视频| 成人无遮挡网站| 久久精品国产a三级三级三级| 国产av码专区亚洲av| 亚洲av福利一区| 国内精品宾馆在线| 亚洲精品一二三| 街头女战士在线观看网站| 精品少妇久久久久久888优播| 欧美 日韩 精品 国产| 久久女婷五月综合色啪小说 | 极品教师在线视频| 国产精品久久久久久久电影| 久久久久久伊人网av| 色婷婷久久久亚洲欧美| 国产毛片在线视频| 菩萨蛮人人尽说江南好唐韦庄| 丰满少妇做爰视频| 亚洲av中文字字幕乱码综合| 日本色播在线视频| 日本一二三区视频观看| 色5月婷婷丁香| 精华霜和精华液先用哪个| 在线观看免费高清a一片| 亚洲精品一区蜜桃| 91久久精品电影网| 久久97久久精品| 欧美高清性xxxxhd video| 色网站视频免费| 欧美精品国产亚洲| 99热这里只有是精品在线观看| 久久久久久久久久成人| 色吧在线观看| 乱系列少妇在线播放| 亚洲精华国产精华液的使用体验| 精品国产乱码久久久久久小说| 18禁在线无遮挡免费观看视频| av在线老鸭窝| 自拍偷自拍亚洲精品老妇| 一区二区三区四区激情视频| 老女人水多毛片| 日韩欧美 国产精品| 久久影院123| 亚洲久久久久久中文字幕| 你懂的网址亚洲精品在线观看| 国产av不卡久久| a级毛色黄片| 亚洲无线观看免费| 我的女老师完整版在线观看| 亚洲成人久久爱视频| av在线亚洲专区| 少妇丰满av| 大香蕉97超碰在线| 成人高潮视频无遮挡免费网站| 久久久久久伊人网av| 人妻少妇偷人精品九色| 97超碰精品成人国产| 精品久久久久久久久亚洲| 亚洲欧美清纯卡通| 日韩国内少妇激情av| 久久久成人免费电影| 麻豆成人午夜福利视频| 国产黄片美女视频| 亚洲精品国产色婷婷电影| 久久久久久久国产电影| 国产成人精品福利久久| 少妇人妻一区二区三区视频| 男女国产视频网站| 黄色怎么调成土黄色| 国产精品久久久久久av不卡| 水蜜桃什么品种好| 嘟嘟电影网在线观看| 亚洲欧洲日产国产| 成人黄色视频免费在线看| 美女主播在线视频| 国产精品人妻久久久影院| 免费大片18禁| 毛片女人毛片| 久久99热6这里只有精品| 久久精品国产a三级三级三级| 又黄又爽又刺激的免费视频.| 日韩在线高清观看一区二区三区| 国产精品.久久久| eeuss影院久久| 69av精品久久久久久| 精品久久久噜噜| 亚洲精品,欧美精品| 午夜福利视频精品| 国产毛片在线视频| 亚洲av.av天堂| 王馨瑶露胸无遮挡在线观看| 天天躁夜夜躁狠狠久久av| 身体一侧抽搐| 国产成人91sexporn| 18禁在线播放成人免费| 国产精品久久久久久精品电影小说 | 国产亚洲av嫩草精品影院| 91精品一卡2卡3卡4卡| 亚洲国产av新网站| 欧美丝袜亚洲另类| 免费观看在线日韩| 91精品伊人久久大香线蕉| 夜夜爽夜夜爽视频| 又大又黄又爽视频免费| 久久人人爽人人片av| 99精国产麻豆久久婷婷| 久久久久久久精品精品| 中文字幕久久专区| 国产精品av视频在线免费观看| 亚洲人与动物交配视频| 一级毛片黄色毛片免费观看视频| 欧美日韩视频高清一区二区三区二| 中文字幕人妻熟人妻熟丝袜美| 男人舔奶头视频| 大片免费播放器 马上看| 99久久精品一区二区三区| 亚洲精品成人久久久久久| 2021少妇久久久久久久久久久| 尾随美女入室| 日韩av免费高清视频| 成人亚洲精品av一区二区| av网站免费在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 秋霞伦理黄片| 免费电影在线观看免费观看| 熟妇人妻不卡中文字幕| 亚洲自偷自拍三级| 中文字幕制服av| 交换朋友夫妻互换小说| 春色校园在线视频观看| 久久女婷五月综合色啪小说 | 成人综合一区亚洲| 国产伦精品一区二区三区视频9| 秋霞在线观看毛片| 日本免费在线观看一区| 欧美性猛交╳xxx乱大交人| 涩涩av久久男人的天堂| 亚洲欧洲国产日韩| 麻豆精品久久久久久蜜桃| 国产av码专区亚洲av| 校园人妻丝袜中文字幕| 日韩欧美一区视频在线观看 | 国产亚洲5aaaaa淫片| 插阴视频在线观看视频| 岛国毛片在线播放| 18禁在线播放成人免费| 久热这里只有精品99| 精品一区二区免费观看| 99热6这里只有精品| 精品国产露脸久久av麻豆| 亚洲av一区综合| 成人综合一区亚洲| 亚洲精品乱久久久久久| 97在线人人人人妻| 日本午夜av视频| 中文乱码字字幕精品一区二区三区| 91狼人影院| 99热网站在线观看| 嘟嘟电影网在线观看| av在线蜜桃| 国产av国产精品国产| 天堂网av新在线| 五月伊人婷婷丁香| 午夜激情福利司机影院| 亚洲欧美精品自产自拍| 亚洲高清免费不卡视频| 一个人看视频在线观看www免费| 2018国产大陆天天弄谢| 亚洲国产精品国产精品| 国产一区二区三区av在线| 男人和女人高潮做爰伦理| 伦理电影大哥的女人| 国产亚洲最大av| 久久久久久久久久久丰满| 日日啪夜夜撸| 国产亚洲精品久久久com| 国产精品99久久久久久久久| 精品久久久久久久久av| 狠狠精品人妻久久久久久综合| 欧美精品一区二区大全| 亚洲欧美清纯卡通| 三级经典国产精品| 久久人人爽av亚洲精品天堂 | 欧美+日韩+精品| 亚洲av免费在线观看| 麻豆精品久久久久久蜜桃| 亚洲电影在线观看av| 校园人妻丝袜中文字幕| 亚洲欧美成人精品一区二区| 亚洲精品乱久久久久久| 久久精品国产a三级三级三级| 国产亚洲5aaaaa淫片| 亚洲最大成人手机在线| 国产男女超爽视频在线观看| 亚洲欧美日韩卡通动漫| 91狼人影院| 啦啦啦在线观看免费高清www| 中文字幕亚洲精品专区| 久久99精品国语久久久| 高清欧美精品videossex| 久久久久久久久久成人| 久久ye,这里只有精品| 乱码一卡2卡4卡精品| 97人妻精品一区二区三区麻豆| 国产精品久久久久久精品电影小说 | 国产色婷婷99| 免费不卡的大黄色大毛片视频在线观看| 欧美3d第一页| 男女边摸边吃奶| 春色校园在线视频观看| 国产男女超爽视频在线观看| 免费观看无遮挡的男女| 中文字幕人妻熟人妻熟丝袜美| 在线看a的网站| 日本免费在线观看一区| 久久久久久久久久久免费av| 欧美日韩视频精品一区| 久久久久久久精品精品| 91精品一卡2卡3卡4卡| 五月玫瑰六月丁香| 国产综合懂色| 亚洲国产av新网站| 欧美成人午夜免费资源| 中文欧美无线码| 97精品久久久久久久久久精品| 午夜福利在线观看免费完整高清在| 欧美成人a在线观看| 亚洲欧美日韩东京热| 美女xxoo啪啪120秒动态图| 久久久欧美国产精品| 色哟哟·www| 男人添女人高潮全过程视频| 国产男人的电影天堂91| 青春草视频在线免费观看| 最近最新中文字幕免费大全7| 蜜桃久久精品国产亚洲av| 亚洲精品成人久久久久久| 美女高潮的动态| av在线观看视频网站免费| 久久久色成人| 边亲边吃奶的免费视频| 亚洲人与动物交配视频| 亚洲精品久久久久久婷婷小说| 大香蕉97超碰在线| 永久免费av网站大全| 国产亚洲精品久久久com| 插逼视频在线观看| 国产亚洲av嫩草精品影院| 全区人妻精品视频| 高清欧美精品videossex| 在线天堂最新版资源| 插阴视频在线观看视频| 午夜福利在线观看免费完整高清在| 亚洲精品国产av成人精品| 美女脱内裤让男人舔精品视频| 国产精品久久久久久av不卡| 大陆偷拍与自拍| 能在线免费看毛片的网站| 国产精品一区二区三区四区免费观看| 日日摸夜夜添夜夜爱| 日韩国内少妇激情av| 日韩成人av中文字幕在线观看| 欧美激情国产日韩精品一区| 美女xxoo啪啪120秒动态图| 尾随美女入室| av在线播放精品| 亚洲在久久综合| 欧美一区二区亚洲| 国产欧美亚洲国产| 免费观看无遮挡的男女| 久久久久久久久久人人人人人人| av卡一久久| 免费av不卡在线播放| 国产精品久久久久久av不卡| 美女脱内裤让男人舔精品视频| 国语对白做爰xxxⅹ性视频网站| 国产av码专区亚洲av| 午夜福利视频1000在线观看| 日韩欧美 国产精品| 乱系列少妇在线播放| 国产乱人视频| 热re99久久精品国产66热6| 精品人妻偷拍中文字幕| 一级黄片播放器| 亚洲精品自拍成人| 又爽又黄无遮挡网站| 欧美日韩在线观看h| 美女高潮的动态| 国产午夜精品久久久久久一区二区三区| 免费看av在线观看网站| 欧美日韩精品成人综合77777| 嘟嘟电影网在线观看| 国产一区二区在线观看日韩| 国产乱人偷精品视频| 欧美日韩精品成人综合77777| 极品教师在线视频| 日韩制服骚丝袜av| 成人美女网站在线观看视频| 亚洲欧洲日产国产| 亚洲人成网站在线观看播放| 国产精品精品国产色婷婷| 99热这里只有精品一区| 亚洲精品,欧美精品| 亚洲国产精品成人久久小说| 亚洲精品亚洲一区二区| 美女高潮的动态| 哪个播放器可以免费观看大片| 香蕉精品网在线| 久久精品国产自在天天线| 久久久久久久国产电影| 少妇人妻久久综合中文| 99热这里只有是精品50| 午夜激情久久久久久久| 赤兔流量卡办理| 亚洲最大成人av| 人妻一区二区av| 黄色怎么调成土黄色| 少妇高潮的动态图| 亚洲婷婷狠狠爱综合网| 美女脱内裤让男人舔精品视频| 最近手机中文字幕大全| 午夜福利网站1000一区二区三区| 久久久久国产精品人妻一区二区| 国产 一区精品| 极品教师在线视频| av免费在线看不卡| 成人一区二区视频在线观看| 日韩强制内射视频| 日韩成人伦理影院| 天天躁日日操中文字幕| 亚洲av日韩在线播放| 久久久久九九精品影院| 人妻制服诱惑在线中文字幕| 黄色怎么调成土黄色| 国产白丝娇喘喷水9色精品| 久久影院123| 国产一区有黄有色的免费视频| 五月玫瑰六月丁香| 久久这里有精品视频免费| av在线天堂中文字幕| 欧美激情久久久久久爽电影| 一区二区三区乱码不卡18| 国产男女超爽视频在线观看| 禁无遮挡网站| 91久久精品电影网| 亚洲精品中文字幕在线视频 | av黄色大香蕉| 国产精品久久久久久精品电影| 真实男女啪啪啪动态图| 综合色av麻豆| 国产精品.久久久| 99久久精品国产国产毛片| 国产乱人视频| 亚洲av不卡在线观看| 国产成人免费观看mmmm| 午夜视频国产福利| 日本爱情动作片www.在线观看| 白带黄色成豆腐渣| 99久久精品国产国产毛片| 日韩av不卡免费在线播放| 边亲边吃奶的免费视频| 婷婷色av中文字幕| 亚洲欧美成人综合另类久久久| 老女人水多毛片| 国产成人福利小说| 特级一级黄色大片| 午夜老司机福利剧场| 国产午夜福利久久久久久| 国产中年淑女户外野战色| 日韩中字成人| 尤物成人国产欧美一区二区三区| 一级片'在线观看视频| 尾随美女入室| av国产久精品久网站免费入址| 夜夜爽夜夜爽视频| 欧美bdsm另类| 中文字幕制服av| 亚洲伊人久久精品综合| 国产欧美日韩精品一区二区| 欧美性猛交╳xxx乱大交人| 三级经典国产精品| 丝袜脚勾引网站| av播播在线观看一区| 久久久久久久久久久丰满| 国产黄a三级三级三级人| 搞女人的毛片| 久久国内精品自在自线图片| 国产精品国产三级专区第一集| 中文字幕免费在线视频6| 日韩三级伦理在线观看| 成人一区二区视频在线观看| 一级片'在线观看视频| 精品久久久噜噜| 日韩三级伦理在线观看| 99久久人妻综合| 国产一区二区在线观看日韩| 成人二区视频| 亚洲欧美日韩无卡精品| a级毛色黄片| 日本与韩国留学比较| 成年免费大片在线观看| 国产精品偷伦视频观看了| 99热这里只有是精品在线观看| 国产极品天堂在线| 一级黄片播放器| 亚洲真实伦在线观看| 久久久久性生活片| 亚洲精品日韩在线中文字幕| 水蜜桃什么品种好| 亚洲精品亚洲一区二区| 亚洲精品成人av观看孕妇| 日日啪夜夜撸| 色视频www国产| 精品人妻视频免费看| 嘟嘟电影网在线观看| 欧美bdsm另类| 亚洲精品乱码久久久v下载方式| 国产伦精品一区二区三区视频9| 免费在线观看成人毛片| 新久久久久国产一级毛片| 久久久久精品久久久久真实原创| 亚洲av在线观看美女高潮| 亚洲伊人久久精品综合| av在线老鸭窝| 九九久久精品国产亚洲av麻豆| videos熟女内射| 亚洲伊人久久精品综合| 久久精品国产鲁丝片午夜精品| 国产成人免费观看mmmm| av在线app专区| 七月丁香在线播放| 99热这里只有精品一区| 国产精品一及| 国产欧美日韩精品一区二区| 美女xxoo啪啪120秒动态图| 伦理电影大哥的女人| 99久久精品国产国产毛片| 亚洲激情五月婷婷啪啪| 女的被弄到高潮叫床怎么办| 我的女老师完整版在线观看| 新久久久久国产一级毛片| 啦啦啦在线观看免费高清www| 18+在线观看网站| 欧美性感艳星| 欧美激情久久久久久爽电影| 69av精品久久久久久| 在线天堂最新版资源| 国产淫片久久久久久久久| 亚洲精品亚洲一区二区| 男人狂女人下面高潮的视频| 亚洲怡红院男人天堂| 青春草视频在线免费观看| 舔av片在线| 天天一区二区日本电影三级| 大片免费播放器 马上看| 日本黄大片高清| 午夜激情福利司机影院| 日韩一本色道免费dvd| 最近的中文字幕免费完整| 一区二区三区精品91| 蜜桃亚洲精品一区二区三区| 美女国产视频在线观看| 午夜精品一区二区三区免费看| av一本久久久久| 精品少妇黑人巨大在线播放| av卡一久久| 永久网站在线| 熟女人妻精品中文字幕| 国产黄色免费在线视频| 女的被弄到高潮叫床怎么办| 我的女老师完整版在线观看| 秋霞伦理黄片| 午夜亚洲福利在线播放| 亚洲色图av天堂| 性色avwww在线观看| 中文天堂在线官网| 国产精品一二三区在线看| 少妇被粗大猛烈的视频| 国产 一区 欧美 日韩| 日韩大片免费观看网站| 99久久精品一区二区三区| 青青草视频在线视频观看| 欧美激情久久久久久爽电影| 国语对白做爰xxxⅹ性视频网站| 寂寞人妻少妇视频99o| 乱系列少妇在线播放| 国产午夜精品久久久久久一区二区三区| 亚洲人成网站在线播| 中国三级夫妇交换| 国产久久久一区二区三区| 视频区图区小说| 亚洲av成人精品一区久久| 精品久久国产蜜桃| 不卡视频在线观看欧美| 国产精品久久久久久av不卡| 亚洲国产高清在线一区二区三| 大片免费播放器 马上看| 免费av不卡在线播放| 国内精品宾馆在线| 免费播放大片免费观看视频在线观看| 欧美变态另类bdsm刘玥| 一级毛片我不卡| 国产 一区精品| 国产日韩欧美在线精品| 毛片一级片免费看久久久久| 免费看a级黄色片| 国产探花在线观看一区二区| 欧美xxxx黑人xx丫x性爽| 永久免费av网站大全| 性色av一级| 男的添女的下面高潮视频| 青青草视频在线视频观看| 国产男女超爽视频在线观看| 美女cb高潮喷水在线观看| av在线蜜桃| 啦啦啦啦在线视频资源| 亚洲av成人精品一二三区|