• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pt/TiO2催化劑的載體結(jié)構(gòu)對甲醇催化氧化性能的影響

    2015-03-20 08:16:14金梅梅王新德賈建洪董華青
    關(guān)鍵詞:浙江工業(yè)大學(xué)物理學(xué)原子

    金梅梅,王新德,賈建洪,董華青

    (浙江工業(yè)大學(xué)化學(xué)工程與材料學(xué)院,杭州310014)

    1 Introduction

    Among the various noble metal catalysts used in direct methanol fuels cells (DMFCs),Pt catalysts have attracted much attention due to their superior properties[1,2]. In spite of the intense research in the last decade,the slow methanol electro-oxidation reaction kinetics,high costs of Pt catalysts still exist.To overcome these problems,much efforts have been devoted,for example the development of PtM (M =Fe,Ni,Ru,etc)alloys and supported Pt catalysts.

    Pt nanoparticles dispersed on diverse supports,such as carbon and graphene[3,4],in comparison to those supports,TiO2has attracted considerable attention in recent years,thanks to its unique properties such as environment friendly,low cost and excellent mechanical resistance[5,6]. The properties of TiO2have strong effects on the performance of supported Pt catalysts. For instance,the anatase TiO2supported Pt catalysts,may provide catalytic advantages for oxidation of methanol compared to the rutile and bookie TiO2. The morphology of TiO2has a strong influence on the properties of supported Pt catalysts[7]. Although several elegant researches had been focused on supported Pt catalysts on TiO2nanotube arrays (TNTAs),few studied on the aspect of TiO2nanowire arrays (TNWAs). Up to now,comparison of the performance for methanol oxidation of Pt supported on TNTAs and TNWAs has not been studied yet. It is well known that catalytic activity may be significantly altered when reaction is confined within a nanoscale environment[8].

    Based on theoretical studies on TNTAs[9,10],in this work,we studied the performances of the supported Pt catalysts on TNTAs and TNWAs for methanol oxidation. We used electrochemical anodization and hydrothermal methods to prepare TNTAs and TNWAs on Ti foils directly. Pt/TNTAs and Pt/TNWAs were prepared by microwave heating method. The results demonstrate that Pt/TNTAs show a superior performance than supported on TNWAs for methanol oxidation. We speculate that the excellent activity of Pt/TNTAs might be due to the confinement effects. The study reveals the beneficial role of the support architecture in the performances of Pt catalysts for methanol oxidation.

    2 Experimental

    2.1 Synthesis of TiO2 nanotube arrays (TNTAs)and TiO2 nanowire arrays (TNWAs)

    TNTAs were formed on the Ti foils (0.25 mm)by electrochemical anodization in ethylene glycol solution containing 0. 3 wt% NH4F and 2 vol% H2O.Prior to anodization,Ti foils were degreased by sonicating for 10 min in acetone and deionized water,respectively. In the first-step andoization,Ti foil was anodized at 60 V for 60 min,and then the as-grown nanotubular layer was ultrasonically removed in deionized water. Subsequently,a second anodization was performed at 60 V for 30 min. The as-anodized TNTAs were annealed in N2 at 450 ℃ for 2 h with a heating rate of 5 ℃/ min. TNWAs were synthesized on the Ti foils (0. 25 mm)by hydrothermal method[11].

    Prior to hydrothermal,Ti foils were degreased by successively sonicating for 10 min in acetone,ethanol,and deionized water. Ti foils were placed in PPL-lined stainless steel autoclave,containing NaOH aqueous solution (1 M,20 mL). The steel autoclave was heated at 200 ℃for 24 h,and then air -cooled to room temperature. Ti foils were taken out,rinsed extensity with deionized water and immersed in HCl solutions (1 M,20 mL)for 10 min to replace Na+with H+,forming H2Ti2O4- (OH)2nanowire arrays. After that,H2Ti2O4(OH)2nanowire arrays were washed with deionized water again then dried at ambient temperature. TNWAs were obtained after a heat treatment in an oven at 500℃for 3 h.

    2.2 Preparation of the supported Pt catalysts on TNTAs and TNWAs

    Pt/TNTAs were easily synthesized by a microwave heating method as follows[12]:a growth solution was prepared by mixing 4ml H2PtCl6(3 mM),5ml ethylene glycol,and 0.125 ml KOH (0.4 mM)and 20mg TNTAs at room temperature using ultrasonication. Then,the growth solution was microwave -heated for 10 minutes at 180 ℃. The products were harvested after centrifugation and dried in vacuum at 80 ℃for 8 h. For comparison,Pt/TNWAs were also synthesized. The Pt loading was controlled at nearly 10 wt%.

    2.3 Catalysts characterization

    The X - ray diffraction (XRD)patterns of the samples were characterized by X'Pert Pro diffracto meter using Cu Kα radiation (λ = 1.54056). The surface morphologies of the samples were observed by scanning electron microscopy (SEM,Hitachi S4700)and their microstructures were investigated by transmission electron microscopy (TEM, Tecnai G2 F30). The exact Pt loading in the catalysts was confirmed by inductive coupled plasma atomic emission spectrometry (ICP - AES,Jarrel - Asm - Atom -Scan-2000).

    2.4 Electrochemical measurements

    All the electrochemical measurements were performed using a three - electrode cell with a CHI660 electrochemical workstation at 25 ℃in the solution of 0.5 M H2SO4with and without 1 M CH3OH. An ink was prepared by ultrasonically dispersing 3mg catalysts with 0.8 mg of Carbon Vulcan XC72 in 60 μl isopropyl alcohol and 40 μl 5wt% nafion solution(from Aldrich). The addition of Carbon Vulcan XC 72 was to enhance electronic conductivity of the catalytic layer. A drop of 4.0 μl catalyst ink was deposited to the glassy carbon (GC)electrode (3 -mm diameter)surface,which was used as the working electrode. A platinum wire and an Ag/AgCl reference electrode were used as the counter and reference electrode,respectively.

    3 Results and discussion

    3.1 SEM and TEM characterizations

    Fig.1 shows the SEM images of the as - prepared TNTAs and TNWAs. Fig. 1 (a)and (c)show the top view and cross -sectional of TNTAs in which is highly ordered,compact,one - dimensional architechture is clearly evident. In addition,the nanotube arrays are smooth,and the average inner diameter is about 80 nm. Fig. 1 (b)and (d)are the typical SEM images of TNWAs. These images clearly indicate that the nanowires grown on the Ti foils with uniform morphology and the mean diameter of the TiO2nanowires is also nearly 80 nm. Moreover,the as -prepared TNWAs are less dense than the traditional ones[13],which is a benefit for loading.

    Fig.1 SEM images of TNTAs (a,c)and TNWAs (b,d)

    Fig. 2 shows the TEM images of the as-synthesized Pt/TNTAs and Pt/TNWAs. As evidenced in Fig. 2 (a)(b),after the growth solution was microwave-heated for 10 minutes at 180 ℃,Pt nanoparticles were uniformly dispersed on the nanotubes and nanowires. The growth directions of the TiO2nanotubes and nanowires are determined to be (101)plane. This is supported by the HRTEM images in Fig. 2 (b)(d),where the lattice fringes perpendicular to the growth direction have the spacing of 0.347 nm and 0.354 nm,which are nearly equal to the lattice parameter in the TiO2(101)plane[14]. From the HRTEM images in Fig.2 (c)(d),the lattice fringes of Pt nanoparticles can be clearly observed,suggesting the well-defined crystal structure. As shown in Fig.2 (c)(d),the lattice spacing of 0.233 nm and 0.227 nm originates from the (111)plane of Pt[15].

    Fig.2 TEM and HRTEM images of Pt/TNTAs (a,c)and Pt/TNWAs (b,d)

    3.2 XRD and ICP-AES measurements

    Fig. 3 shows the XRD patterns of the as -synthesized Pt/ TNTAs and Pt/TNWAs. As shown in Fig. 3 (a),the diffraction peaks at about 25. 31°and 48.04° can be indexed to the (101)and (200)crystal planes of anatase TiO2[16]. This can be concluded that the amorphous TiO2were transformed into anatase phase after calcined at 450℃in N2for 2 h.The Pt nanoparticles exhibit diffraction peaks at 39.75°,46.23°and 67.45°,corresponding to the characteristic (111),(200),(220)reflections of a Pt face-centered cubic structure. The diffraction peaks of Pt/TNWAs (Fig. 3 (b))are not well defined as TNTAs,however,the diffraction peaks at about 25.16° and 47.78° are always obvious. The characteristics of the face - centered cubic Pt crystal structure are evident as indicated by the orientations along the Pt (111),Pt (200),and Pt (220)directions,at 40.04°,46.53° and 67.86°[17],respectively.

    Fig.3 XRD patterns of the Pt/TNTAs (a)and Pt/TNWAs (b)

    Fig.4 Cyclic voltammogram curves of Pt/TNTAs and Pt/TNWAs in 0. 5M H2SO4(a)and 0. 5M H2SO4 +1M CH3OH (b),Potentiostatic polarization curves in 0. 5M H2SO4 +1M CH3OH(c),Current–Time plots in 0.5 M H2SO4 +1.0 M CH3OH at 0.65 V (d)

    The exact amount of Pt loadings on the two TiO2supports was determined by ICP -AES analysis. The nominal Pt loadings in Pt/TNTAs and Pt/TNWAs are 9.5 wt% and 10.95 wt%,respectively. Therefore,the comparison of supported Pt catalysts on TNTAs and TNWAs is reasonable since the close loading amount on two catalysts.

    3.3 Electrochemical analysis

    Fig. 4 (a)shows the CVs of Pt/TNTAs and Pt/TNWAs recorded in 0.5 M H2SO4at the scan rate of 50 mV·s-1,which was used to be background test.Hydrogen adsorption/desorption peaks are seen between - 0. 2 and 0 V. The electrochemical active surface area (EASA)of a catalyst can reflect the intrinsic electrocatalytic activity of the catalyst,which can be measured by using the integral of the charge under the Pt - H redox peaks in the lower potential region (-0.2V ~0V)[18]. EASAs of the Pt/TNTAs and Pt/TNWAs are estimated to be 79. 3 and 45. 9 m2g-1respectively,indicating that Pt/ TNTAs have the higher active surface area.

    Fig. 4 (b)shows the typical CVs of Pt/TNTAs and Pt/TNWAs in 1M CH3OH + 0.5M H2SO4. The significant differences in onset potential and peak current density are observed illustrating the beneficial role of the TiO2structure in the performances of Pt catalysts for methanol oxidation. The current density of the methanol oxidation for Pt/TNTAs reaches a peak value of 25.77 mAcm-2,which is higher than that of Pt/TNWAs (11.76 mAcm-2). Moreover,the onset potential for Pt/TNTAs is found at even lower potential (0. 21 V)than that of Pt/TNWAs (0. 36 V). These results imply that the superior catalytic activity of the supported Pt catalysts on TNTAs than those on TNWAs for the methanol oxidation. We speculate that the excellent activity of Pt nanoparticles supported on TNTAs might be due to the confinement effects which may lead to a smaller barrier[19]. This can be further proved by potentiostatic polarization curves of methanol oxidation which was recorded for 30 min at each potential Point. As shown in Fig. 4(c),the overpotential for Pt/TNTAs is lower than that of Pt/TNWAs;in addition,it is higher current density of methanol oxidation on Pt/TNTAs at the same potential.

    Fig. 4(d)shows the current -time plots recorded at 0.65 V in 1 M CH3OH + 0.5 M H2SO4. As shown in Fig. 4(d),the two catalysts display an initial current decay,which is due to the poisoning of the catalysts by intermediate products,such as COlike intermediates. A slower current decay and higher catalytic stability are detected of the Pt/TNTAs. In this study,Pt/TNTAs are able to maintain the higher current density in 3600 s,giving the better electrocatalytic performance. The results show that the architecture of the supporting materials not only influences the catalytic activity for methanol oxidation,but also the stability of the Pt catalysts.

    4 Conclusion

    In this work,we have prepared Pt catalysts supported on two different TiO2architectures (Pt/TNTAs,Pt/TNWAs)and discussed the influence of TiO2architecture on the performance of supported Pt catalysts for methanol oxidation. The results demonstrate that Pt/TNTAs show a superior performance(25.77 mAcm-2,0.21 V)than supported on TNWAs (11.76 mAcm-2,0.36 V)for methanol oxidation. We speculate that the excellent activity of Pt/TNTAs might be due to the confinement effects. This study is beneficial not only to understand the influence of TiO2architecture on the performance of supported Pt catalysts for methanol electro - oxidation,but also to design better supported Pt catalysts.

    Reference:

    [1] Leger J M. Mechanistic aspects of methanol oxidation on platinum - based electrocatalysts [J]. J. Appl.Electrochem.,2001,31:767.

    [2] Wei Z D,Li L L,Luo Y H,et al. Electrooxidation of methanol on upd-Ru and upd -Sn modified Pt electrodes[J]. J. Phys. Chem. B,2006,110:26055.

    [3] Wu J,Hu F P,Hu X D,et al. Improved kinetics of methanol oxidation on Pt/hollow carbon sphere catalysts[J]. Electrochim. Acta,2008,53:8341.

    [4] Zhao Y Y,Zhou Y K,Xiong B,et al. Facile singlestep preparation of Pt/N -graphene catalysts with improved methanol electrooxidation activity[J]. J. Solid State Electrochem.,2013,17:1089.

    [5] Yue Y X,F(xiàn)eng Q,Wang Y. Study on the optical and electronic properties of anatase TiO2co - doped with Mn-N,Mn-C and Mn-S[J]. J. At. Mol. Phys.(原子與分子物理學(xué)報(bào)),2013,30:479 (in Chinese)

    [6] Chen P,Zhou X L,Lu L Y,et al. First -principles calculations for structural and thermodynamic properties of rutile TiO2under high pressure[J]. J. At.Mol. Phys.(原子與分子物理學(xué)報(bào)),2012,29(2):372 (in Chinese)

    [7] Xing L,Jia J B,Wang Y Z,et al. Pt modified TiO2nanotubes electrode:Preparation and electrocatalytic application for methanol oxidation[J]. Int. J. Hydrogen Energy,2010,35:12169.

    [8] Pan X L,BaoX H. The effects of confinement inside carbon nanotubes on catalysis[J]. Acc. Chem. Res.,2011,44:553.

    [9] Xie Q,Meng Q Q,Zhuang G L,et al. Water oxidation on N -doped TiO2nanotube arrays[J]. Int. J.Quantum Chem.,2012,112:2585.

    [10] Pan X,Cai Q X,Chen W L,et al. A DFT study of gas molecules adsorption on the anatase (0 0 1)nanotube arrays[J]. Comp. Mater. Sci.,2013,67:174.

    [11] Lin Z H,Xie Y N,Yang Y,et al. Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2nanomaterials [J].ACS. Nano.,2013,7:4554.

    [12] Liu B,Zheng L P,Liao S J,et al. Volume production of high loading Pt/C catalyst with high performance via a microwave - assisted organic colloid route [J]. J.Power Sources,2012,210:54.

    [13] Feng X J,Shankar K,Varghese O K,et al. Vertically aligned single crystal TiO2nanowire arrays grown directly on transparent conducting oxide coated glass:synthesis details and applications [J]. Nano Lett.,2008,8:3781.

    [14] Mohapatra S K,Misra M,Mahajan V K,et al. Enhanced photoelectrochemical generation of hydrogen from water by 2,6 -dihydroxyantraquinone -functionalized titanium dioxide nanotubes [J]. J. Phys.Chem. C,2007,111:8677.

    [15] Formo E,Peng Z M,Lee E,et al. Direct oxidation of methanol on pt nanostructures supported on electrospun nanofibers of anatase[J]. J. Phys. Chem. C,2008,112:9970.

    [16] Zhou W J,Yin Z Y,Du Y P,et al. Synthesis of few-layer MoS2nanosheet-coated TiO2nanobelt heterostructures for enhanced photocatalytic activities [J].Small,2013,9:140.

    [17] Luo F,Liao S J,Chen D. Platinum catalysts supported on Nafion functionalized carbon black for fuel cell application[J]. J. Energy. Chem.,2013,22:87.

    [18] Li X,Chen W X,Zhao J,et al. Microwave polyol synthesis of Pt/CNTs catalysts:Effects of pH on particle size and electrocatalytic activity for methanol electrooxidization[J]. Carbon,2005,43:2168.

    [19] Halls M D,Schlegel H B. Chemistry inside carbon nanotubes:The Menshutkin S(N)2 reaction[J]. J.Phys. Chem. B,2002,106:1921.

    猜你喜歡
    浙江工業(yè)大學(xué)物理學(xué)原子
    浙江工業(yè)大學(xué)
    浙江工業(yè)大學(xué)
    原子究竟有多???
    原子可以結(jié)合嗎?
    帶你認(rèn)識(shí)原子
    浙江工業(yè)大學(xué)
    美食物理學(xué)
    英語文摘(2019年10期)2019-12-30 06:24:32
    浙江工業(yè)大學(xué)
    物理學(xué)中的“瞬時(shí)美”
    定積分在幾何、物理學(xué)中的簡單應(yīng)用
    日韩中文字幕欧美一区二区 | 国产亚洲一区二区精品| 99久久综合免费| av国产久精品久网站免费入址| 人妻人人澡人人爽人人| 国产精品99久久99久久久不卡 | 欧美精品一区二区免费开放| 人人妻人人澡人人看| 国产成人欧美在线观看 | 国精品久久久久久国模美| 国语对白做爰xxxⅹ性视频网站| 国产精品久久久久久精品电影小说| www.自偷自拍.com| 国产不卡av网站在线观看| 国产av精品麻豆| 别揉我奶头~嗯~啊~动态视频 | 国产精品无大码| 欧美日韩亚洲国产一区二区在线观看 | videos熟女内射| 人妻 亚洲 视频| 黑丝袜美女国产一区| 亚洲美女黄色视频免费看| 欧美中文综合在线视频| 久久精品国产综合久久久| 亚洲av综合色区一区| 丝袜喷水一区| 亚洲七黄色美女视频| 亚洲一级一片aⅴ在线观看| 久久青草综合色| 亚洲精品在线美女| 亚洲中文av在线| 69精品国产乱码久久久| 中文字幕高清在线视频| av在线app专区| 夫妻性生交免费视频一级片| 精品一区二区免费观看| 夜夜骑夜夜射夜夜干| 国产野战对白在线观看| 满18在线观看网站| 激情五月婷婷亚洲| 国产精品国产三级国产专区5o| av视频免费观看在线观看| 美女大奶头黄色视频| 777米奇影视久久| bbb黄色大片| 午夜福利视频在线观看免费| videos熟女内射| 午夜福利一区二区在线看| 国产一区二区三区综合在线观看| 美女中出高潮动态图| 免费黄色在线免费观看| 亚洲欧美一区二区三区国产| 国产乱来视频区| 伊人久久大香线蕉亚洲五| 在线观看人妻少妇| 国产精品国产av在线观看| 伦理电影大哥的女人| 亚洲第一区二区三区不卡| 国产精品偷伦视频观看了| 亚洲美女视频黄频| 一边亲一边摸免费视频| 日本爱情动作片www.在线观看| 欧美 亚洲 国产 日韩一| 国产老妇伦熟女老妇高清| 亚洲欧美色中文字幕在线| 亚洲第一区二区三区不卡| 久久久久国产一级毛片高清牌| 亚洲自偷自拍图片 自拍| 欧美av亚洲av综合av国产av | 亚洲国产欧美网| 国产在线一区二区三区精| 伦理电影大哥的女人| 久久这里只有精品19| 午夜福利视频精品| 日本欧美视频一区| 亚洲av中文av极速乱| 国产精品一区二区在线不卡| 亚洲精品国产av蜜桃| 国产亚洲精品第一综合不卡| a级片在线免费高清观看视频| 视频在线观看一区二区三区| 高清不卡的av网站| 自线自在国产av| 色网站视频免费| 日日撸夜夜添| 在线 av 中文字幕| 人人妻人人爽人人添夜夜欢视频| 菩萨蛮人人尽说江南好唐韦庄| 午夜91福利影院| 涩涩av久久男人的天堂| 男的添女的下面高潮视频| 黑人猛操日本美女一级片| 国产亚洲av高清不卡| 免费在线观看完整版高清| 亚洲成人一二三区av| 国产99久久九九免费精品| 9191精品国产免费久久| 下体分泌物呈黄色| 日韩制服丝袜自拍偷拍| 少妇被粗大的猛进出69影院| 亚洲人成77777在线视频| 麻豆av在线久日| 色吧在线观看| 亚洲情色 制服丝袜| 欧美国产精品va在线观看不卡| 久久人人爽人人片av| 18禁动态无遮挡网站| 久久精品aⅴ一区二区三区四区| 99精国产麻豆久久婷婷| 日韩大码丰满熟妇| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产欧美网| 国产亚洲一区二区精品| 亚洲第一av免费看| 国产成人精品福利久久| 超色免费av| 一本—道久久a久久精品蜜桃钙片| 色视频在线一区二区三区| 男男h啪啪无遮挡| 亚洲国产中文字幕在线视频| 热re99久久国产66热| 国产成人欧美| 天天躁夜夜躁狠狠躁躁| 国产av一区二区精品久久| 欧美日本中文国产一区发布| 一区在线观看完整版| 欧美国产精品一级二级三级| 毛片一级片免费看久久久久| 亚洲欧美一区二区三区国产| 日韩一区二区视频免费看| 19禁男女啪啪无遮挡网站| 99国产综合亚洲精品| 一边摸一边抽搐一进一出视频| 日韩精品有码人妻一区| 菩萨蛮人人尽说江南好唐韦庄| 人人妻人人澡人人看| 建设人人有责人人尽责人人享有的| 免费黄网站久久成人精品| 18禁动态无遮挡网站| 又大又黄又爽视频免费| 中文字幕人妻熟女乱码| 又大又黄又爽视频免费| 亚洲av福利一区| 激情五月婷婷亚洲| 一本久久精品| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品国产av蜜桃| 秋霞伦理黄片| 又大又爽又粗| 777米奇影视久久| 亚洲综合精品二区| 亚洲精品中文字幕在线视频| 精品一品国产午夜福利视频| 国产成人精品久久久久久| 啦啦啦在线观看免费高清www| 老司机在亚洲福利影院| 久久久欧美国产精品| 如日韩欧美国产精品一区二区三区| 精品少妇久久久久久888优播| 久热爱精品视频在线9| 国产日韩欧美亚洲二区| 精品国产一区二区三区四区第35| 国产成人精品福利久久| 久久性视频一级片| 国产人伦9x9x在线观看| 一级毛片我不卡| 欧美亚洲日本最大视频资源| 建设人人有责人人尽责人人享有的| 国产日韩欧美在线精品| 欧美97在线视频| 国产熟女欧美一区二区| 午夜老司机福利片| 中文字幕高清在线视频| 天天躁夜夜躁狠狠躁躁| 在线天堂中文资源库| 午夜免费观看性视频| 国产 精品1| 狂野欧美激情性bbbbbb| 蜜桃国产av成人99| 国产精品久久久人人做人人爽| 亚洲激情五月婷婷啪啪| 欧美久久黑人一区二区| 国产日韩欧美视频二区| 国产av一区二区精品久久| 黄色一级大片看看| 久久天躁狠狠躁夜夜2o2o | av网站免费在线观看视频| 高清黄色对白视频在线免费看| 亚洲激情五月婷婷啪啪| 国产国语露脸激情在线看| 人人妻人人添人人爽欧美一区卜| 精品少妇内射三级| 精品国产超薄肉色丝袜足j| 久久精品熟女亚洲av麻豆精品| 国产av码专区亚洲av| 少妇人妻久久综合中文| 久久韩国三级中文字幕| 嫩草影视91久久| 90打野战视频偷拍视频| 久久免费观看电影| 国产一区有黄有色的免费视频| 欧美老熟妇乱子伦牲交| 久久久国产精品麻豆| 七月丁香在线播放| 国产精品欧美亚洲77777| 大片免费播放器 马上看| 久热爱精品视频在线9| 精品亚洲成国产av| 尾随美女入室| 汤姆久久久久久久影院中文字幕| 国产精品三级大全| 欧美精品亚洲一区二区| 美女午夜性视频免费| 欧美xxⅹ黑人| xxx大片免费视频| 国产精品久久久久成人av| 国产亚洲av片在线观看秒播厂| 老司机影院毛片| 七月丁香在线播放| 午夜福利影视在线免费观看| 国产一区有黄有色的免费视频| 亚洲国产精品一区二区三区在线| 久久久国产一区二区| 五月天丁香电影| 十八禁网站网址无遮挡| 亚洲综合色网址| 久久久久久久国产电影| 黄片无遮挡物在线观看| 一本大道久久a久久精品| 一本一本久久a久久精品综合妖精| 七月丁香在线播放| 国产爽快片一区二区三区| 天天躁夜夜躁狠狠久久av| 嫩草影院入口| 亚洲国产日韩一区二区| 黑人猛操日本美女一级片| 精品亚洲乱码少妇综合久久| 99香蕉大伊视频| 亚洲四区av| 大香蕉久久网| 两个人看的免费小视频| 亚洲人成网站在线观看播放| 又粗又硬又长又爽又黄的视频| 久久久久久久国产电影| 国产 一区精品| 亚洲欧美中文字幕日韩二区| 狠狠婷婷综合久久久久久88av| 9色porny在线观看| 国产午夜精品一二区理论片| 成人国语在线视频| 丝瓜视频免费看黄片| 国产极品天堂在线| 国产黄色视频一区二区在线观看| 51午夜福利影视在线观看| 日日摸夜夜添夜夜爱| 国产又色又爽无遮挡免| xxx大片免费视频| 自线自在国产av| 亚洲精品,欧美精品| 国产精品嫩草影院av在线观看| 亚洲国产日韩一区二区| 我的亚洲天堂| 尾随美女入室| √禁漫天堂资源中文www| 97在线人人人人妻| 亚洲av成人精品一二三区| 麻豆乱淫一区二区| 美女大奶头黄色视频| 精品久久久精品久久久| 亚洲成色77777| 国产日韩一区二区三区精品不卡| 赤兔流量卡办理| 狂野欧美激情性xxxx| 久久久久久久国产电影| 免费观看a级毛片全部| 一二三四在线观看免费中文在| 国产有黄有色有爽视频| 99九九在线精品视频| 精品人妻熟女毛片av久久网站| 日本猛色少妇xxxxx猛交久久| 精品亚洲乱码少妇综合久久| 成人国产麻豆网| 丰满饥渴人妻一区二区三| 永久免费av网站大全| 丰满少妇做爰视频| 欧美最新免费一区二区三区| 中文字幕高清在线视频| 国产精品.久久久| 黄片播放在线免费| 一本一本久久a久久精品综合妖精| 国产激情久久老熟女| 十八禁高潮呻吟视频| 亚洲一卡2卡3卡4卡5卡精品中文| 建设人人有责人人尽责人人享有的| 中文天堂在线官网| 老司机影院成人| 国产男女超爽视频在线观看| 亚洲色图综合在线观看| 日本黄色日本黄色录像| xxxhd国产人妻xxx| 久久久久精品人妻al黑| 9色porny在线观看| 久久毛片免费看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 日韩制服丝袜自拍偷拍| 久久久精品国产亚洲av高清涩受| 纯流量卡能插随身wifi吗| 亚洲精品,欧美精品| 国产精品一区二区精品视频观看| 老鸭窝网址在线观看| av不卡在线播放| 国产精品一区二区在线观看99| 校园人妻丝袜中文字幕| 不卡视频在线观看欧美| 亚洲 欧美一区二区三区| 久久av网站| 欧美少妇被猛烈插入视频| 在线观看一区二区三区激情| 亚洲伊人久久精品综合| 999久久久国产精品视频| 青草久久国产| 久久精品久久久久久久性| 一级,二级,三级黄色视频| 中文乱码字字幕精品一区二区三区| 国产精品一区二区在线观看99| 狠狠精品人妻久久久久久综合| a级毛片在线看网站| a级毛片黄视频| 亚洲欧美精品自产自拍| 在现免费观看毛片| 午夜福利网站1000一区二区三区| 丝袜脚勾引网站| 国产免费福利视频在线观看| 最近手机中文字幕大全| 欧美日韩综合久久久久久| 啦啦啦在线免费观看视频4| 人人妻人人爽人人添夜夜欢视频| 黑人欧美特级aaaaaa片| 亚洲在久久综合| 搡老乐熟女国产| 国产午夜精品一二区理论片| 在线观看国产h片| 久久久欧美国产精品| 欧美国产精品一级二级三级| 久久天堂一区二区三区四区| 久久热在线av| 1024香蕉在线观看| 久久人人爽av亚洲精品天堂| 在线精品无人区一区二区三| 亚洲精品久久午夜乱码| 国产欧美亚洲国产| 久久综合国产亚洲精品| 捣出白浆h1v1| 91精品伊人久久大香线蕉| www.av在线官网国产| 日韩成人av中文字幕在线观看| 免费在线观看完整版高清| 青春草亚洲视频在线观看| 蜜桃在线观看..| 欧美精品av麻豆av| 欧美黄色片欧美黄色片| 久久99热这里只频精品6学生| 深夜精品福利| 久久99热这里只频精品6学生| 在线精品无人区一区二区三| 中文字幕av电影在线播放| 国产欧美亚洲国产| 好男人视频免费观看在线| 夫妻性生交免费视频一级片| 欧美人与性动交α欧美软件| 欧美在线一区亚洲| 国产精品免费视频内射| 大香蕉久久成人网| 欧美日韩亚洲高清精品| 人人妻人人澡人人看| www.自偷自拍.com| 亚洲一级一片aⅴ在线观看| 丝袜喷水一区| 亚洲精品国产一区二区精华液| 日韩精品免费视频一区二区三区| 伦理电影免费视频| 亚洲成av片中文字幕在线观看| 色视频在线一区二区三区| 亚洲在久久综合| 看免费av毛片| 90打野战视频偷拍视频| 一本大道久久a久久精品| 51午夜福利影视在线观看| 五月天丁香电影| 精品福利永久在线观看| 侵犯人妻中文字幕一二三四区| 这个男人来自地球电影免费观看 | 欧美在线一区亚洲| 一边摸一边做爽爽视频免费| 国产 一区精品| 久久久久久人人人人人| 日本wwww免费看| 新久久久久国产一级毛片| 最近最新中文字幕免费大全7| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲欧美精品永久| 国产一卡二卡三卡精品 | 久热这里只有精品99| 亚洲欧洲日产国产| 国产成人一区二区在线| 少妇猛男粗大的猛烈进出视频| 90打野战视频偷拍视频| 2021少妇久久久久久久久久久| 纵有疾风起免费观看全集完整版| 精品少妇一区二区三区视频日本电影 | 在线观看三级黄色| 国产av一区二区精品久久| 久久午夜综合久久蜜桃| 日韩,欧美,国产一区二区三区| 国产免费视频播放在线视频| 色94色欧美一区二区| 美国免费a级毛片| 大话2 男鬼变身卡| 97精品久久久久久久久久精品| 大香蕉久久成人网| 久久人人97超碰香蕉20202| 国产成人精品久久二区二区91 | 高清视频免费观看一区二区| 校园人妻丝袜中文字幕| 性高湖久久久久久久久免费观看| 一本大道久久a久久精品| 亚洲一码二码三码区别大吗| 亚洲欧美日韩另类电影网站| 69精品国产乱码久久久| 亚洲少妇的诱惑av| 2018国产大陆天天弄谢| 久久av网站| 高清不卡的av网站| av.在线天堂| 国产 精品1| 大香蕉久久成人网| av线在线观看网站| 在线观看三级黄色| 亚洲第一青青草原| 午夜福利视频精品| 久久99一区二区三区| 97精品久久久久久久久久精品| 中文欧美无线码| 亚洲精品国产av蜜桃| 国产97色在线日韩免费| 午夜免费观看性视频| 国产精品女同一区二区软件| 成人免费观看视频高清| 男女之事视频高清在线观看 | 久久久精品区二区三区| 久久久久精品久久久久真实原创| av在线老鸭窝| 成人影院久久| 女人久久www免费人成看片| 亚洲综合精品二区| 视频在线观看一区二区三区| 纯流量卡能插随身wifi吗| 国产97色在线日韩免费| 少妇被粗大的猛进出69影院| 国产av国产精品国产| 国产av码专区亚洲av| 丝袜脚勾引网站| 亚洲美女黄色视频免费看| 亚洲美女搞黄在线观看| 日韩av免费高清视频| 国产不卡av网站在线观看| 国产日韩欧美在线精品| 国产片内射在线| 亚洲国产日韩一区二区| 欧美人与性动交α欧美软件| 免费高清在线观看视频在线观看| 午夜精品国产一区二区电影| 亚洲国产欧美在线一区| 免费在线观看完整版高清| 毛片一级片免费看久久久久| 人成视频在线观看免费观看| 妹子高潮喷水视频| 十分钟在线观看高清视频www| 人妻 亚洲 视频| 看免费av毛片| 亚洲第一区二区三区不卡| 精品少妇一区二区三区视频日本电影 | 久久综合国产亚洲精品| 国产av精品麻豆| 国产精品99久久99久久久不卡 | 少妇精品久久久久久久| 久久久久人妻精品一区果冻| 亚洲人成77777在线视频| 曰老女人黄片| 99香蕉大伊视频| 欧美精品高潮呻吟av久久| 国产精品一区二区在线不卡| 波野结衣二区三区在线| 最近2019中文字幕mv第一页| 国产国语露脸激情在线看| 欧美97在线视频| 国产成人av激情在线播放| 国产av码专区亚洲av| 亚洲精品第二区| 欧美日韩福利视频一区二区| 欧美在线黄色| 亚洲精品久久午夜乱码| 亚洲欧美一区二区三区黑人| 一边摸一边做爽爽视频免费| 在线观看免费日韩欧美大片| 国产精品久久久久久精品古装| 久久这里只有精品19| 久久婷婷青草| 欧美另类一区| 尾随美女入室| 卡戴珊不雅视频在线播放| 永久免费av网站大全| 老司机靠b影院| 日韩中文字幕视频在线看片| 中文字幕人妻丝袜一区二区 | 只有这里有精品99| 日日啪夜夜爽| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产中文字幕在线视频| 国产一区二区激情短视频 | 美国免费a级毛片| 最新的欧美精品一区二区| 国产在线一区二区三区精| 一级毛片电影观看| 亚洲成色77777| 最近的中文字幕免费完整| 亚洲美女视频黄频| 国产精品国产av在线观看| 午夜日韩欧美国产| 日韩av在线免费看完整版不卡| 自线自在国产av| 中文精品一卡2卡3卡4更新| 人妻一区二区av| 国产在视频线精品| 两性夫妻黄色片| 国产成人系列免费观看| 色视频在线一区二区三区| 精品免费久久久久久久清纯 | 女人久久www免费人成看片| 9热在线视频观看99| 欧美日韩一级在线毛片| 日韩一区二区视频免费看| 天堂8中文在线网| 亚洲欧美精品自产自拍| 欧美成人精品欧美一级黄| 高清av免费在线| 成人免费观看视频高清| 少妇 在线观看| 操美女的视频在线观看| 尾随美女入室| 日本欧美国产在线视频| 99香蕉大伊视频| 亚洲精品久久成人aⅴ小说| 91精品伊人久久大香线蕉| 麻豆av在线久日| 极品少妇高潮喷水抽搐| 黄片播放在线免费| 在线看a的网站| 999久久久国产精品视频| 国产亚洲午夜精品一区二区久久| 国产精品一区二区在线观看99| 99热全是精品| 最新在线观看一区二区三区 | 欧美日韩亚洲综合一区二区三区_| 国产精品一二三区在线看| 日韩中文字幕视频在线看片| 黄色视频不卡| 欧美精品亚洲一区二区| 99热网站在线观看| 高清视频免费观看一区二区| 在线 av 中文字幕| 亚洲欧美成人综合另类久久久| 亚洲视频免费观看视频| 中文字幕精品免费在线观看视频| 免费观看a级毛片全部| 成年动漫av网址| 好男人视频免费观看在线| 免费人妻精品一区二区三区视频| 国产精品麻豆人妻色哟哟久久| 国产成人av激情在线播放| 天天操日日干夜夜撸| 99久久人妻综合| 成人漫画全彩无遮挡| 国产成人精品久久久久久| 男人舔女人的私密视频| 久久久久人妻精品一区果冻| 精品免费久久久久久久清纯 | 国产男女超爽视频在线观看| 在线观看www视频免费| 亚洲综合色网址| 90打野战视频偷拍视频| 丰满饥渴人妻一区二区三| 大片电影免费在线观看免费| 久久精品人人爽人人爽视色| 丰满饥渴人妻一区二区三| av网站在线播放免费| 午夜福利免费观看在线| 激情视频va一区二区三区| 高清av免费在线| 成人亚洲欧美一区二区av| 久久精品久久久久久久性| 免费久久久久久久精品成人欧美视频| 免费高清在线观看日韩| 亚洲精品中文字幕在线视频| 夫妻午夜视频| 一级毛片黄色毛片免费观看视频| 老司机靠b影院| 伦理电影免费视频| 亚洲欧美一区二区三区黑人| 嫩草影视91久久| 人人澡人人妻人| 久久久亚洲精品成人影院| 天天躁狠狠躁夜夜躁狠狠躁| 91精品国产国语对白视频| 国产黄频视频在线观看|