• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Acquiring non-parametric scattering phase function from a single image

    2018-03-12 06:07:04YukiMinetomoHiroyukiKuboTakuyaFunatomiMikioShinyaandYasuhiroMukaigawa
    Computational Visual Media 2018年4期

    Yuki Minetomo,Hiroyuki Kubo(),Takuya Funatomi,Mikio Shinya,and Yasuhiro Mukaigawa

    Abstract Acquiring accurate scattering properties is important for rendering translucent materials. In particular,the phase function,which determines the distribution of scattering directions,plays a significant role in the appearance of a material.We propose a distinctive scattering theory that approximates the effect of single scattering to acquire the non-parametric phase function from a single image.Furthermore,in various experiments,we measured the phase functions from several real diluted media and rendered images of these materials to evaluate the effectiveness of our theory.

    Keywords scattering;phase function;measurement;rendering

    1 Introduction

    Achieving realism is one of the main goals in the field of computer graphics(CG).An effective way to create realistic CG is to reproduce the optical properties of materials,such as reflection and scattering.Reflection effects are represented using the bidirectional reflectance distribution function(BRDF)which describes the distribution of reflected light with respect to incident light.For translucent materials,scattering effects are also significant in representing their appearance when rendering[1,2]and editing[3,4]them.Scattering effects are represented using three parameters:the extinction coefficient,the scattering coefficient,and the scattering phase function.The extinction coefficient describes the ratio of light attenuation due to scattering or absorption in translucent materials.The scattering coefficient describes the ratio of scattering of the attenuating light.The scattering phase function describes the angular distribution of scattered light.In creating realistic CG,it is important to acquire the optical properties of real materials.

    In previous work,many methods have been proposed to acquire the BRDF.In regard to parametric models,the work of Phong[5],Ward[6],Lafortune et al.[7],and He et al.[8]are well known in the field of CG.These parametric models represent the BRDF using a few parameters.However,none are versatile enough to represent real objects,so other methods have been studied to measure BRDF and represent it using a non-parametric model.A gonioreflectometer is a well-known device for acquiring non-parametric BRDF.It makes direct measurement possible by changing the light position and observation point.Müller et al.[9]and Ben-Ezra et al.[10]developed measurement systems with multiple light sources and sensors.Marschner et al.[11]and Matusik et al.[12]measured the non-parametric BRDF using an object with uniform reflection properties.Mukaigawa et al.[13]and Ghosh et al.[14]developed measurement systems using a projector and mirror.

    There is also much research on acquiring scattering properties.Donner and Jensen[15],Jensen et al.[1],Papas et al.[16],and Munoz et al.[17]estimated scattering properties based on the diffusion approximation;this approximation assumes an optically dense medium for which high-order scattering is dominant.It can describe complex scattering effects very simply,and therefore,many studies employ this approximation.Gu et al.[18]estimated scattering properties based on the single scattering approximation.This approximation considers optically thin media for which single scattering is dominant,as for example in a dilute medium.It enables direct measurement of scattering properties.Khungurn et al.[19]estimated scattering properties based on appearance matching.Other approaches assume specific scattering effects such as high-order or single scattering.However,this method allows the estimation of scattering effects to all orders including high-order and first-order.While most researchers are more interested in measuring scattering properties,there is scant research focusing on the phase function.According to previous research[20],the phase function is wellknown to be significant in reproducing material appearance in CG.Like the phase function,the BRDF also describes the distribution of out-going light and has a significant role in the appearance of materials.Although recent studies on measuring BRDF have adopted a non-parametric representation,phase function measurements are usually not undertaken,or alternatively parametric models such as the Henyey—Greenstein(HG)phase function[21]are adopted in many instances.The parametric model,in an approximate sense,can easily reproduce phenomena from a small number of parameters.However,it sacrifices physical plausibility and there are limitations in its ability to generate correctly a realistic appearance of actual media.Mie scattering is a well-known scattering phenomenon and is known to have numerous peaks in amplitude.Parametric models cannot represent such complex scattering.There are however only a few methods for acquiring the non-parametric scattering phase function.Here,we propose a method for acquiring the nonparametric phase function of a real medium from a single image.Our method is based on a distinctive formulation of the relationship between the single scattered field and the phase function.To validate our method,we used a projector—camera optical system enabling the phase function to be measured from a single image captured with simple equipment.In summary,the contributions of this paper are as follows:

    ·A formulation of single scattering fields is proposed.

    · A simple method is proposed to measure the non-parametric phase function from just a single image.

    · Experiments using simple equipment have been performed demonstrating the technique.

    2 Related work

    In this section,we consider related work from the viewpoint of the phase function.Jensen et al.[1]obtained scattering properties using the diffusion approximation.The method assumes that multiple scattering is occurring within an optically dense medium,so that certain characteristics of the medium can be estimated from scattering properties.Some studies adopt this approximation to acquire scattering properties.However,in this approximation,the phase function can be directly measured by the method.Therefore,the phase function is not mentioned by the above paper.Despite not using the diffusion approximation,there are several other studies that have not considered the phase function.Fuchs et al.[22]proposed a method for acquiring scattering properties from time-varying participating media such as smoke using a line scanning system.They consider the phase function as isotropic.

    In other research,a basic parametric model such as the HG function is used to represent the shape of the phase function.In this way,it represents a variety of scattering distributions using a single parameter.Narasimhan et al.[23]measured scattering properties using the single scattering approximation.Their method estimates scattering properties by minimizing an error function for an image formulation model from a single scattering observation.They used the HG function in their image formulation model.Mukaigawa et al.[24]analyzed the scattering light transport in translucent media.For this purpose,they separated scattering at each bounce and recursively estimated the scattering light transport for each bounce based on a forward-rendering process.In forward rendering,they used the HG function.However,the HG function is unsatisfactory when it comes to reproducing the properties of actual media[20].

    Other research demonstrates moreflexible parametric models than the HG function.Kattewar et al.[25]proposed the developmental HG function using the linear combination of two HG lobes.It can represent scattering of a type in which both forward and backward scattering are mixed.Gkioulekas et al.[26]proposed to represent the phase function as a convex combination of a tent function and a weight factor.This function is moreflexible than the HG phase function.To ensure estimation is accurate,it needs many observations using a special optical system that requires a complex calibration process.However,to reproduce the appearance of real objects,a non-parametric model is more suitable than a parametric model.

    Whereas the above methods adopted a parametric model for representing the phase function,other methods adopt a non-parametric approach.Hawkins et al.[27]measured scattering properties by developing a laser-scanning system.Because there is no model for the phase function,their system directly measures the phase function from a wide range of directions.To realize the measurement,they built special equipment with a conical mirror,which is complicated and not easy to reproduce.In addition,scattering from some directions could not be measured,specifically at scattering angles≈0 andπof the phase function.In these instances,an optical element used in the measurement blocks the path of the ray.Moreover,it is not easy to split the measurement into scattering and direct components.

    3 Formulation of scattering field

    In this section,we propose an alternative formulation of the scattering field that allows acquisition of the non-parametric scattering phase function in a oneshot measurement.The main symbols used in the equations are listed in Table 1.Consider the situation shown in Fig.1;a perpendicular incident ray scatters in a uniform participating medium.For simplicity of formulation,let us assume:

    · the medium is optically thin,and therefore single scattering is dominant,

    · the medium produces forward scattering,and

    · the phase function of the medium is axially symmetric,depending only on the angle between the directions of incident and scattered light.

    The first assumption allows the single-scattering approximation to be imposed.This can be satisfied by controlling the density of the medium during measurements.If the medium is optically thin,the density of particles in the medium is low,so theprobability of scattering is low and single scattering can be assumed.From the second assumption,angleθ between the scattered light and the ray axis ? can be regarded as small,and its cosine can be approximated as

    Table 1 Symbols used in equations

    Fig.1 Coordinate system.

    As noted in previous works[23,26],most participating media are predominantly forward-scattering,and therefore comply with this assumption.The third assumption relates to the symmetry of scattering and is commonly made in both measurements and image generation,without significant loss of generality.

    The direct lightI0measured at positionr,depth z,in the direction s is given by

    whereδ()denotes the Dirac delta function.Note that I0(z,r,s)≠0 wherer=0ands=0,which is along the incident light direction.The single scattering fieldI1is then calculated by a line integral along a viewing ray denoted by

    Therefore,

    where ? represents a unit sphere,and the phase function p(|s-s′|)is normalized to 4π.

    Let us consider the observation through an integrator. The total flux Ψ1is obtained by integrating Eq.(4)over s:

    whereu=1/tandu′=|r|u.Note that the flux Ψ1depends on the distance from the axis,|r|,and is constant on a circle|r|=constant.To remove the apparent singularity from the factor 1/|r|,we integrate Ψ1over the circle and obtain:

    which statesthe importantfactthatΦ1is proportional to an integral of the phase function.By taking the derivative with respect to|r|on both sides,we obtain:

    Note that|r|/zrepresents the scattering angle.The above equation indicates that the derivative is proportional to the scattering phase function,which is normalized to 4π.Therefore,the proportionality constant can be easily calculated.As a result,we acquire the non-parametric scattering phase function.

    The flux integral expressed by Eq.(6)can be optically realized by use of a diffusing screen.Therefore,Eq.(8)suggests the following method for simple oneshot measurement of the phase function:

    1) Place a diffusing screen that works as an integrator at the boundary of the medium.

    2) Place a camera on the incident ray axis and capture the scattering field Ψ1.

    3) Calculate the circular integral(Eq.(7))from the image.

    4) Calculate its derivatives.

    4 Simulation

    In this section,we verify our proposed formulation through simulation.We simulate the scattering that occurs in the participating medium and create synthetic data.By applying the formulation to the synthetic data,we confirm whether a value proportional to the phase function can be acquired.In the formulation,we assume only forward scattering.We also verify the range over which the formulation is valid by simulating changes in the distribution of the phase function.

    4.1 Simulation setup

    Our simulation is based on the photon tracing algorithm.As shown in Fig.1,the light source emits a narrow beam entering the medium perpendicularly to the medium surface.When a photon collides with a particle in the medium,the scattering albedo determines the probability with which the photon is scattered or absorbed.When photons are scattered,the direction of propagation changes and their directions follow the phase function.For the phase function in this simulation,we use the HG function,which is represented in the form:

    whereθrepresents the scattering angle andgan average cosine,which determines the distribution of scattering.The range ofgis-1 to 1,negative values indicating back scattering and positive values indicating forward scattering;the largerg,the greater the anisotropy of scattering becomes.When a photon goes out from either the lower or upper surface,we record its direction and position.We apply the formulation given in Section 3 to the recorded photon.We then evaluate the derivative.To confirm that the derivativeisproportionaltothephasefunction,weperform fitting between the derivative and the HG function:

    whereαis a constant of proportionality. The scattering angleθis given bytan-1(r/z).The depth of the medium is 200 mm and the extinction coefficient is 1.9×10-2mm-1.We do not consider absorption and hence the scattering coefficient is equal to the extinction coefficient.

    4.2 Simulation resu lt

    Fig.2 Simulation result.Red line:HG function.Blue line:derivative of Φ1.

    The simulation result is shown in Fig.2.Wheng is equal to 0.7 or higher,the derivative of Φ1and the HG function coincide.Thus,our theory holds for forward scattering.However,whengis equal to 0.5 or less,our formulation does not work as well and the derivative of Φ1and the HG function do not match.In conclusion,when the scattering phase function corresponds to strong forward scattering,withg≥0.7,our formulation can be applied and works well.

    5 Experiments

    In this section,we describe the experimental setup that we devised based on the formulation proposed for measuring the non-parametric phase function of real media.

    5.1 Experimental setup

    Fig.3 Experimental setup.

    Figure 3 presents a schematic diagram and a photograph of the experimental setup. In the formulation,the incident ray is considered to be a narrow beam.To ensure this requirement,we used an LED projector(Optoma ML750)and two pinholes of the same size(0.4 mm).We set up the projector to direct a beam of white light through both pinholes and mounted them over a water tank ensuring that the beam was incident normal to the surface of the participating medium.A diffuse screen was placed under the tank to integrate the flux of scattered light.A DSLR camera(NIKON D5300)was placed under the screen to image the scattered light.In total,our method requires only a projector,a camera,a diffuse screen,a tank,two pinholes,and holders for each of them.Preparing the setup is very easy compared to setups used in previous studies measuring the nonparametric scattering phase function.

    We confirmed that the setup functioned correctly by testing several media(milk,apple juice,and Chardonnay wine)representing different types of characteristics(optically dense and optically sparse).To comply with the assumption that single scattering is dominant,the medium was diluted with water.The diluted medium was poured into the tank to a depth of 50 mm.

    5.2 Extracting non-parametric scattering phase function

    The work flow to obtain non-parametric scattering phase function is shown in Fig.4.Firstly,using the above setup(Fig.3),the scattering field(a)is acquired as a captured image which represents the distribution of the scattering effect.The scattering field is expressed in polar coordinates Ψ1(r,θ).Then,we calculate the circular integrals Φ1of the scattering field Ψ1(r,θ)on circles of varying radiusr.According to Eq.(8),the scattering phase function is proportional to the derivative ?Φ1/?r,which we now compute.Note that the scaling factor can be determined by assuming that the total phase function is normalized by 4π.

    Fig.4 Work flow for measuring the non-parametric phase function.Illustration of(a)observation from lower angle,(b)obtained scattering distribution,(c)Φ1,and(d)Ψ1which is proportional to the scattering function.

    5.3 Experimental results

    Experimental results are presented for different media in Fig.5(milk),Fig.6(apple juice),and Fig.7(wine).The scattered light spreads out around the incident beam.Each scattering field has a different distribution.We calculated the phase function in each case.

    In calculating the phase function,the RGB color channels of the captured image are independently used for calculating the phase function.The measured phase functions are different for each medium;the differences arising from the color for one medium are relatively small but still cannot be ignored.While all indicate strong forward scattering,the shape of the phase function is different for each medium.Indeed,we acquired different types of phase function.

    The acquired phase function has unnatural features such as the second and third peaks.Such peaks seem reasonable as the characteristics of Mie scattering;however,they could also be artifacts caused by the setup such as diffraction at the pinholes.Validations of correctness remain as future work.

    Fig.5 Experimental result for milk.(a)Scattering field captured through screen at bottom.(b)Pseudo-color of captured scattering field.(c)Measured phase function versus scattering angle.(d)Polar plot of phase function.The incident direction is from left to right and intensity is given on a log scale.

    Fig.6 Experimental result for apple juice.(a)Scattering field captured through screen at bottom.(b)Pseudo-color of captured scattering field.(c)Measured phase function versus scattering angle.(d)Polar plot of phase function.The incident direction is from left to right and intensity is given on a log scale.

    Fig.7 Experimental result for wine.(a)Scattering field captured through screen at bottom.(b)Pseudo-color of captured scattering field.(c)Measured phase function versus scattering angle.(d)Polar plot of phase function.The incident direction is from left to right and intensity is given on a log scale.

    The major limitation inherent in our method is that,as with other methods,it is difficult to measure the phase function at scattering angles≈0.In real settings,direct light is much stronger than scattered light.Therefore,the light scattered at small angles cannot be measured.

    5.4 Rendering

    Figure 8 presents rendered images of the measured media(milk,apple juice,and wine)in a glass.We used a physics-based path tracing algorithm for rendering.The image size is 1024×1024 pixels,and we traced 20,000 ray samples for each pixel.Rendering used the measured non-parametric phase function as tabulated data.The scattering and extinction coefficients were manually determined.Furthermore,because we cannot measure all directions,we filled in missing values of the phase function to allow complete rendering.

    6 Conclusions

    We have proposed a method that acquires the nonparametric phase function from a single image.Our setup for the measurement requires neither special equipment nor complicated calibration.Also,we have presented rendered images of several different media using measured phase functions.Our proposed model still has a few limitations.Because we ignored the effect of higher-order scattering,we diluted the media to decrease the scattering of light.We also assumed that the scattering distribution is concentrated in the forward direction so that the part of the phase function corresponding to back scattering need not be measured.While we can now measure the phase functions of a wide range of media,in rendering the image,it is necessary nevertheless to measure other scattering characteristics such as the coefficients of extinction and scattering. Our scattering model presumes these coefficients are known,to allow rendering of the measured materials.The ultimate objective,which remains as an open problem,is to measure the scattering properties of a wide range of media and to summarize them all in a single data set.

    Fig.8 Rendered images using a physics-based path tracing algorithm.Scattering parameters were manually determined.Left:milk,σt=(0.21,0.21,0.21),σs=(0.16,0.15,0.15).Center:apple juice,σt=(0.016,0.027,0.015),σs=(0.013,0.015,0.041).Right:wine,σt=(0.015,0.027,0.076),σs=(0.015,0.021,0.041).Units:mm-1.Gamma curves and exposures of all images were adjusted for clarity.

    Appendix A Derivation of formulae

    For completeness of this paper,we present in detail the derivation of formulae given in Section 3.The single scattering fieldI1,Eq.(4),is calculated by a line integral along a viewing ray:

    The total flux Ψ1,Eq.(6),is obtained by integrating Eq.(4)over s:

    Acknowledgements

    This work was partly supported by JSPS KAKENHI JP15K16027,JP26700013,and JP15H005918.

    国产成人欧美在线观看 | 久久精品91无色码中文字幕| 久久久精品国产亚洲av高清涩受| 天堂8中文在线网| 精品国产国语对白av| 女同久久另类99精品国产91| 日韩欧美一区视频在线观看| 18禁美女被吸乳视频| 国产精品美女特级片免费视频播放器 | 国产精品久久电影中文字幕 | 一级a爱视频在线免费观看| 亚洲伊人色综图| 一二三四社区在线视频社区8| 天天操日日干夜夜撸| 亚洲免费av在线视频| 免费一级毛片在线播放高清视频 | 国产一区二区在线观看av| 精品少妇久久久久久888优播| 黑人巨大精品欧美一区二区mp4| 天天影视国产精品| 欧美在线一区亚洲| 欧美国产精品一级二级三级| 在线观看66精品国产| 日韩视频在线欧美| 久久人妻熟女aⅴ| 老司机午夜十八禁免费视频| 亚洲国产欧美网| 久久久久久久大尺度免费视频| 国产精品二区激情视频| 国产色视频综合| 国产精品久久电影中文字幕 | 日本黄色视频三级网站网址 | 丝袜人妻中文字幕| 亚洲情色 制服丝袜| 亚洲精品一卡2卡三卡4卡5卡| 巨乳人妻的诱惑在线观看| 亚洲性夜色夜夜综合| 交换朋友夫妻互换小说| 丝袜人妻中文字幕| 日韩大码丰满熟妇| 国产熟女午夜一区二区三区| 精品一区二区三区四区五区乱码| 欧美日韩亚洲国产一区二区在线观看 | 日韩熟女老妇一区二区性免费视频| 亚洲精品中文字幕一二三四区 | 亚洲精品国产精品久久久不卡| 欧美黄色片欧美黄色片| 亚洲久久久国产精品| 久久精品人人爽人人爽视色| 国产精品一区二区在线观看99| 一个人免费在线观看的高清视频| av网站免费在线观看视频| 国产成人影院久久av| 99热国产这里只有精品6| 欧美成人免费av一区二区三区 | 操美女的视频在线观看| 欧美一级毛片孕妇| 我的亚洲天堂| 午夜91福利影院| 亚洲欧美激情在线| 美女视频免费永久观看网站| 久久国产精品男人的天堂亚洲| 国产精品欧美亚洲77777| 免费日韩欧美在线观看| 美女视频免费永久观看网站| 99精国产麻豆久久婷婷| 大片电影免费在线观看免费| 黑人巨大精品欧美一区二区mp4| 久久天堂一区二区三区四区| 欧美精品一区二区免费开放| 制服人妻中文乱码| 国产视频一区二区在线看| 考比视频在线观看| tocl精华| 两个人看的免费小视频| 午夜精品国产一区二区电影| 一个人免费在线观看的高清视频| 国产亚洲欧美精品永久| 777久久人妻少妇嫩草av网站| 久久精品熟女亚洲av麻豆精品| 人成视频在线观看免费观看| 欧美大码av| 日韩一区二区三区影片| 19禁男女啪啪无遮挡网站| 国产欧美日韩综合在线一区二区| 欧美人与性动交α欧美软件| 80岁老熟妇乱子伦牲交| 这个男人来自地球电影免费观看| 99精品在免费线老司机午夜| 亚洲美女黄片视频| 麻豆av在线久日| 伦理电影免费视频| 久久久久久久国产电影| 国产亚洲精品久久久久5区| 中文字幕色久视频| 麻豆乱淫一区二区| 国产一区二区激情短视频| 日本一区二区免费在线视频| 夜夜骑夜夜射夜夜干| 国产成人系列免费观看| 超色免费av| 色视频在线一区二区三区| 丝袜在线中文字幕| 久久中文字幕一级| 最新美女视频免费是黄的| 妹子高潮喷水视频| 精品国产一区二区三区久久久樱花| 99久久精品国产亚洲精品| 久久青草综合色| 色尼玛亚洲综合影院| 波多野结衣一区麻豆| 亚洲国产av影院在线观看| 午夜免费鲁丝| 黑人操中国人逼视频| 日本wwww免费看| 脱女人内裤的视频| 激情视频va一区二区三区| 国产一卡二卡三卡精品| 久久久久久久精品吃奶| 中文字幕人妻熟女乱码| 最新美女视频免费是黄的| 99精品在免费线老司机午夜| 麻豆成人av在线观看| 老熟妇仑乱视频hdxx| 亚洲久久久国产精品| 国产成人精品无人区| 色婷婷av一区二区三区视频| 日日夜夜操网爽| 五月天丁香电影| 男女高潮啪啪啪动态图| av不卡在线播放| 色在线成人网| 欧美日本中文国产一区发布| 久久天躁狠狠躁夜夜2o2o| 欧美一级毛片孕妇| 成人永久免费在线观看视频 | 国内毛片毛片毛片毛片毛片| 香蕉国产在线看| 国产日韩一区二区三区精品不卡| 一级a爱视频在线免费观看| 午夜福利欧美成人| 国产午夜精品久久久久久| 一边摸一边抽搐一进一小说 | 波多野结衣一区麻豆| 欧美日韩福利视频一区二区| 操美女的视频在线观看| 久久热在线av| 热re99久久国产66热| 国产精品国产高清国产av | 黄网站色视频无遮挡免费观看| 99re在线观看精品视频| 亚洲av日韩精品久久久久久密| 久久人妻熟女aⅴ| 香蕉国产在线看| 色尼玛亚洲综合影院| 美女福利国产在线| 一二三四在线观看免费中文在| 国产无遮挡羞羞视频在线观看| 午夜福利视频在线观看免费| 国产欧美日韩一区二区三| 在线永久观看黄色视频| 久久久国产精品麻豆| 精品福利永久在线观看| 色精品久久人妻99蜜桃| 纵有疾风起免费观看全集完整版| 亚洲精品自拍成人| 国产av又大| 久久中文字幕一级| 狠狠婷婷综合久久久久久88av| 51午夜福利影视在线观看| 51午夜福利影视在线观看| 久久99一区二区三区| 久久久久久久久久久久大奶| 天天操日日干夜夜撸| av福利片在线| 视频区图区小说| 自拍欧美九色日韩亚洲蝌蚪91| 啦啦啦中文免费视频观看日本| 麻豆乱淫一区二区| 欧美黄色片欧美黄色片| 久久中文看片网| 亚洲av电影在线进入| 电影成人av| 一本—道久久a久久精品蜜桃钙片| 亚洲 欧美一区二区三区| 欧美性长视频在线观看| 涩涩av久久男人的天堂| 午夜福利免费观看在线| 免费不卡黄色视频| 国产99久久九九免费精品| 99国产精品99久久久久| 欧美日韩精品网址| 免费黄频网站在线观看国产| 午夜福利在线免费观看网站| 午夜精品久久久久久毛片777| 久久热在线av| 国产日韩欧美亚洲二区| 久久精品91无色码中文字幕| 精品久久久精品久久久| 天堂动漫精品| 国产精品久久电影中文字幕 | 美女视频免费永久观看网站| 午夜福利在线观看吧| 高潮久久久久久久久久久不卡| 亚洲精品成人av观看孕妇| 精品一品国产午夜福利视频| 亚洲av日韩精品久久久久久密| 国产熟女午夜一区二区三区| 国产精品免费大片| 国产一区二区在线观看av| 一级,二级,三级黄色视频| 在线播放国产精品三级| 在线观看免费视频日本深夜| a级片在线免费高清观看视频| 欧美成狂野欧美在线观看| 国产精品电影一区二区三区 | 建设人人有责人人尽责人人享有的| 精品乱码久久久久久99久播| 69精品国产乱码久久久| 精品一区二区三区av网在线观看 | 一本久久精品| 女人爽到高潮嗷嗷叫在线视频| 久久久国产欧美日韩av| 国产成人精品无人区| 久久久国产一区二区| 美国免费a级毛片| 97在线人人人人妻| 久久久久久久精品吃奶| svipshipincom国产片| 侵犯人妻中文字幕一二三四区| 亚洲精品美女久久久久99蜜臀| 日本一区二区免费在线视频| 亚洲精品久久午夜乱码| 亚洲色图av天堂| 在线观看免费视频网站a站| 亚洲欧美一区二区三区黑人| 桃花免费在线播放| 超碰成人久久| 黄片小视频在线播放| 最黄视频免费看| 在线观看舔阴道视频| 日韩视频在线欧美| 国产精品偷伦视频观看了| 丰满迷人的少妇在线观看| 18禁观看日本| 精品国产乱码久久久久久男人| 亚洲第一欧美日韩一区二区三区 | 久久精品国产亚洲av香蕉五月 | 成人黄色视频免费在线看| 中文字幕高清在线视频| 国产在线一区二区三区精| 大陆偷拍与自拍| 在线av久久热| 老司机深夜福利视频在线观看| 久久亚洲精品不卡| 久久久久国内视频| 美女扒开内裤让男人捅视频| www日本在线高清视频| 国产精品久久久久久精品电影小说| 久久精品aⅴ一区二区三区四区| 欧美精品一区二区大全| 最新在线观看一区二区三区| 国产高清videossex| 侵犯人妻中文字幕一二三四区| 蜜桃在线观看..| 久久精品成人免费网站| 欧美精品av麻豆av| 精品国产亚洲在线| 一二三四社区在线视频社区8| 人人妻人人澡人人看| 久久精品国产综合久久久| 啦啦啦免费观看视频1| 免费看十八禁软件| 免费在线观看日本一区| 丝瓜视频免费看黄片| 午夜福利在线免费观看网站| www.精华液| 成人特级黄色片久久久久久久 | 日韩大码丰满熟妇| 亚洲情色 制服丝袜| 麻豆成人av在线观看| 热99久久久久精品小说推荐| 亚洲熟女精品中文字幕| 色综合婷婷激情| 精品视频人人做人人爽| 亚洲五月婷婷丁香| 国产1区2区3区精品| 亚洲伊人色综图| 久久亚洲真实| 国产av国产精品国产| 国产xxxxx性猛交| 久久性视频一级片| 高清欧美精品videossex| 一二三四社区在线视频社区8| 精品国产一区二区久久| 夜夜骑夜夜射夜夜干| 国产精品九九99| 欧美久久黑人一区二区| 欧美av亚洲av综合av国产av| 国产97色在线日韩免费| 国产亚洲精品第一综合不卡| 免费不卡黄色视频| 老熟女久久久| 欧美日韩一级在线毛片| 国产高清视频在线播放一区| 久久香蕉激情| 美女视频免费永久观看网站| 亚洲色图 男人天堂 中文字幕| 美女国产高潮福利片在线看| 一夜夜www| 久久精品国产综合久久久| 欧美激情极品国产一区二区三区| 高潮久久久久久久久久久不卡| 三上悠亚av全集在线观看| 免费看十八禁软件| 手机成人av网站| 日韩视频一区二区在线观看| 黄色毛片三级朝国网站| 女性生殖器流出的白浆| 日日夜夜操网爽| 99精品欧美一区二区三区四区| 一级片'在线观看视频| 999精品在线视频| 叶爱在线成人免费视频播放| 丰满人妻熟妇乱又伦精品不卡| 老熟妇乱子伦视频在线观看| 欧美黑人欧美精品刺激| 亚洲精品美女久久久久99蜜臀| 国产av又大| 国产成人欧美在线观看 | 女性被躁到高潮视频| 亚洲中文av在线| 亚洲国产欧美在线一区| 国产一区二区三区视频了| 51午夜福利影视在线观看| 一级片'在线观看视频| 国产欧美日韩一区二区三区在线| 纵有疾风起免费观看全集完整版| 中文字幕高清在线视频| 免费在线观看完整版高清| 人妻久久中文字幕网| 亚洲国产欧美日韩在线播放| 狠狠狠狠99中文字幕| 久久国产亚洲av麻豆专区| 国产精品国产av在线观看| 777米奇影视久久| 不卡一级毛片| 少妇粗大呻吟视频| 丝袜美腿诱惑在线| cao死你这个sao货| av又黄又爽大尺度在线免费看| 精品午夜福利视频在线观看一区 | 免费久久久久久久精品成人欧美视频| 成人精品一区二区免费| 嫩草影视91久久| 欧美日韩亚洲综合一区二区三区_| 18禁裸乳无遮挡动漫免费视频| 一级毛片精品| 亚洲成人免费av在线播放| 1024视频免费在线观看| 一区二区三区国产精品乱码| videos熟女内射| 嫁个100分男人电影在线观看| 天天躁日日躁夜夜躁夜夜| 日韩精品免费视频一区二区三区| 汤姆久久久久久久影院中文字幕| 久久99热这里只频精品6学生| 国产精品麻豆人妻色哟哟久久| 如日韩欧美国产精品一区二区三区| 在线观看舔阴道视频| 日韩欧美三级三区| 成年女人毛片免费观看观看9 | 午夜激情av网站| 色94色欧美一区二区| 在线播放国产精品三级| 亚洲伊人色综图| 大香蕉久久成人网| 女人爽到高潮嗷嗷叫在线视频| 午夜福利,免费看| 日韩中文字幕视频在线看片| 老司机靠b影院| 久久精品91无色码中文字幕| 国产在视频线精品| 国产欧美日韩精品亚洲av| 欧美另类亚洲清纯唯美| 纯流量卡能插随身wifi吗| 又大又爽又粗| 五月天丁香电影| 免费观看av网站的网址| 日日摸夜夜添夜夜添小说| 国产精品免费一区二区三区在线 | 三级毛片av免费| 18禁观看日本| 国产成人免费观看mmmm| 欧美在线黄色| 国产成人啪精品午夜网站| 两个人免费观看高清视频| 男女高潮啪啪啪动态图| 99精品欧美一区二区三区四区| 黄色a级毛片大全视频| 日本黄色日本黄色录像| 成人精品一区二区免费| 少妇裸体淫交视频免费看高清 | 亚洲精品乱久久久久久| 美女午夜性视频免费| www.精华液| 久久久欧美国产精品| 欧美大码av| 亚洲,欧美精品.| 亚洲欧美日韩高清在线视频 | 中文字幕精品免费在线观看视频| 天天操日日干夜夜撸| 亚洲欧美精品综合一区二区三区| 久久九九热精品免费| 亚洲三区欧美一区| 在线观看免费午夜福利视频| 久久精品国产a三级三级三级| 最新在线观看一区二区三区| 成年动漫av网址| 黄色丝袜av网址大全| 久久av网站| 怎么达到女性高潮| 免费高清在线观看日韩| 99国产精品一区二区三区| 精品福利永久在线观看| 激情视频va一区二区三区| 99精品久久久久人妻精品| 丝瓜视频免费看黄片| 成人国语在线视频| 两个人免费观看高清视频| 国产日韩一区二区三区精品不卡| 国产精品九九99| 亚洲国产欧美网| 性色av乱码一区二区三区2| 女性被躁到高潮视频| 一级,二级,三级黄色视频| 亚洲精品一卡2卡三卡4卡5卡| h视频一区二区三区| 三上悠亚av全集在线观看| 在线观看免费日韩欧美大片| 黑人巨大精品欧美一区二区mp4| 交换朋友夫妻互换小说| 国产精品熟女久久久久浪| 精品国产一区二区三区久久久樱花| 亚洲精品久久午夜乱码| 天堂动漫精品| 淫妇啪啪啪对白视频| 精品视频人人做人人爽| 老司机福利观看| 国产亚洲精品第一综合不卡| 人人妻人人澡人人看| 超碰97精品在线观看| 国产成人精品无人区| 成人永久免费在线观看视频 | 少妇的丰满在线观看| 纯流量卡能插随身wifi吗| 国产精品久久久久久人妻精品电影 | 国产高清videossex| 国产一区有黄有色的免费视频| 99久久精品国产亚洲精品| 好男人电影高清在线观看| 精品国产乱码久久久久久小说| 亚洲精品国产区一区二| 久久九九热精品免费| 成人特级黄色片久久久久久久 | 国产精品九九99| av又黄又爽大尺度在线免费看| 欧美精品高潮呻吟av久久| 亚洲第一欧美日韩一区二区三区 | 高清黄色对白视频在线免费看| 精品久久久精品久久久| 久久国产精品大桥未久av| 丝袜美足系列| 久久久国产精品麻豆| 一级毛片精品| 99在线人妻在线中文字幕 | 两人在一起打扑克的视频| 一区二区三区乱码不卡18| 女人久久www免费人成看片| 一级毛片电影观看| h视频一区二区三区| 狂野欧美激情性xxxx| 乱人伦中国视频| 久9热在线精品视频| 中文字幕制服av| 亚洲国产av新网站| 十八禁高潮呻吟视频| 国产97色在线日韩免费| 搡老岳熟女国产| 亚洲欧洲日产国产| 久久天堂一区二区三区四区| 国产高清国产精品国产三级| 一区二区日韩欧美中文字幕| 国产精品 欧美亚洲| 久热这里只有精品99| 伦理电影免费视频| 亚洲,欧美精品.| 黄色怎么调成土黄色| 国产三级黄色录像| 黄色a级毛片大全视频| 99re6热这里在线精品视频| 国产高清国产精品国产三级| 久热这里只有精品99| 亚洲综合色网址| 久久狼人影院| 法律面前人人平等表现在哪些方面| 久久久精品免费免费高清| 大码成人一级视频| 嫩草影视91久久| 亚洲熟女精品中文字幕| 国产精品1区2区在线观看. | 亚洲av片天天在线观看| 欧美日本中文国产一区发布| av网站在线播放免费| 巨乳人妻的诱惑在线观看| a级毛片在线看网站| 在线观看免费日韩欧美大片| 一级黄色大片毛片| 亚洲av国产av综合av卡| 麻豆成人av在线观看| 亚洲精品自拍成人| 亚洲午夜精品一区,二区,三区| 狠狠婷婷综合久久久久久88av| 久久久久网色| 十八禁人妻一区二区| 黄色 视频免费看| 色婷婷av一区二区三区视频| 亚洲欧美色中文字幕在线| 自拍欧美九色日韩亚洲蝌蚪91| 人妻 亚洲 视频| 国产精品一区二区在线不卡| 国产欧美日韩精品亚洲av| 日日摸夜夜添夜夜添小说| 大陆偷拍与自拍| 欧美性长视频在线观看| 欧美精品人与动牲交sv欧美| 久久久精品区二区三区| 午夜精品久久久久久毛片777| 纯流量卡能插随身wifi吗| 日本wwww免费看| 人人妻,人人澡人人爽秒播| 三级毛片av免费| 国产日韩欧美亚洲二区| 国产单亲对白刺激| 巨乳人妻的诱惑在线观看| 少妇的丰满在线观看| 国产在线观看jvid| 成年女人毛片免费观看观看9 | 久久久精品94久久精品| 久久精品国产a三级三级三级| 汤姆久久久久久久影院中文字幕| 国产视频一区二区在线看| 国产成人精品久久二区二区91| 久久青草综合色| 美女高潮到喷水免费观看| 50天的宝宝边吃奶边哭怎么回事| 黑人巨大精品欧美一区二区mp4| 青草久久国产| 亚洲全国av大片| 欧美黄色淫秽网站| 人人妻,人人澡人人爽秒播| 久久久久国产一级毛片高清牌| 日韩精品免费视频一区二区三区| 男女高潮啪啪啪动态图| 深夜精品福利| 美女福利国产在线| 99精国产麻豆久久婷婷| 国产在视频线精品| 国产成人精品久久二区二区91| 久热爱精品视频在线9| 欧美黑人欧美精品刺激| 国产一区二区在线观看av| 伊人久久大香线蕉亚洲五| 桃花免费在线播放| 男女无遮挡免费网站观看| 久久午夜综合久久蜜桃| 中文字幕人妻丝袜一区二区| 黄色怎么调成土黄色| 欧美激情极品国产一区二区三区| 国产亚洲精品一区二区www | 在线天堂中文资源库| 在线观看免费高清a一片| 国产成人精品在线电影| 精品久久久精品久久久| 精品福利永久在线观看| 蜜桃国产av成人99| 久久这里只有精品19| av欧美777| 精品一区二区三区av网在线观看 | 99久久国产精品久久久| 欧美av亚洲av综合av国产av| 亚洲欧洲精品一区二区精品久久久| 欧美激情极品国产一区二区三区| 亚洲欧美一区二区三区久久| 亚洲一码二码三码区别大吗| 亚洲三区欧美一区| 精品国产一区二区久久| 国产不卡一卡二| 我的亚洲天堂| 露出奶头的视频| 欧美激情久久久久久爽电影 | 亚洲伊人久久精品综合| 亚洲国产看品久久| 久久国产精品大桥未久av| 18禁裸乳无遮挡动漫免费视频| 国产真人三级小视频在线观看| 亚洲精品国产色婷婷电影| 19禁男女啪啪无遮挡网站| 一本久久精品| 色精品久久人妻99蜜桃| 中文字幕制服av| 女人精品久久久久毛片| 考比视频在线观看| 午夜福利视频精品| 高清黄色对白视频在线免费看|