• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detection of illegal dyes in foods using a polyethersulfone/multi-walled carbon nanotubes composite membrane as a cleanup method

    2018-03-07 11:40:05HEYahuiWANGJing
    Journal of Integrative Agriculture 2018年3期

    HE Ya-hui, WANG Jing

    1 School of Food Science, Xinyang College of Agriculture and Forestry, Xinyang 464000, P.R.China

    2 Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China

    1.Introduction

    Membrane technology has been widely used in separation because it is simple and effective (Rowe et al.1988).Recently many types of composite membranes were made to take advantage of variation in mechanical properties and antifouling performance; these membranes are used in many different fields (Gestel et al.2002; Yang et al.2011).Up to now, there has been no report on composite membranes applied in detecting illegal dyes in food matrixes.

    Food colorants are typically used to enhance the organoleptic properties of food.Industrial dyes could potentially be used as food additives by unscrupulous or ignorant producers because of their low cost and strong coloration ability.However, industrial dyes are potential mutagens and have been linked to an increased risk of cancers in humans, and because of that they are prohibited from use in food (Augustine et al.1980; Lv 2015; Uematsu et al.2017).Neve rtheless, industrial dyes have been found in various foods in many countries (Peiperl et al.1995).Detection methods to identify industrial dyes in food need to be developed and used to maintain food safety.

    In order to meet the requirements of the market, a number of analyses are required.At present, there are a number of cleanup techniques for dyes detected in food: microwave pretreatment (Vas 2004); supercritical fluid extraction (Richter et al.1996); stir bar sorptive extraction (Kawaguchi et al.2006); pressurized liquid extraction (Gonzalez et al.2005);and matrix solid-phase dispersion (Beltran et al.2000).The methods used to detect industrial dyes usually cannot detect multiple dyes at the same time; in order to detect multiple dyes, a large number of organic solvents are required, and the process takes a long time.Therefore, the development of simple, fast, and effective analysis and detection methods for industrial dyes is very valuable.

    Carbon nanotubes (CNTs) were first described by Iijiama (1991).There are two types of CNTs, according to the principle of carbon atom layers: single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) (Iijima 1991).CNTs are reported to have special chemical and physical characteristics(Zhou et al.2006; Wang et al.2007; El-Sheikh et al.2008), including an excellent adsorption capacity due to their large surface area and unique structure.CNTs have been used as sorbents in many fields: CNTs were used in the solid phase extraction (SPE) method to extract pesticides from water samples (Du et al.2008; Ravelo-Pérez et al.2008); a new method using MWCNTs as sorbents for SPE in the determination of benzodiazepine residues in meat was developed by Zhao et al.(2015) and a new analytical method to detect organophosphate pesticides in garlic using MWCNTs in SPE was developed by Zhao et al.(2012).Polyethersulfone (PES) has been widely used as a material for membrane substrates in microfiltration, ultrafiltration, and nanofiltration.PES ultrafiltration membranes can be used in separation, concentration,and purification of food.However, despite these uses of MWCNTs and PES, there are no reports of using PES/MWCNTs composite membranes as an effective detection and cleanup method for illegal dyes in foods.In this paper, the use of PES/MWCNTs composite membranes in detecting illegal dyes in food matrixes is shown to be effective, simple, and rapid.

    2.Materials and methods

    2.1.Materials

    MWCNTs nanoparticles of a quantum size 8-12 nm were obtained with the help of Tianjing Agela Co., Ltd.(China).Dimethylformamide (DMF) and polyethylene glycol (PEG)(with molecular weights of 400), and PES were purchased from Shanghai Chemical Regents Company (Shanghai,China).A total of 15 industrial dye standards were purchased from the company of Dr.Ehrenstorfer GmbH(Germany).The molecular and structural formulas for all standards are shown in

    AppendixA.

    2.2.Preparation of the composite membrane

    The phase-inversion method was used to prepare the PES/MWCNTs composite membrane.The membrane forming solution consisted of DMF (86% weight percentage), PEG(2% weight percentage), and PES (12% weight percentage),and which were dissolved at 65°C for 3 h with constant stirring.MWCNTs were added to the solution after the uniform polymer solution was formed with strong stirring for 2 h.The ratio (w/w) of MWCNTs/PES was 0.3.To remove air bubbles, the solution was kept in the dark for 12 h.Then the membrane was formed by casting the solution using a 100-μm casting knife onto a polyester non-woven fabric.The composite membrane was immersed in a (15±1)°C deionized water coagulation bath after evaporation at (20±1)°C and(60±5)% relative humidity for 1 min.

    2.3.Characterization of the membrane

    Characterization of PES/MWCNTs composite membrane and MWCNTsThe surface morphology and internal structure of the membrane were observed using a scanning electron microscope (TSM-6700F, TESCAN, Germany).The morphologies of the MWCNTs before and after adsorption of industrial dyes were observed with the TSM-6700F.To observe MWCNTs after adsorption of industrial dyes, a rhodamine B standard (10 μg L-1) was added into a 5-mL Teflon centrifuge tube with 5 mg MWCNTs.The mixture was thoroughly vortexed and then centrifuged with a microcentrifuge at 10 000 r min-1for 3 min.Then the MWCNTs were removed for observation with the TSM-6700F.

    Molecular weight (MW) cut-off of the membraneDifferent molecular weight proteins were used to determine the molecular weight cut-off of the composite membrane.The proteins used were: lysozyme (MW=14.7 kDa); chymotrypsin (MW=24.5 kDa); α-amylase (MW=45 kDa); and bovine serum albumin (MW=67 kDa).The protein solution was ultrafiltrated at 20°C and 0.15 MPa.The samples were removed from the feed side and permeate flow side of the composite membrane and were measured with a UV-spectrophotometer (UV-1600) at a wavelength of 280 nm when the process was in a steady state.

    The rejection rate of proteins through the membrane was calculated according to eq.(1):

    Where, R is defined as the rejection rate, Cperis the concentration of the permeation, and Cfeedis the concentration of the feed.

    Pure water fluxMembrane performance was tested using a cross-flow ultrafiltration unit as a flat plate module with an effective membrane area of 2.01×10-2m2.The water flux was calculated as follows:

    Where, J is the membrane flux (L m-2h-1), V is the volume permeated (L), A is the area of the membrane (m2), and t is the time (h).

    2.4.Sample extraction and cleanup

    Blank (free of industrial dye) millet and corn flour were obtained from a local supermarket.A total of 10 g of experimental samples and 10 mL of acetonitrile were added to a 50-mL Teflon centrifuge tube and vortexed vigorously for 1 min.Then, NaCl (1 g) and MgSO4(4 g) were added into the tube and the mixture was vortexed vigorously for 1 min.Finally, the tube was placed into an ice-water bath immediately after vortexing for 5 min, and then centrifuged for 5 min at 3 800 r min-1.

    A diagram of the adsorption and elution procedure for industrial dyes in food with the PES/MWCNTs composite membrane is shown in Fig.1.A total of 5 mL of the clarified supernatant was introduced into the PES/MWCNTs composite membrane after centrifugation.The supernatant was filtered by the PES/MWCNTs composite membrane,as shown in the filtration and adsorption step in Fig.1.In this step, the industrial dye was adsorbed onto the composite membrane while other impurities passed through the membrane due to the adsorption of dyes by MWCNTs in the membrane.Then the PES/MWCNTs composite membrane was eluted with 5 mL acetone, acetonitrile,methanol and n-hexane in turn, as shown in the elution step in Fig.1.In this step, the industrial dyes were eluted from the composite membrane.Finally, the eluent was filtered by a 0.22-μm membrane and placed into a liquid chromatograph (LC) vial for chromatographic analysis.

    2.5.Apparatus and conditions

    Extracts were analyzed using a liquid chromatograph(Waters LC ACQUITY UPLC, Waters, USA) with a mass spectrometric detector (Waters Xevo TQ-S, Waters, USA)in selected ion monitoring (SIM) mode.

    Chromatographic separation was carried out on a Waters Quattro Premier XE Mass Spectrometer equipped with a C18 column (2.1 mm×50 cm, 1.7 mm; Waters, USA).Preliminary experiments were carried out to systematically change the strength of the mobile phase and fragmentor voltage in full scan mode using compound standard solutions to find the retention times and the best resolution in the analytic peaks.

    Based on the ion suppression produced, no ion-pairing reagent was introduced into the mobile phase, and formic acid was employed in reversed-phase chromatography.CH3CN/H2O (0.05% HCOOH) 10/90 (v/v) was used as the mobile phase.Gradient elution with aqueous acetonitrile-formic acid was used as the mobile phase to get effective and sensitive separation in liquid chromatography.

    Fig.1 Diagram of sample cleanup process.1, constant temperature trough; 2, pump; 3, flowmeter; 4, throttle; 5, pressure gauge; 6, waste liquid; 7, eluent; 8, solution for analysis.

    A tandem mass detector was used for analysis.The mass spectrometric parameters were operated using full scan and daughter scan for the compounds.The M+ion was chosen as the precursor ion for all analytes.The ion mass spectra of the industrial dyes were obtained using electrospray ionization.The collision energy was optimized for two selective ion transitions for every industrial dye.The most sensitive transition of the multiple reaction monitoring(MRM) transitions was selected for quantification analysis.

    2.6.Method performances

    Millet and corn flour were selected for validation.The accuracy, precision, limit of quantification (LOQ), and limit of determination (LOD) of the method were determined during validation of the analytical method.The accuracy and precision were evaluated by recovery and reproducibility experiments that were carried out for each sample of millet and corn flour in five replicates each at two fortification levels(0.01 and 0.10 mg kg-1).The LOD was determined as the concentration of analyte giving a signal to noise ratio (S/N)of 3 for the target ion.And the LOQ was determined as the concentration of analyte giving S/N of 10 for the target ion.

    3.Results

    3.1.Characterization of the composite membrane

    Microstructure of the PES/MWCNTs composite membrane and MWCNTsFig.2 shows scanning electron microscopy (SEM) photographs of the surface and cross-section structure of the MWCNTs/PES composite membrane.Most particles of MWCNTs were distributed uniformly in the surface of the membrane.The cross-section of the membrane showed typical asymmetric morphology with finger-like pores.

    Fig.3 shows SEM photographs of the MWCNTs before and after adsorption of illegal industrial dyes (rhodamine B).Fig.3-B shows that rhodamine B was adsorbed on MWCNTs.The strong adsorption of MWCNTs, which have a layered hollow structure, for illegal dyes may be caused by the benzene ring structures of the dyes.

    Molecular weight cut-offThe molecular weight cut-off of the composite membrane is shown in Fig.4.The cut-off is approximately 20 000, so that carbohydrates, proteins, and other ingredients with a molecular weight greater than 20 000 in food samples will be rejected by the composite membrane.Many sulfur-containing compounds in foods that may cause serious interferences with the matrix during detection will thus be removed by using appropriate molecular weight cut-offs in the membrane.

    Water flux and solute rejectionThe membrane was previously filtered by deionized water for 3 h at 50 kPa.The test was operated at 100 kPa and (20±1)°C.The results of water flux are presented in Fig.5, showing that water flux of the composite membrane tends to be stable at about 80 min.The water flux is about 90 L m-2h-1.

    Fig.2 Scanning electron microscopy (SEM) micrographs of the surface (A) and cross-section (B) structures of the polyethersulfone(PES)/multi-walled carbon nanotubes (MWCNTs) composite membrane.

    3.2.Liquid chromatography-tandem mass spectrometry

    Fig.6 shows LC-MS/MS chromatograms of the 15 industrial dyes.The ionization of 15 industrial dyes in the positive mode electrospray ion source was examined.The previous experiment was carried out to optimize the conditions for interfacing the LC system to the MS.The optimized method of LC-MS/MS was highly selective for monitoring specific MRM and was effective in reducing the risk of false positives.The 15 industrial dyes were separated completely by LC-MS/MS.

    3.3.Validation of the cleanup method

    Recovery and precisionAccuracy was evaluated in terms of recovery.This study was performed using five consecutive extractions (n=5) of spiked matrices at a concentration of 0.1 mg kg-1.The recovery and repeatability data for the 15 industrial dyes in the matrix of millet and corn flour are shown in Table 1.The recoveries of all industrial dyes were in the range of 73-117% (between 75-116% for millet,and between 73-117% for corn flour).Relative standard deviation (RSD) values were all below 15%.

    Fig.3 Scanning electron microscopy (SEM) micrographs of the multi-walled carbon nanotubes (MWCNTs) before (A) and after(B) the adsorption of industrial dye (Rhodamine B).

    Fig.4 Observed retention of the composite membrane.R,rejection rate.MW, molecular weight.

    Fig.5 Water flux of the composite membrane.

    Fig.6 LC-MS/MS chromatograms of the 15 industry dyes.MRM, multiple reaction monitor.

    LOD and LOQThe LOD and LOQ were determined as the concentration of analyte giving a ratio of S/N of 3 and 10 for the target ion, respectively.The LOD and LOQ values for the 15 industrial dyes in millet and corn flour are shown in Table 2.LOD ranged from 0.01 to 1.57 μg kg-1for millet and 0.01 to 1.01 μg kg-1for corn flour.LOQ ranged from 0.03 to 4.82 μg kg-1for millet and 0.03 to 3.15 μg kg-1for corn flour.

    4.Discussion

    The use of PES/MWCNTs composite ultrafiltration membrane as a cleanup method led to satisfactory precision,accuracy, selectivity, and recoveries in cleaning up illegal,industrial dyes in food.The following steps occur when using the PES/MWCNTs composite membrane as a cleanup method in the detection of illegal dyes in foods:

    First, because there are a variety of pore sizes in the membrane, the composite membrane has the ability to separate and filter certain compounds.When the food matrix passes through the PES/MWCNTs composite membrane,some compounds in foods pass through the membrane,and some are preserved by the membrane.This allows for removal of a large amount of sulfur-containing compounds in foods that may interfere with the matrix in the detection of illegal dyes; see the filtration and adsorption step in Fig.1.

    Second, MWCNTs in the PES/MWCNTs composite membrane have a strong selective adsorption effect on the 15 industrial dyes we tested.When the food matrix passes through the composite membrane, the industrial dyes in the food are adsorbed by the composite membrane while other components are removed by the membrane, as shown in filtration and adsorption step in Fig.1.

    Third, the membrane was eluted with acetone, acetonitrile, methanol, and n-hexane in turn.A total of 15 kinds of industrial dyes are eluted from the composite membrane by the eluents with different polarities, as shown in the elution step in Fig.1.

    Finally, the eluent is detected by the liquid chromatograph with the massspectrometric detector.

    5.Conclusion

    The PES/MWCNTs composite ultrafiltration membrane was made using the phase-inversion method and represented a new method for the analysis of illegal and industrial dyes in food.A total of 15 industrial dyes in millet and corn flourwere detected using the PES/MWCNTs composite ultrafiltration membrane filtration cleanup method for the adsorption of industrial dyes by MWCNTs.This procedure had satisfactory precision, accuracy, and selectivity, with recoveries ranging from 75-110% and RSD values below 15%.The procedure with the composite membrane used as the cleanup method takes 30 min or less, which is considerably shorter than traditional methods that take around 6-8 h.This cleanup method was proven to be rapid and effective.In conclusion,the PES/MWCNTs composite ultrafiltration membrane is a sensitive method of analysis for industrial dyes in food at trace levels for sample cleanup.

    Table 2 Calibration curve coefficients (R2), limits of determination (LOD) (μg kg-1), and limits of quantification (LOQ) (μg kg-1) for 15 industrial dye standards

    Acknowledgements

    The study was supported by the Fund of Key Projects of Higher Education in Henan Province, China (17A550018)and the Fund of Henan Province Science and Technology Research Project, China (172102310314).

    Appendixassociated with this paper can be available on http://www.ChinaAgriSci.com/V2/En/appendix.htm

    Augustine G J, Levitan H.1980.Neurotransmitter release from a vertebrate neuromuscular synapse affected by a food dye.Science, 207, 1489-1490.

    Beltran J, López F J, Hernández F.2000.Solid-phase microextraction in pesticide residue analysis.Journal of Chromatography (A), 885, 389-404.

    Du D, Wang M, Zhang J, Cai J, Tu H, Zhang A.2008.Application of multiwalled carbon nanotubes for solid-phase extraction of organophosphate pesticide.Electrochemistry Communications, 10, 85-89.

    El-Sheikh A H, Sweileh J A, Al-Degs Y S, Insisi A A, Al-Rabady N.2008.Critical evaluation and comparison of enrichment efficiency of multi-walled carbon nanotubes, C18 silica and activated carbon towards some pesticides from environmental waters.Talanta, 74, 1675-1680.

    Gestel T V, Vandecasteele C, Buekenhoudt A.2002.Alumina and titania multilayer membranes for nanofiltration preparation, characterization and chemical stability.Journal of Membrrane Science, 207, 73-89.

    Gonzalez M, Miglioranza K S, Aizpún de Moreno J E, Moreno V J.2005.Evaluation of conventionally and organically produced vegetables for high lipophilic organochlorine pesticide (OCP) residues.Food and Chemical Toxicology,43, 261-269.

    Iijima S.1991.Helical microtubules of graphitic carbon.Nature,354, 56-58.

    Kawaguchi M, Ito R S, KNakazawa H.2006.Novel stir bar sorptive extraction methods for environmental and biomedical analysis.Journal of Pharmaceutical &Biomedical Analysis, 40, 500-508.

    Lv Z Q.2015.Industrial dyes in food and its hazards.Healthy,32, 25-27.

    Peiperl M D, Prival M J, Bell S J.1995.Determination of combined benzidine in FD&C Yellow No.6 (Sunset Yellow FCF).Food and Chemical Toxicology, 10, 829-839.

    Ravelo-Pérez L M, Hernández-Borges J, Rodríguez-Delgado M A.2008.Multi-walled carbon nanotubes as efficient solidphase extraction materials of organophosphorus pesticides from apple, grape, orange and pineapple fruit juices.Journal of Chromatography (A), 1211, 33-38.

    Richter B E, Jones B A, Ezzell J L, Porter N L.1996.Accelerated solvent extraction: A technique for sample preparation.Analytical Chemistry, 68, 1033-1039.

    Rowe K S.1988.Synthetic food colourings and ‘hyperactivity’: A double-blind crossover study.Australian Paediatric Journal,24, 143-147.

    Uematsu Y, Mizumachi T, Monma K.2017.Simultaneous analysis of oil-soluble, basic, and acidic illegal dyes in foods using liquid chromatography-diode-array detection.Journal of AOAC International, 100, 1102-1109.

    Vas G V.2004.Solid-phase microextraction: A powerful sample preparation tool prior to mass spectrometric analysis.Journal of Mass Spectrometry, 39, 233-237.

    Wang S, Peng Z, Min G, Fang G Z.2007.Multi-residue determination of pesticides in water using multi-walled carbon nanotubes solid-phase extraction and gas chromatographymass spectrometry.Journal of Chromatography (A), 1165,166-171.

    Yang C C, Li Y J, Liou T H.2011.Preparation of novelpoly(vinyl alcohol)/SiO2nanocomposite membranes by a solgel process and their application on alkaline DMFC.Desalination, 276, 366-372.

    Zhao P, Wang L, Jiang Y, Zhang F, Pan C.2012.Dispersive cleanup of acetonitrile extracts of tea samples by mixed multiwalled carbon nanotubes, primary secondary amine, and graphitized carbon black sorbents.Journal of Agricultural & Food Chemistry, 60, 4026-4033.

    Zhao P Y, Huang B Y, Gu K J, Zou N P, Pan C P.2015.Analysis of triallate residue and degradation rate in wheat and soil by liquid chromatography coupled to tandem mass spectroscopy detection with multi-walled carbon nanotubes.International Journal of Environmental Analytical Chemistry,95, 1-11.

    Zhou Q X, Xiao J P, Wang W D, Liu G G, Shi Q Z, Wang J H.2006.Determination of atrazine and simazine in environmental water samples using multiwalled carbon nanotubes as the adsorbents for preconcentration prior to high performance liquid chromatography with diode array detector.Talanta, 68, 1309-1315.

    插逼视频在线观看| 一二三四中文在线观看免费高清| 日韩成人av中文字幕在线观看| 欧美日韩国产mv在线观看视频| 国产精品熟女久久久久浪| 欧美 日韩 精品 国产| 久久久欧美国产精品| 99国产综合亚洲精品| 99热国产这里只有精品6| 激情五月婷婷亚洲| 久久国内精品自在自线图片| 久久久久久人妻| 欧美+日韩+精品| 欧美精品人与动牲交sv欧美| 九色成人免费人妻av| 一级毛片我不卡| 久久久久久人人人人人| 久久久久久久久久成人| 日产精品乱码卡一卡2卡三| 少妇人妻精品综合一区二区| av在线app专区| 国产精品.久久久| 亚洲熟女精品中文字幕| 久久人人爽av亚洲精品天堂| 久久人人爽人人片av| 午夜福利乱码中文字幕| 久久99一区二区三区| 国产成人免费观看mmmm| 卡戴珊不雅视频在线播放| 妹子高潮喷水视频| 深夜精品福利| 街头女战士在线观看网站| 丰满乱子伦码专区| a 毛片基地| 国产xxxxx性猛交| 精品国产露脸久久av麻豆| 少妇人妻 视频| 亚洲 欧美一区二区三区| 久久99热6这里只有精品| 18+在线观看网站| 伊人亚洲综合成人网| 777米奇影视久久| 最近手机中文字幕大全| 亚洲少妇的诱惑av| 最近中文字幕2019免费版| 亚洲国产av新网站| 9191精品国产免费久久| 日日啪夜夜爽| 熟女电影av网| www.色视频.com| 精品少妇内射三级| 亚洲伊人色综图| 日韩熟女老妇一区二区性免费视频| 久久精品国产自在天天线| 观看美女的网站| 热re99久久精品国产66热6| 蜜桃在线观看..| 亚洲精品日韩在线中文字幕| 青春草亚洲视频在线观看| 最近2019中文字幕mv第一页| 另类亚洲欧美激情| 亚洲精品自拍成人| 国产精品一区二区在线不卡| 久久久精品区二区三区| 99re6热这里在线精品视频| 久久99精品国语久久久| 黄片播放在线免费| 999精品在线视频| 伦精品一区二区三区| 欧美日韩视频精品一区| 啦啦啦视频在线资源免费观看| 飞空精品影院首页| 少妇高潮的动态图| 久久这里只有精品19| 美女福利国产在线| 国产亚洲av片在线观看秒播厂| 免费高清在线观看日韩| av免费在线看不卡| 在现免费观看毛片| 精品人妻在线不人妻| 中文天堂在线官网| 青春草亚洲视频在线观看| 国产69精品久久久久777片| 国产不卡av网站在线观看| 婷婷色麻豆天堂久久| 国产高清国产精品国产三级| 国产69精品久久久久777片| 欧美人与善性xxx| 日本av免费视频播放| 黄色怎么调成土黄色| 国产精品久久久久久精品古装| 亚洲,欧美,日韩| 国产精品无大码| 看免费av毛片| 国产深夜福利视频在线观看| 色网站视频免费| 爱豆传媒免费全集在线观看| 亚洲国产精品成人久久小说| 久热这里只有精品99| 交换朋友夫妻互换小说| 国产亚洲最大av| 韩国高清视频一区二区三区| 国产一区二区激情短视频 | 色哟哟·www| 狂野欧美激情性bbbbbb| 熟女av电影| 男人操女人黄网站| 嫩草影院入口| 午夜影院在线不卡| 男女啪啪激烈高潮av片| 国产成人av激情在线播放| 欧美日韩亚洲高清精品| 国产高清不卡午夜福利| 精品午夜福利在线看| 男人爽女人下面视频在线观看| 成人午夜精彩视频在线观看| 丝袜人妻中文字幕| 日韩成人av中文字幕在线观看| 精品99又大又爽又粗少妇毛片| 久久精品人人爽人人爽视色| 中文精品一卡2卡3卡4更新| 97人妻天天添夜夜摸| 久久久欧美国产精品| 亚洲色图 男人天堂 中文字幕 | 80岁老熟妇乱子伦牲交| 成人黄色视频免费在线看| 黄色毛片三级朝国网站| 男女午夜视频在线观看 | a级毛色黄片| 欧美+日韩+精品| av福利片在线| 欧美人与性动交α欧美软件 | 人人妻人人添人人爽欧美一区卜| 高清毛片免费看| 在线天堂最新版资源| 啦啦啦在线观看免费高清www| 国产 精品1| 久久亚洲国产成人精品v| 免费在线观看黄色视频的| 亚洲色图综合在线观看| 老女人水多毛片| 午夜福利在线观看免费完整高清在| 各种免费的搞黄视频| 国产精品久久久久久精品电影小说| 国产精品麻豆人妻色哟哟久久| 精品酒店卫生间| 欧美精品人与动牲交sv欧美| 2022亚洲国产成人精品| 蜜臀久久99精品久久宅男| 久久ye,这里只有精品| av在线播放精品| 亚洲国产精品成人久久小说| 国产亚洲av片在线观看秒播厂| 色5月婷婷丁香| www.av在线官网国产| 亚洲国产精品一区二区三区在线| 国产欧美日韩综合在线一区二区| 狂野欧美激情性xxxx在线观看| 综合色丁香网| 日韩免费高清中文字幕av| 香蕉精品网在线| 国产xxxxx性猛交| 国产精品.久久久| 国产精品成人在线| 最近最新中文字幕免费大全7| 亚洲欧美日韩卡通动漫| 国产黄色视频一区二区在线观看| 亚洲图色成人| 国产淫语在线视频| 精品酒店卫生间| 午夜日本视频在线| 日韩大片免费观看网站| 91精品伊人久久大香线蕉| 亚洲精品成人av观看孕妇| 国产高清三级在线| 日本黄色日本黄色录像| 欧美最新免费一区二区三区| 成人毛片a级毛片在线播放| 国产精品人妻久久久影院| 91精品国产国语对白视频| 中文乱码字字幕精品一区二区三区| 女的被弄到高潮叫床怎么办| 两个人免费观看高清视频| 纵有疾风起免费观看全集完整版| 人人妻人人澡人人看| 在线观看美女被高潮喷水网站| 秋霞在线观看毛片| 久久婷婷青草| 亚洲美女视频黄频| 久久久久国产精品人妻一区二区| 亚洲经典国产精华液单| 久久久精品94久久精品| av线在线观看网站| 超色免费av| 美女内射精品一级片tv| 国产又色又爽无遮挡免| 色婷婷av一区二区三区视频| 韩国av在线不卡| 亚洲经典国产精华液单| 制服人妻中文乱码| 高清毛片免费看| 久久免费观看电影| 久久 成人 亚洲| 国产xxxxx性猛交| 免费观看a级毛片全部| 高清欧美精品videossex| 蜜桃在线观看..| 少妇人妻久久综合中文| 少妇熟女欧美另类| 精品熟女少妇av免费看| xxxhd国产人妻xxx| 久久婷婷青草| www.色视频.com| 亚洲欧美日韩另类电影网站| 中文字幕另类日韩欧美亚洲嫩草| 色视频在线一区二区三区| 老女人水多毛片| 日本与韩国留学比较| 亚洲欧美清纯卡通| 熟女av电影| 18禁裸乳无遮挡动漫免费视频| 人妻系列 视频| 久久国产精品大桥未久av| 久久久精品94久久精品| 少妇精品久久久久久久| 国产一区二区在线观看日韩| 在线 av 中文字幕| 日韩熟女老妇一区二区性免费视频| 国产亚洲午夜精品一区二区久久| 九九爱精品视频在线观看| 男女啪啪激烈高潮av片| 91在线精品国自产拍蜜月| 老熟女久久久| 精品人妻熟女毛片av久久网站| 久久 成人 亚洲| 久久精品国产a三级三级三级| 亚洲第一区二区三区不卡| 啦啦啦在线观看免费高清www| 一二三四中文在线观看免费高清| 国产日韩欧美在线精品| 亚洲av国产av综合av卡| 国产av国产精品国产| av在线老鸭窝| 永久免费av网站大全| 精品一区二区免费观看| 99九九在线精品视频| 亚洲国产欧美日韩在线播放| 日韩成人伦理影院| 国产极品天堂在线| 成人影院久久| 国产黄色视频一区二区在线观看| 亚洲人成网站在线观看播放| 母亲3免费完整高清在线观看 | 国产免费现黄频在线看| 成人国产麻豆网| av国产久精品久网站免费入址| 国产在线一区二区三区精| 90打野战视频偷拍视频| 欧美人与性动交α欧美精品济南到 | 日韩中文字幕视频在线看片| 国产av国产精品国产| 少妇的丰满在线观看| 国产免费一区二区三区四区乱码| 国产欧美日韩一区二区三区在线| 成人综合一区亚洲| 制服丝袜香蕉在线| 国产精品免费大片| 在现免费观看毛片| 亚洲丝袜综合中文字幕| 日本-黄色视频高清免费观看| 午夜久久久在线观看| 九色亚洲精品在线播放| 少妇被粗大的猛进出69影院 | 欧美xxⅹ黑人| www.色视频.com| 人人妻人人添人人爽欧美一区卜| 97人妻天天添夜夜摸| 亚洲久久久国产精品| 街头女战士在线观看网站| av国产精品久久久久影院| 激情视频va一区二区三区| 高清视频免费观看一区二区| 久久99蜜桃精品久久| 丰满迷人的少妇在线观看| 亚洲精品中文字幕在线视频| 久久久国产精品麻豆| 女人精品久久久久毛片| 老司机亚洲免费影院| 午夜免费观看性视频| 欧美亚洲 丝袜 人妻 在线| 男女高潮啪啪啪动态图| 啦啦啦啦在线视频资源| 一级毛片黄色毛片免费观看视频| www.熟女人妻精品国产 | 国产黄色免费在线视频| 男女国产视频网站| 91成人精品电影| 国产欧美日韩综合在线一区二区| 妹子高潮喷水视频| 在线观看免费日韩欧美大片| 韩国av在线不卡| 精品福利永久在线观看| 亚洲四区av| 老司机影院毛片| 校园人妻丝袜中文字幕| 欧美激情国产日韩精品一区| 美女xxoo啪啪120秒动态图| 精品视频人人做人人爽| 又粗又硬又长又爽又黄的视频| 精品亚洲乱码少妇综合久久| 日本wwww免费看| 欧美日韩亚洲高清精品| 99香蕉大伊视频| 人妻少妇偷人精品九色| 久久99一区二区三区| 美国免费a级毛片| 色94色欧美一区二区| 综合色丁香网| 熟女av电影| 男女边吃奶边做爰视频| 日韩制服丝袜自拍偷拍| 国产在线视频一区二区| 久久这里有精品视频免费| 成人毛片60女人毛片免费| 日本猛色少妇xxxxx猛交久久| 在现免费观看毛片| 少妇被粗大的猛进出69影院 | 人人妻人人澡人人看| 一本大道久久a久久精品| 久久久久久久国产电影| 在线天堂最新版资源| 久久久精品94久久精品| 如何舔出高潮| 99国产综合亚洲精品| 国产激情久久老熟女| 国产无遮挡羞羞视频在线观看| 久久久久国产网址| 99久久中文字幕三级久久日本| 丝袜脚勾引网站| 国产精品不卡视频一区二区| 视频区图区小说| 精品一区二区三区视频在线| 国产免费一级a男人的天堂| 人妻人人澡人人爽人人| 免费观看在线日韩| 大香蕉97超碰在线| 天堂中文最新版在线下载| 人妻人人澡人人爽人人| 狠狠婷婷综合久久久久久88av| 欧美日韩国产mv在线观看视频| 国产免费现黄频在线看| 丰满少妇做爰视频| 免费观看在线日韩| 男人爽女人下面视频在线观看| 午夜福利在线观看免费完整高清在| 亚洲综合精品二区| 亚洲av日韩在线播放| 一本大道久久a久久精品| 插逼视频在线观看| 欧美国产精品va在线观看不卡| 全区人妻精品视频| 99久久综合免费| 蜜桃在线观看..| 国产女主播在线喷水免费视频网站| 人人妻人人澡人人爽人人夜夜| 日韩伦理黄色片| 好男人视频免费观看在线| 男女无遮挡免费网站观看| 大话2 男鬼变身卡| 777米奇影视久久| 欧美xxxx性猛交bbbb| 免费看不卡的av| 久久久久精品久久久久真实原创| 精品卡一卡二卡四卡免费| 国产深夜福利视频在线观看| 天天操日日干夜夜撸| 欧美性感艳星| 国产深夜福利视频在线观看| 大话2 男鬼变身卡| 2018国产大陆天天弄谢| 丝袜在线中文字幕| 成人毛片a级毛片在线播放| 中文字幕最新亚洲高清| 国产亚洲一区二区精品| 捣出白浆h1v1| 国产精品秋霞免费鲁丝片| a 毛片基地| 国产精品.久久久| 美女xxoo啪啪120秒动态图| 亚洲精品国产av蜜桃| 亚洲少妇的诱惑av| 男的添女的下面高潮视频| 精品卡一卡二卡四卡免费| 97超碰精品成人国产| 美女国产视频在线观看| 亚洲成人一二三区av| 男女下面插进去视频免费观看 | 国产乱人偷精品视频| 免费高清在线观看视频在线观看| 亚洲精品国产av成人精品| 另类亚洲欧美激情| 极品人妻少妇av视频| 麻豆精品久久久久久蜜桃| 熟女电影av网| 自拍欧美九色日韩亚洲蝌蚪91| 国产乱来视频区| 日本免费在线观看一区| 看免费av毛片| 在线观看一区二区三区激情| 波多野结衣一区麻豆| 国产老妇伦熟女老妇高清| 国产欧美亚洲国产| 啦啦啦在线观看免费高清www| 久久人人97超碰香蕉20202| 亚洲一码二码三码区别大吗| 国产成人a∨麻豆精品| 97超碰精品成人国产| 久久久久视频综合| 女的被弄到高潮叫床怎么办| 国产女主播在线喷水免费视频网站| 国产精品嫩草影院av在线观看| 精品福利永久在线观看| 建设人人有责人人尽责人人享有的| 亚洲色图 男人天堂 中文字幕 | 国产极品天堂在线| 久久久久久人人人人人| 我的女老师完整版在线观看| 青春草视频在线免费观看| 国产亚洲午夜精品一区二区久久| 伦精品一区二区三区| 日日摸夜夜添夜夜爱| 国产av精品麻豆| 免费日韩欧美在线观看| 亚洲av中文av极速乱| 国产亚洲一区二区精品| 亚洲欧洲国产日韩| 丰满饥渴人妻一区二区三| 美女主播在线视频| 国产日韩欧美亚洲二区| 一边亲一边摸免费视频| 伦精品一区二区三区| 国产免费视频播放在线视频| 日本黄色日本黄色录像| 国语对白做爰xxxⅹ性视频网站| 国产福利在线免费观看视频| 少妇熟女欧美另类| 国产国语露脸激情在线看| 伊人久久国产一区二区| 九色成人免费人妻av| 欧美激情 高清一区二区三区| 免费观看性生交大片5| 国产探花极品一区二区| 王馨瑶露胸无遮挡在线观看| 国产女主播在线喷水免费视频网站| 在线看a的网站| 亚洲精品日本国产第一区| 这个男人来自地球电影免费观看 | 亚洲欧美中文字幕日韩二区| 欧美亚洲 丝袜 人妻 在线| 女人被躁到高潮嗷嗷叫费观| 一本—道久久a久久精品蜜桃钙片| 精品一品国产午夜福利视频| 黄色怎么调成土黄色| 久久久国产精品麻豆| 久久国内精品自在自线图片| 国产精品国产三级专区第一集| 国产欧美日韩一区二区三区在线| 少妇的丰满在线观看| 另类亚洲欧美激情| 在线观看免费高清a一片| 欧美日韩一区二区视频在线观看视频在线| 少妇人妻精品综合一区二区| 日本午夜av视频| 精品亚洲成a人片在线观看| 一级片'在线观看视频| 免费在线观看完整版高清| 中文字幕av电影在线播放| 美女脱内裤让男人舔精品视频| 亚洲国产精品成人久久小说| 日本色播在线视频| 亚洲欧美色中文字幕在线| 成人影院久久| 色94色欧美一区二区| 中文乱码字字幕精品一区二区三区| 只有这里有精品99| 亚洲少妇的诱惑av| 精品一区在线观看国产| 色94色欧美一区二区| 国产片特级美女逼逼视频| 久久99蜜桃精品久久| 亚洲少妇的诱惑av| 伦理电影免费视频| av有码第一页| 亚洲国产精品成人久久小说| 免费观看a级毛片全部| 午夜福利视频在线观看免费| 国产高清国产精品国产三级| 波野结衣二区三区在线| 国产 精品1| 日韩中字成人| 国产xxxxx性猛交| 黄片播放在线免费| av.在线天堂| 黄网站色视频无遮挡免费观看| 草草在线视频免费看| 亚洲精品久久成人aⅴ小说| 国产成人av激情在线播放| 99视频精品全部免费 在线| 9热在线视频观看99| 欧美精品一区二区免费开放| av线在线观看网站| 一级片'在线观看视频| 在线观看免费视频网站a站| 国产精品一区二区在线不卡| 人人妻人人澡人人爽人人夜夜| 国产 精品1| 99热国产这里只有精品6| 男女无遮挡免费网站观看| 国产综合精华液| 日本免费在线观看一区| 亚洲人与动物交配视频| 日本wwww免费看| 80岁老熟妇乱子伦牲交| 99久久综合免费| 男女啪啪激烈高潮av片| 丝瓜视频免费看黄片| 国产男女内射视频| 伦理电影大哥的女人| 五月天丁香电影| 五月伊人婷婷丁香| 精品一区二区三卡| 中文字幕av电影在线播放| 亚洲精品aⅴ在线观看| 成年人午夜在线观看视频| 一级,二级,三级黄色视频| 妹子高潮喷水视频| 五月伊人婷婷丁香| 熟妇人妻不卡中文字幕| 日本vs欧美在线观看视频| 亚洲欧美色中文字幕在线| 国产精品三级大全| 久久精品aⅴ一区二区三区四区 | 亚洲欧美一区二区三区黑人 | 我要看黄色一级片免费的| 欧美日韩一区二区视频在线观看视频在线| 美女福利国产在线| 国产男女超爽视频在线观看| 夜夜骑夜夜射夜夜干| 亚洲欧美精品自产自拍| 9热在线视频观看99| 最新的欧美精品一区二区| a级毛色黄片| 69精品国产乱码久久久| 男人舔女人的私密视频| 女人精品久久久久毛片| 男人添女人高潮全过程视频| 一级毛片电影观看| 熟女av电影| 亚洲欧美日韩卡通动漫| 熟女av电影| 两个人看的免费小视频| 在线精品无人区一区二区三| 黄色毛片三级朝国网站| 亚洲精品美女久久久久99蜜臀 | 久久国内精品自在自线图片| 久久久国产精品麻豆| 咕卡用的链子| 国产成人精品久久久久久| 国产 精品1| 国产一区二区三区av在线| 韩国精品一区二区三区 | 巨乳人妻的诱惑在线观看| av国产精品久久久久影院| 伊人亚洲综合成人网| 久久精品国产鲁丝片午夜精品| 国产日韩一区二区三区精品不卡| 永久网站在线| 中文字幕亚洲精品专区| 欧美少妇被猛烈插入视频| 亚洲成人av在线免费| 另类精品久久| 大片电影免费在线观看免费| av有码第一页| 麻豆乱淫一区二区| xxx大片免费视频| 国产精品.久久久| 一边摸一边做爽爽视频免费| 久久久久视频综合| 精品酒店卫生间| 欧美成人午夜精品| 日韩中文字幕视频在线看片| 精品酒店卫生间| 日韩一区二区三区影片| 精品午夜福利在线看| 女性生殖器流出的白浆| a级毛色黄片| 一级片'在线观看视频| 国产精品一区二区在线观看99| 欧美成人午夜精品| 国产男人的电影天堂91| 亚洲成色77777| 激情视频va一区二区三区| 一级片'在线观看视频| 欧美最新免费一区二区三区| 另类精品久久| 国产亚洲午夜精品一区二区久久| 精品国产露脸久久av麻豆| 女人被躁到高潮嗷嗷叫费观| 亚洲精品国产色婷婷电影| 亚洲欧美一区二区三区黑人 | 色网站视频免费| 香蕉精品网在线| 欧美少妇被猛烈插入视频| 久久人妻熟女aⅴ| 高清毛片免费看|