朱金秀 盧喜烈 魯楠 何卓喬 嚴(yán)靜怡 譚學(xué)瑞
嬰兒猝死綜合征(sudden infant death syndrome,SIDS)是嬰兒死亡的重要原因。由于缺乏明確的病理生理學(xué)機(jī)制,死亡后才能明確診斷是SIDS的突出特點(diǎn),其診斷依據(jù)建立在排除基礎(chǔ)上。通常情況下,嬰兒在睡眠過程中被發(fā)現(xiàn)死亡。突然發(fā)生的、不明原因的、健康嬰兒的死亡顯然是家庭的悲劇。即使經(jīng)過深入調(diào)查,包括詳細(xì)的尸檢和所有輔助檢查,如組織學(xué)、微生物學(xué)、病毒學(xué)、毒理學(xué),仍有約70%~80%的嬰兒猝死是無法解釋的[1]。2013年美國心律學(xué)會(HRS)、歐洲心律學(xué)會(EHRA)、亞太心律學(xué)會(APHRS)專家共識將不明原因的嬰兒猝死納入遺傳性心律失常范圍[2]。SIDS是發(fā)達(dá)和發(fā)展中國家重要的公共健康問題,但目前尚缺乏有效的篩選流程和新生兒/嬰兒心電圖特征與SIDS對應(yīng)的臨床流行病學(xué)研究資料,以及已知的遺傳性心律失常致病基因與SIDS之間的機(jī)制研究。我們針對上述內(nèi)容綜述如下。
猝死在臨床上定義為看似健康的人在短期內(nèi)(一般從急性癥狀開始不超過1 h),自然或意外死亡[3]。85%以上的猝死由心臟原因?qū)е?即心源性猝死(sudden cardiac death,SCD),每10萬人中約有50~100人由SCD導(dǎo)致死亡[4]。35歲以下的SCD患者, 24%~31%由冠狀動脈疾病導(dǎo)致,17%~37%與心肌病相關(guān),31%~35%肉眼和組織學(xué)檢查無法確定病因,經(jīng)DNA檢測尸檢陰性的死亡病例中約53%存在已知的遺傳性心律失常[5]。
看似健康的嬰兒在睡眠中(包括晚上、早晨或午睡后)突然意外死亡的現(xiàn)象稱為SIDS或者“嬰兒猝死”。自1969年西雅圖第二屆嬰兒猝死病因國際會議上提出嬰兒猝死的概念,SIDS的定義被不斷補(bǔ)充和更新[6-7]。綜合流行病學(xué)危險因素、病理特征以及輔助實(shí)驗(yàn)結(jié)果后,Krous等[8]定義SIDS:年齡<1歲的嬰兒在睡眠過程中突然意外死亡,經(jīng)過深入調(diào)查仍然無法解釋其原因,調(diào)查包括完整的尸檢、死亡現(xiàn)場檢查和臨床病史回顧。此定義強(qiáng)調(diào)猝死發(fā)生于睡眠狀態(tài),并需要對死亡情況進(jìn)行評估,是目前應(yīng)用最廣泛的定義。
連續(xù)隨訪5年的研究結(jié)果顯示,1~19歲青少年群體中,1~2歲幼兒發(fā)生SCD的概率最高[9]。分年齡段研究猝死流行病學(xué)特征有利于制定個性化診斷和預(yù)防策略。不同國家、族群、性別以及一年中不同季節(jié)SIDS的患病率均有差異,活產(chǎn)嬰兒中總發(fā)病率約0.5‰~2.5‰[10-11]。時至今日,SIDS仍是美國以及其他發(fā)達(dá)國家嬰兒死亡的主要原因,約占嬰兒總死亡率的33%[12]。在我國,SIDS約占嬰兒總死亡率的11.9%,僅次于肺炎和先天畸形[13]。
嬰兒出生后1~2周內(nèi) SIDS較少見,90%的SIDS發(fā)生于3周之后,第3周~4個月為高峰,6個月后罕見,平均死亡年齡(2.9±1.9)個月,約60%為男嬰[14-15]。雙胞胎SIDS的發(fā)生率高于單胎(1.3‰vs. 0.7‰),這種現(xiàn)象在某種程度上反映了雙胞胎早產(chǎn)兒和低體質(zhì)量兒的發(fā)病率更高[16]。
SIDS相關(guān)的危險因素,一方面包括環(huán)境誘發(fā),例如俯臥睡眠、睡眠環(huán)境、高溫、季節(jié)以及尼古丁暴露;另一方面是尚不清晰的生物因素,可能涉及心臟功能、腦干傳導(dǎo)功能、呼吸調(diào)節(jié)功能和免疫系統(tǒng)的基因[11-17]。
俯臥睡眠是已經(jīng)確定的重要的SIDS危險因素,與窒息相關(guān)的危險因素還包括床上覆蓋物以及和監(jiān)護(hù)人同床睡眠[18-19]。吸煙是SIDS的獨(dú)立危險因素,母親在孕期吸煙或嬰兒出生后暴露在煙霧環(huán)境中均與SIDS相關(guān)[20-21],在智利約1/3的SIDS由產(chǎn)前吸煙導(dǎo)致[22]。乙醇與SIDS的相關(guān)性尚存爭議,Blair等[23]研究發(fā)現(xiàn),與對照組相比,SIDS組的母親飲酒率高,但在矯正了吸煙等混雜因素后兩組間無差異。然而,McDonnell-Naughton等[24]研究結(jié)果顯示,SIDS患兒的母親在懷孕期間比對照組飲酒率更高、飲酒量更大。另有研究發(fā)現(xiàn),懷孕期間每天攝入400 mg及以上咖啡因(相當(dāng)于4杯以上咖啡)增加SIDS的風(fēng)險[25],但也有研究者認(rèn)為是存在其他混雜因素導(dǎo)致[26]。此外,嬰兒看護(hù)中心具有較高的SIDS發(fā)生率,發(fā)生機(jī)制尚不明確,有研究者認(rèn)為可能與睡眠不足導(dǎo)致嬰兒更深層睡眠和覺醒障礙有關(guān)[27-28]。
上述SIDS的危險因素,如俯臥睡眠、頭部覆蓋、共用床位、吸煙、飲酒和咖啡因都是可以避免或改變的。然而,“三重風(fēng)險模型”中考慮的風(fēng)險因素并非如此。近年來研究者提出眾多關(guān)于SIDS死亡原因和機(jī)制的假說,包括炎癥、血清素異常和代謝紊亂。最具影響力的假說是Filiano等[29]提出的“三重風(fēng)險模型”,即SIDS由多種因素導(dǎo)致和誘發(fā),其發(fā)生和發(fā)展機(jī)制包括內(nèi)源因素、外源因素和誘發(fā)因素(圖1)。例如,胎兒在母體發(fā)育過程中,可能由于孕婦吸煙而形成了一個易感嬰兒,這類嬰兒出生以后的發(fā)育關(guān)鍵時期如遇到炎癥等外源性因素的刺激,則可能大大增加SIDS的風(fēng)險。
三重風(fēng)險模型提出后,多種內(nèi)源、外源因素被發(fā)現(xiàn)與SIDS相關(guān)[19]。內(nèi)源風(fēng)險因素定義為“影響易感性的遺傳或環(huán)境因素”,包括非洲裔美國人、男性、早產(chǎn)(<37孕周出生)、低體質(zhì)量和孕期吸煙或飲酒等,外源風(fēng)險因素定義為“死亡時可能會增加易感嬰兒猝死風(fēng)險的物理應(yīng)激”如上呼吸道感染、高溫環(huán)境等。三重風(fēng)險模型強(qiáng)調(diào)了SIDS的綜合性,遺傳傾向、生長發(fā)育過程中的已知危險因素和環(huán)境因素(包括病毒和細(xì)菌)都在SIDS中發(fā)揮作用。大量假說主要集中在呼吸或心功能的穩(wěn)態(tài)控制異常,但SIDS的根本原因仍不清楚。
圖1 嬰兒猝死綜合征的三重風(fēng)險模型
近年來,與SIDS相關(guān)的基因突變和多態(tài)性受到廣泛關(guān)注,與SIDS相關(guān)的基因包括參與自主神經(jīng)系統(tǒng)早期發(fā)育的基因(PHOX2a,RET,ECE1,TLX3 和EN1)、尼古丁代謝酶、參與免疫系統(tǒng)、能量產(chǎn)生、血糖代謝、體溫調(diào)節(jié)和線粒體活性的基因等[30]。
腦干中的5-羥色胺(5-HT)網(wǎng)絡(luò)在SIDS研究領(lǐng)域中備受關(guān)注,血清素是神經(jīng)和免疫系統(tǒng)相互作用的重要媒介,而大腦可能是SIDS患兒免疫反應(yīng)導(dǎo)致腦脊液中IL-6水平升高引發(fā)致死機(jī)制的靶器官。炎癥是SIDS中不可忽視的誘因,超過40%的嬰兒在發(fā)生猝死的前兩周內(nèi)有輕微上呼吸道感染癥狀。Blackwell等[31]發(fā)現(xiàn)幾種促進(jìn)炎癥反應(yīng)失控的基因多態(tài)性,特別是導(dǎo)致抗炎細(xì)胞因子白細(xì)胞介素10(IL-10)失活或促進(jìn)細(xì)胞因子IL-1β和IL-6過表達(dá)的基因多態(tài)性與對照組比較增加SIDS的發(fā)病率。SIDS與血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)基因多態(tài)性的關(guān)聯(lián)性被相繼報道,研究發(fā)現(xiàn)妊娠期糖尿病患者的腦脊液中VEGF水平顯著升高,提示組織缺氧可能在SIDS中起重要作用[32]。其他炎癥過程可能位于消化道、神經(jīng)系統(tǒng)和血液中[10],不受控制的炎癥介質(zhì)的釋放以及其毒性是SIDS發(fā)生的重要因素。常染色體隱性遺傳病中鏈酰基輔酶A脫氫酶(MCAD)缺乏導(dǎo)致的脂肪酸氧化障礙,也是SIDS的致病基因,約7.3%的SIDS由MCAD遺傳缺陷導(dǎo)致?;蚪M學(xué)研究中主要的限制是不同種族之間的遺傳變異,不同研究結(jié)果間很難進(jìn)行比較。
青少年群體的猝死通常由原發(fā)性心律失常綜合征引起,死亡原因?yàn)殡姽?jié)律紊亂而非機(jī)械泵衰竭[33]。潛在的遺傳基礎(chǔ)是必要條件,包括結(jié)構(gòu)性心臟病和遺傳性心律失常[34-35]。常見的遺傳性心律失常包括長QT綜合征(LQTS)、兒茶酚胺敏感性多形性室速(CPVT)、Brugada綜合征(BrS)和短QT綜合征(SQTS)。SIDS為排除性診斷,需排除結(jié)構(gòu)性心臟病,因此推測SIDS多由遺傳性心律失常誘發(fā)電紊亂導(dǎo)致[36]。
雖然SIDS是多因素共同作用的結(jié)果,然而心電圖和分子生物學(xué)研究已經(jīng)闡明了它與遺傳性心律失常之間的關(guān)聯(lián)性[37-38]。繼Arnestad等[39]研究發(fā)現(xiàn)約12%的SIDS由LQTS導(dǎo)致后,BrS、CPVT以及SQTS都被列為SIDS可能的致死原因[40-41]。截至目前已發(fā)現(xiàn)數(shù)十個基因突變與上述離子通道疾病相關(guān)(表1),其中4個最常見:SCN5A、KCNQ1、KCNH2、和RyR2,分布如下:LQTS (KCNQ1 40%,KCNH2 30%和SCN5A15%),BrS(SCN5A25%),CPVT(RyR2 50%),SQTS(KCNQ1 30 %、KCNH2 20%)[42]。遺傳性心律失常疾病相關(guān)的基因[43]見表1。
表1 遺傳性心律失常疾病相關(guān)的基因
LQTS患病率約1/2000,是編碼心臟離子通道或調(diào)節(jié)其活性的蛋白質(zhì)基因突變導(dǎo)致的與心肌動作電位離子控制有關(guān)的常染色體顯性遺傳性疾病,心室復(fù)極時間延長,室性心律失常和SCD風(fēng)險增加是LQTS的顯著特點(diǎn)[44]。LQTS至少有16種基因亞型,體表心電圖大多表現(xiàn)為QT間期延長,研究結(jié)果證明,新生兒心電圖QT間期篩查對SIDS以及青少年、成人的SCD風(fēng)險評估具有重要價值,嬰兒期間經(jīng)歷心臟驟停的LQTS患兒,在未來十年中是心臟驟停甚至猝死的高風(fēng)險人群[45-46]。Yoshinaga等[47]研究了1058名從出生至1歲嬰兒的QT間期變化,研究結(jié)果顯示出生后6~11周是新生兒-嬰兒生長發(fā)育過程中QTc間期最長的年齡段。這恰巧與SIDS流行病學(xué)特征基本吻合,進(jìn)一步佐證QT間期延長與SIDS的相關(guān)性。然而,約25%的LQTS基因陽性患者QT/QTc間期正常,但與其他LQTS基因型陰性的兄弟姐妹相比,危及生命事件依然增加。因此,傳統(tǒng)的QT/QTc間期測量可能會遺漏潛在的LQTS患者[48]。T波形態(tài)標(biāo)記作為補(bǔ)充篩查工具,可進(jìn)一步完善心電圖對LQTS患者的篩查,并在增加敏感性的基礎(chǔ)上根據(jù)不同形態(tài)區(qū)分亞型[49]。
BrS是一種常染色體顯性遺傳性疾病,表型多變,外顯率低于LQTS,患病率0.01%~1%,其中亞裔人群患病率最高,是東南亞健康青年死亡的主要原因[50]。BrS特點(diǎn)是無心臟結(jié)構(gòu)異常的患者心電圖右胸導(dǎo)聯(lián)ST抬高[51](圖2),突然死亡可能是BrS的首發(fā)癥狀。約25%的BrS與SCN5A基因突變相關(guān),另外17個基因變異體僅占確診病例的5%,70%的BrS不能確定基因突變類型[51]。較少有人在嬰幼兒人群關(guān)注BrS,最近的研究發(fā)現(xiàn)BrS和SIDS具有相同的易感突變基因GPD1L和SCN1B/SCN1Bb,兩者均可致心臟鈉離子通道功能喪失,誘發(fā)SCD[52-53]。心電圖檢查對BrS有重要的診斷以及預(yù)警意義。研究發(fā)現(xiàn),BrS患者在Ⅰ導(dǎo)聯(lián)存在寬大的S波、碎裂QRS波、早期復(fù)極均是預(yù)測BrS患者惡性室性心律失常、心臟性猝死的獨(dú)立危險因素[54-56]。
圖2 Brugada波心電圖表現(xiàn)
CPVT是常染色體顯性遺傳性疾病,心臟性猝死往往為第一臨床表現(xiàn)。CPVT發(fā)病率約1/10 000,但發(fā)病率可能被低估,Jiménez-Jáimez等[57]發(fā)現(xiàn)14%的尸檢陰性患者與CPVT相關(guān)基因突變有關(guān)。心臟RYR2(60%)受體與參與鉀離子通道編碼的KCNJ2(5%~10%)突變是導(dǎo)致CPVT的主要分子基礎(chǔ)[58]。雙向型、多型室性心動過速是CPVT的典型心電圖表現(xiàn)[59](圖3)。約30%的CPVT在兒童期發(fā)病,心電圖在小兒CPVT的診斷中具有重要價值[60]。
圖3 兒茶酚胺敏感性多形性室速的心電圖表現(xiàn)
與LQTS相反,SQTS以心臟復(fù)極加速,心電圖QT間期縮短為特征,但同樣增加心臟性猝死風(fēng)險。目前用于確定SQTS診斷的QT間期低限不同,普通人群中QTc<360 ms者約2%,<340 ms者約0.5%,而<300 ms者僅0.003%[61-62]。與LQTS相比,SQTS患者的心律失常更易發(fā)生于安靜狀態(tài),這與SIDS的發(fā)病狀況類似[63]。
早期復(fù)極與BrS有相似的心電圖表現(xiàn),定義為心電圖至少在兩個相鄰導(dǎo)聯(lián)伴隨J點(diǎn)抬高(≥0.1 mV,除V1~V3導(dǎo)聯(lián))出現(xiàn)J波、QRS末端切跡或者R波降支頓挫[64-65]。早期復(fù)極與房性、室性心律失常和心臟性猝死風(fēng)險增加有關(guān),目前研究范圍尚未涉及嬰兒群體,但研究發(fā)現(xiàn)早期復(fù)極常伴隨LQTS、BrS、SQTS疾病出現(xiàn),并且進(jìn)一步增加心律失常事件的風(fēng)險[66]。
雖然研究者們一直在探索,迄今為止還缺乏SIDS有效篩查手段?;蚝Y查受實(shí)驗(yàn)室條件、經(jīng)濟(jì)條件等限制,很難在新生兒中廣泛應(yīng)用。成本低廉、可靠有效的檢測手段是SIDS篩查、早期干預(yù)降低死亡率的關(guān)鍵技術(shù)。心電圖描記術(shù)簡單、無創(chuàng)、廉價、易行,尤其對遺傳性心律失常誘發(fā)的SIDS有重要的篩查、預(yù)警和診斷意義。少有人跟蹤到新生兒-嬰兒-幼兒期的連續(xù)心電記錄,而新生兒-嬰兒階段是母嬰共體向獨(dú)立個體循環(huán)模式轉(zhuǎn)變的關(guān)鍵時期,血流動力學(xué)以及心臟功能發(fā)生巨大變化。因此,新生兒-嬰兒心電圖具有復(fù)雜多變性,這些復(fù)雜變化詮釋著胎兒脫離母體后適應(yīng)循環(huán)系統(tǒng)血流動力學(xué)的動態(tài)變化、胎兒和新生兒心肌的不同生理特征以及在以后的生長發(fā)育中心臟在胸腔的位置、方向變化[67]。然而,心電圖檢查并非新生兒常規(guī)檢查項(xiàng)目;其次,缺乏基于心電學(xué)的SIDS高危人群的篩查預(yù)警指標(biāo)。新生兒復(fù)雜多變的心電圖現(xiàn)象中可能蘊(yùn)含著SIDS有關(guān)的特征性改變,特別是與SIDS有重要相關(guān)性的遺傳性心律失常性疾病的心電圖學(xué)特征。通過流行病學(xué)研究,發(fā)現(xiàn)、提取、分析、總結(jié)這些心電圖學(xué)特征,建立基于新生兒心電圖的早期SIDS高危嬰兒篩查指標(biāo)體系對于早期預(yù)防、干預(yù)SIDS有科學(xué)和實(shí)踐價值。
[1] Evans A, Bagnall RD, Duflou J,et al.Postmortem review and genetic analysis in sudden infant death syndrome: an 11-year review[J]. Hum Pathol, 2013, 44(9):1730-1736.
[2] Priori SG, Wilde AA, Horie M,et al.HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013[J]. Heart Rhythm,2013, 10(12):1932-1963.
[3] Basso C, Carturan E, Pilichou K,et al.Sudden cardiac death with normal heart: molecular autopsy[J]. Cardiovasc Pathol,2010, 19(6):321-325.
[4] Fishman GI, Chugh SS, Dimarco JP,et al. Sudden cardiac death prediction and prevention: report from a National Heart, Lung, and Blood Institute and Heart Rhythm Society Workshop[J]. Circulation, 2010, 122(22):2335-2348.
[5] Doolan A, Langlois N, Semsarian C.Causes of sudden cardiac death in young Australians[J]. Med J Aust,2004, 180(3):110-112.
[6] Willinger M, James LS, Catz C. Defining the sudden infant death syndrome (SIDS): deliberations of an expert panel convened by the National Institute of Child Health and Human Development[J]. Pediatr Pathol,1991, 11(5):677-684.
[7] Beckwith JB. Defining the sudden infant death syndrome[J]. Arch Pediatr Adolesc Med,2003, 157(3):286-290.
[8] Krous HF, Beckwith JB, Byard RW,et al.Sudden infant death syndrome and unclassified sudden infant deaths: a definitional and diagnostic approach[J]. Pediatrics,2004, 114(1):234-238.
[9] Pilmer CM, Kirsh JA, Hildebrandt D,et al.Sudden cardiac death in children and adolescents between 1 and 19 years of age[J]. Heart Rhythm,2014, 11(2):239-245.
[10] Moon RY, Horne RS, Hauck FR.Sudden infant death syndrome[J]. Lancet,2007, 370(9598):1578-1587.
[11] Fard D, Laer K, Rothamel T,et al.Candidate gene variants of the immune system and sudden infant death syndrome[J]. Int J Legal Med,2016, 130(4):1025-1033.
[12] Kochanek KD, Kirmeyer SE, Martin JA,et al.Annual summary of vital statistics: 2009[J]. Pediatrics,2012, 129(2):338-348.
[13] Rudan I, Chan KY, Zhang JS,et al.Causes of deaths in children younger than 5 years in China in 2008[J]. Lancet,2010, 375(9720):1083-1089.
[14] Fleming PJ, Blair PS, Pease A.Sudden unexpected death in infancy: aetiology, pathophysiology, epidemiology and prevention in 2015[J]. Arch Dis Child,2015, 100(10):984-988.
[15] American Academy of Pediatrics Task Force on Sudden Infant Death Syndrome. The changing concept of sudden infant death syndrome: diagnostic coding shifts, controversies regarding the sleeping environment, and new variables to consider in reducing risk[J]. Pediatrics,2005, 116(5):1245-1255.
[16] Getahun D, Demissie K, Lu SE,et al.Sudden infant death syndrome among twin births: United States, 1995-1998[J]. J Perinatol, 2004, 24(9):544-551.
[17] Rand CM, Patwari PP, Carroll MS,et al. Congenital central hypoventilation syndrome and sudden infant death syndrome: disorders of autonomic regulation[J]. Semin Pediatr Neurol, 2013, 20(1):44-55.
[18] Blair PS, Mitchell EA, Heckstall-Smith EM,et al.Head covering-a major modifiable risk factor for sudden infant death syndrome: a systematic review[J]. Arch Dis Child,2008, 93(9):778-783.
[19] Trachtenberg FL, Haas EA, Kinney HC,et al.Risk factor changes for sudden infant death syndrome after initiation of Back-to-Sleep campaign[J]. Pediatrics,2012, 129(4):630-638.
[20] Duncan JR, Garland M, Myers MM,et al. Prenatal nicotine-exposure alters fetal autonomic activity and medullary neurotransmitter receptors: implications for sudden infant death syndrome[J]. J Appl Physiol, 2009, 107(5):1579-1590.
[21] St-Hilaire M, Duvareille C, Avoine O ,et al.Effects of postnatal smoke exposure on laryngeal chemoreflexes in newborn lambs[J]. J Appl Physiol,2010, 109(6):1820-1826.
[22] Cerda J, Bambs C, Vera C. Infant morbidity and mortality attributable to prenatal smoking in Chile[J]. Rev Panam Salud Publica,2017, 41:e106.
[23] Blair PS, Fleming PJ, Bensley D,et al.Smoking and the sudden infant death syndrome: results from 1993-5 case-control study for confidential inquiry into stillbirths and deaths in infancy. Confidential Enquiry into Stillbirths and Deaths Regional Coordinators and Researchers[J]. BMJ,1996, 313(7051):195-198.
[24] McDonnell-Naughton M, McGarvey C, O′Regan M,et al.Maternal smoking and alcohol consumption during pregnancy as risk factors for sudden infant death[J]. Ir Med J,2012, 105(4):105-108.
[25] Ford RP, Schluter PJ, Mitchell EA,et al.Heavy caffeine intake in pregnancy and sudden infant death syndrome. New Zealand Cot Death Study Group[J]. Arch Dis Child,1998, 78(1):9-13.
[26] Alm B, Wennergren G, Norvenius G,et al.Caffeine and alcohol as risk factors for sudden infant death syndrome. Nordic Epidemiological SIDS Study[J]. Arch Dis Child,1999, 81(2):107-111.
[27] Kiechl-Kohlendorfer U, Moon RY.Sudden infant death syndrome (SIDS) and child care centres (CCC) [J]. Acta Paediatr,2008, 97(7):844-845.
[28] Simpson JM. Infant stress and sleep deprivation as an aetiological basis for the sudden infant death syndrome[J]. Early Hum Dev, 2001, 61(1):1-43.
[29] Filiano JJ, Kinney HC.A perspective on neuropathologic findings in victims of the sudden infant death syndrome: the triple-risk model[J]. Biol Neonate,1994, 65(3-4):194-197.
[30] Van Norstrand DW, Ackerman MJ. Genomic risk factors in sudden infant death syndrome[J]. Genome Med,2010, 2(11):86.
[31] Blackwell CC, Moscovis SM, Gordon AE, et al. Cytokine responses and sudden infant death syndrome: genetic, developmental, and environmental risk factors[J]. J Leukoc Biol,2005, 78(6):1242-1254.
[32] Dashash M, Pravica V, Hutchinson IV,et al.Association of sudden infant death syndrome with VEGF and IL-6 gene polymorphisms[J]. Hum Immunol,2006, 67(8):627-633.
[33] K??b S. Genetics of sudden cardiac death-an epidemiologic perspective[J]. Int J Cardiol, 2017, 237:42-44.
[34] Bagnall RD, Weintraub RG, Ingles J,et al. A Prospective Study of Sudden Cardiac Death among Children and Young Adults[J]. N Engl J Med,2016, 374(25):2441-2452.
[35] Semsarian C, Ingles J, Wilde AA. Sudden cardiac death in the young: the molecular autopsy and a practical approach to surviving relatives[J]. Eur Heart J, 2015, 36(21):1290-1296.
[36] Aro AL, Chugh SS. Prevention of Sudden Cardiac Death in Children and Young Adults[J]. Prog Pediatr Cardiol,2017, 45:37-42.
[37] Tester DJ, Ackerman MJ.Sudden infant death syndrome: how significant are the cardiac channelopathies [J].Cardiovasc Res,2005, 67(3):388-396.
[38] Cronk LB,Ye B,Kaku T,et al.Novel mechanism for sudden infant death syndrome:persistent late sodium current secondary to mutations in caveolin-3[J].Heart Rhythm,2007, 4(2):161-166.
[39] Arnestad M, Crotti L, Rognum TO,et al.Prevalence of long-QT syndrome gene variants in sudden infant death syndrome[J]. Circulation,2007, 115(3):361-367.
[40] Ioakeimidis NS, Papamitsou T, Meditskou S,et al. Sudden infant death syndrome due to long QT syndrome: a brief review of the genetic substrate and prevalence[J]. J Biol Res,2017, 24:6.
[41] Tfelt-Hansen J, Winkel BG, Grunnet M,et al.Cardiac channelopathies and sudden infant death syndrome[J]. Cardiology,2011, 119(1):21-33.
[42] Campuzano O, Allegue C, Partemi S,et al. Negative autopsy and sudden cardiac death[J]. Int J Legal Med,2014, 128(4):599-606.
[43] Vacanti G, Maragna R, Priori SG,et al. Genetic causes of sudden cardiac death in children: inherited arrhythmogenic diseases[J]. Curr Opin Pediatr,2017, 29(5):552-559.
[44] Schwartz PJ, Stramba-Badiale M, Crotti L,et al.Prevalence of the congenital long-QT syndrome[J]. Circulation,2009, 120(18):1761-1767.
[45] Zupancic JA, Triedman JK, Alexander M,et al. Cost-effectiveness and implications of newborn screening for prolongation of QT interval for the prevention of sudden infant death syndrome[J]. J Pediatr,2000, 136(4):481-489.
[46] Spazzolini C,Mullally J,Moss AJ,et al.Clinical implications for patients with long QT syndrome who experience a cardiac event during infancy[J].J Am Coll Cardiol,2009, 54(9):832-837.
[47] Yoshinaga M, Kato Y, Nomura Y, et al.The QT intervals in infancy and time for infantile ECG screening for long QT syndrome [J]. J Arrhythm,2011, 27( 3): 193-201.
[48] Page A, Aktas MK, Soyata T,et al. “QT clock” to improve detection of QT prolongation in long QT syndrome patients[J]. Heart Rhythm,2016, 13(1):190-198.
[49] Immanuel SA, Sadrieh A, Baumert M,et al. T-wave morphology can distinguish healthy controls from LQTS patients[J]. Physiol Meas,2016, 37(9):1456-1473.
[50] Pecini R, Cedergreen P, Theilade S,et al. The prevalence and relevance of the Brugada-type electrocardiogram in the Danish general population: data from the Copenhagen City Heart Study[J]. Europace,2010, 12(7):982-986.
[51] Sarquella-Brugada G, Campuzano O, Arbelo E,et al. Brugada syndrome: clinical and genetic findings[J]. Genet Med,2016, 18(1):3-12.
[52] Hu D, Barajas-Martinez H, Medeiros-Domingo A,et al.A novel rare variant in SCN1Bb linked to Brugada syndrome and SIDS by combined modulation of Na(v)1.5 and K(v)4.3 channel currents[J]. Heart Rhythm,2012, 9(5):760-769.
[53] Van Norstrand DW, Valdivia CR, Tester DJ, et al. Molecular and functional characterization of novel glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) mutations in sudden infant death syndrome[J].Circulation,2007, 116(20):2253-2259.
[54] Tokioka K, Kusano KF, Morita H,et al.Electrocardiographic parameters and fatal arrhythmic events in patients with Brugada syndrome: combination of depolarization and repolarization abnormalities[J]. J Am Coll Cardiol,2014, 63(20):2131-2138.
[55] de Asmundis C, Mugnai G, Chierchia GB,et al. Long-term follow-up of probands with Brugada syndrome[J]. Am J Cardiol,2017, 119(9):1392-1400.
[56] Calò L,Giustetto C,Martino A,et al. A New Electrocardiographic Marker of Sudden Death in Brugada Syndrome: The S-Wave in Lead I[J]. J Am Coll Cardiol,2016, 67(12):1427-1440.
[57] Jiménez-Jáimez J,Peinado R,Grima EZ,et al. Diagnostic Approach to Unexplained Cardiac Arrest (from the FIVI-Gen Study)[J]. Am J Cardiol,2015, 116(6):894-899.
[58] Refaat MM, Hassanieh S, Scheinman M.Catecholaminergic Polymorphic Ventricular Tachycardia[J]. Card Electrophysiol Clin, 2016, 8(1):233-237.
[59] Sumitomo N. Current topics in catecholaminergic polymorphic ventricular tachycardia[J]. J Arrhythm, 2016, 32(5):344-351.
[60] Yu TC, Liu AP, Lun KS, et al. Clinical and genetic profile of catecholaminergic polymorphic ventricular tachycardia in Hong Kong Chinese children[J]. Hong Kong Med J,2016, 22(4):314-319.
[61] Anttonen O, Junttila MJ, Rissanen H,et al.Prevalence and prognostic significance of short QT interval in a middle-aged Finnish population[J]. Circulation,2007, 116(7):714-720.
[62] Iribarren C, Round AD, Peng JA,et al.Short QT in a cohort of 1.7 million persons: prevalence, correlates, and prognosis[J]. Ann Noninvasive Electrocardiol,2014, 19(5):490-500.
[63] Mazzanti A, Kanthan A, Monteforte N,et al.Novel insight into the natural history of short QT syndrome[J]. J Am Coll Cardiol, 2014, 63(13):1300-1308.
[64] Rezus C, Floria M, Moga VD,et al.Early repolarization syndrome: electrocardiographic signs and clinical implications[J].Ann Noninvasive Electrocardiol, 2014, 19(1):15-22.
[65] Talib AK, Sato N, Kawabata N, et al. Repolarization characteristics in early repolarization and brugada syndromes: insight into an overlapping mechanism of lethal arrhythmias[J].J Cardiovasc Electrophysiol,2014, 25(12):1376-1384.
[66] Hasegawa K, Watanabe H, Hisamatsu T, et al. Early repolarization and risk of arrhythmia events in long QT syndrome[J]. Int J Cardiol,2016, 223:540-542.
[67] Brockmeier K, Nazal R, Sreeram N.The electrocardiogram of the neonate and infant[J].J Electrocardiol,2016, 49(6):814-816.