• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular Simulation of Adsorption of Quinoline Homologues on FAU Zeolite

    2016-03-22 09:18:17
    中國煉油與石油化工 2016年4期

    (School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical of Ministry of Education, Wuhan Institute of Technology, Wuhan 430070)

    Molecular Simulation of Adsorption of Quinoline Homologues on FAU Zeolite

    Shen Xizhou; Yan Fang; Li Meiqing; Xiao Yun

    (School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical of Ministry of Education, Wuhan Institute of Technology, Wuhan 430070)

    The Grand Canonical Monte Carlo (GCMC) simulation method was used to investigate the adsorption properties of quinoline homologues (quinoline, 2-methyl quinoline, and 2,4-dimethyl quinoline) on the FAU zeolite. The adsorption heat, adsorption isotherms, and adsorption sites of them were obtained. At the temperature ranging from 673.15 to 873.15 K, the Henry constant of quinoline homologues calculated on the FAU zeolite was applied to simulate their adsorption heat. And its value was more in accordance with the related data reported in the literature. The results showed that their isosteric heat decreased in the following order: 2,4-dimethyl quinoline (118.63 kJ/mol) > 2-methyl quinoline (110.45 kJ/mol) > quinoline (98 kJ/mol), and complied with the order of their adsorbate basicity. The competitive adsorption of three components of quinoline homologues on the FAU zeolite was calculated numerically at a temperature of 773.15 K and a pressure range of 0.1—100 MPa under the Universal force feld. Their adsorption capacity decreased in the following order: quinoline > 2-methyl quinoline >2,4-dimethyl quinoline. The smaller the molecule size of the adsorbate, the greater the saturated adsorption capacity would be. It was found that the quinoline homologues could be adsorbed in the main channels of 12- membered-ring framework of the zeolite. Simultaneously, the infuence of silica/alumina ratio on the adsorption property of quinoline homologues in FAU zeolite was studied. The smaller the silica/alumina ratio, the greater the isosteric heat and adsorption capacity would be.

    FAU zeolite; adsorption; molecular simulation; quinoline nitrides; silica alumina ratio

    1 Introduction

    At present, most domestic and foreign refneries process the FCC feedstock, in which the coker gas oil (CGO) is blended according to a certain proportion to produce light oil. Molecular sieves are widely used as the adsorbent and the catalyst in the refning and chemical processes[1-8]. The FAU-type zeolite is an important catalyst, and the silicon/ aluminum ratio is an important factor affecting the properties of molecular sieves[9-10].

    The catalytic cracking reaction is generally a gas-solid catalytic reaction in which the surface adsorption is an important step. The nitrogen compounds in CGO are preferentially adsorbed on acid sites of the cracking catalyst, which can result in the decrease of catalyst activity or even inactivation and can seriously affect the light oil yield from catalytic cracking process[11-15].

    Molecular simulation is a simple and effective way to study the nature of adsorption competition. Although some studies regarding the molecular simulation of the adsorption mechanism of basic nitrogen compounds (pyridine, amine, etc.) on the catalyst surface have been reported[16-23], there are few reports about the molecular simulation of the adsorption of quinoline homologues that are also important basic nitrogen compounds in CGO on the FAU zeolite[24-26]. Therefore, it is important to study the mechanism of catalyst poisoning caused by basic nitrogen compounds contained in CGO to carry out the molecular simulation of quinoline homologues adsorption on the surface of molecular sieves.

    2 Computational Model and Simulation Method

    2.1 Model construction

    The Y zeolite has a framework type of FAU with Fd-3 m space group and cell parameters comprisinga=b=c=2.434 5 nm andα=β=γ=90°, and a pore diameter of about 0.74 nm which is composed of 12 tetrahedra of TO4groups. The 2×2×2 unit cells of Y zeolite were used to construct the simulation boxes. The periodic boundary conditions were applied to simulate an infinite system.

    2.2 Simulation method

    The Grand Canonical Ensemble is the one of μVT, which is composed of an infnite open system by the constantVandT, namely the constants of volume, temperature and chemical potential. The adsorption process is an open system for the fuid in the adsorbent hole. The adsorption process carried out in the molecular sieve is one in which the exchange of materials and energy between the fluid in adsorbent hole and the bulk fluid while the chemical potential is kept equal. Hence, the adsorption behavior of quinoline in the zeolite Y was studied by the Grand Canonical Monte Carlo (GCMC) method.

    The Henry constant is presented below:

    in whichNis the simulation step size.

    The adsorption heat can be achieved by van’t Hoff’s formula:

    2.3 Parameters of force fi eld

    Here, the quinoline and faujasite were selected as the research materials. The Henry constant under different force felds was calculated when the temperature was increased from 623 K to 773 K[27]and 1.1×106steps were performed. The Henry constant is presented below in Figure 1. According to Formula (2), the values of isosteric heat of quinoline in FAU zeolite could be obtained under different force-felds as shown in Figure 1, with the results presented in Table 1.

    It can be seen that the difference in the isosteric heat is significant under different force fields as depicted in Table 1. The value of isosteric heat is 97.5 kJ/mol, which agrees well with the literature value[27]measured under the Universal force-field. Hence, the Universal force-feld was selected for investigating the adsorption properties of quinoline homologues on the FAU zeolite.

    Table 1 The values of isosteric heat of quinoline obtained under different force-fields

    Figure 1 Henry constant of quinoline under different force- fi elds

    3 Results and Discussion

    3.1 Henry constant and isosteric heat

    The relationship between the Henry constant and the temperature of adsorption of quinoline homologues in the FAU zeolite is shown in Figure 2.

    The isosteric heat of quinoline homologues on the FAU zeolite can be obtained under Universal force feld by using the ftting data in Figure 2 and Formula (2), with the results shown in Table 2.

    Table 2 The isosteric heat of quinoline homologues on FAU zeolite

    It can be seen that the isosteric heat of quinoline homologues decreased in the following order: 2,4-dimethyl quinoline (118.63 kJ/mol) > 2-methyl quinoline (110.45 kJ/mol) > quinoline (98 kJ/mol) as depicted in Table 1, which is in agreement with the order of the adsorbate basicity.

    3.2 Adsorption isotherm

    Figure 2 Henry constants of quinoline homologues on FAU zeolite at 673.15—873.15 K

    While the Universal force feld was selected, the adsorption isotherms for the quinoline homologues can be calculated respectively at 773.15 K and under 0.01—100 MPa, with the one-component adsorption isotherm shown in Figure 3. It is shown in Figure 3 that the adsorption capacity of quinoline homologues decreased in the following order: quinoline > 2-methyl quinoline > 2,4-dimethyl quinoline. The adsorption capacity of quinoline homologues increased with an increasing pressure. The adsorption capacity has no signifcant increase when the pressure is above 40 MPa.

    Figure 3 Adsorption isotherms of quinoline homologues on FAU zeolite at 773.15 K

    3.3 Adsorption isotherm fi tting

    3.3.1 Langmuir isothermal equation

    The Langmuir model is given by Formula (3)

    whereqis the absolute amount adsorbed in the unit;qmis the maximum adsorption capacity andbis the Langmuir equilibrium constant, which represents the affinity between the adsorbent and the adsorbate;pis the effective pressure, i.e. the fugacity. The data in Figure 3 is fitted according to Formula (3), with the results shown in Table 3.

    Table 3 The fit Langmuir coefficients for quinoline homologues on FAU zeolite

    It is indicated that the Langmuir model fts the data well at 773K as evidenced by the data listed in Table 3. The saturated capacity for adsorption of quinoline homologues on the FAU zeolite decreased in the following order: quinoline > 2-methyl quinoline > 2,4-dimethyl quinoline. Therefore, the smaller the molecular size, the larger the saturated adsorption capacity. Thus, we can conclude that the saturated adsorption capacity correlates well with the molecular size.

    3.4 Competitive adsorption of three quinoline homologues on the FAU zeolite

    3.4.1 Adsorption isotherms

    Adsorption isotherms of three quinoline homologues, the molar ratio of which is 1:1:1, on the FAU zeolite can be obtained at 773.15 K under Universal force feld when the pressure of the system varies from 0.01 kPa to 420 kPa, with the results shown in Figure 4.

    It can be seen that the competitive adsorption capacity of three quinoline homologues on the FAU zeolite decreased in the following order: quinoline > 2-methyl quinoline > 2,4-dimethyl quinoline. Therefore, the smaller the molecule size is, the greater the adsorption capacity would be. The pore diameter of the FAU zeolite is about 0.74 nm, and the diameter of hexagonal prism, β cage and supercage is 0.26 nm, 0.66 nm and 1.2 nm, respectively, while the molecular diameter of quinoline, 2-methyl quinoline and 2,4-dimethyl quinoline is about 0.73 nm, 0.78 nm and 0.83 nm, respectively.

    Quinoline has a molecular size of 0.73 nm that is commensurate with the size of the channel of FAU zeolite. So quinoline can be adsorbed on acid sites in the channels of FAU zeolite easily. In contrast, 2-methyl quinoline and 2,4-dimethyl quinoline have a bigger size than the diam-eter of the channels of FAU zeolite. Then 2,4-dimethyl quinoline would enter the channels of FAU zeolite with diffculty because of the steric hindrance effect. At present, the molecular size of quinoline homologues plays a dominant role in their competitive adsorption capacity.

    Figure 4 Adsorption isotherms of quinoline nitrides on FAU zeolite

    3.4.2 Adsorption sites

    It can be seen that the competitive adsorption of quinoline homologues occupied the main channel of the twelvemembered-ring pores primarily when the quinoline homologues were adsorbed in FAU zeolite simultaneously as shown in Figure 5. Then 2,4-dimethyl quinoline could only occupy the main channels of the twelve-memberedring pores because of their relatively larger diameter. Therefore 2,4-dimethyl quinoline molecules could be adsorbed in the biggest supercages of FAU zeolite, whereas quinoline and 2-methyl quinoline could occupy the smaller four-membered-ring channels and six-membered-ring channels in a random distribution.

    Figure 5 Adsorption sites of quinoline homologues on FAU zeolite

    4 Silica/Alumina Ratio

    The formula for FAU zeolite is as follows:

    in whichnis the value of silica/alumina ratio.

    The silica/alumina ratio is an important factor which affects the properties of molecular sieves. The adsorption heat and capacity for adsorption of quinoline homologues on FAU zeolites with a silica/alumina ratio of 1:1 can be obtained when the temperature increases from 573 K to 873 K under a pressure ranging from 0 to100 MPa after the simulation of 4×105steps.

    4.1 Influence of silica/alumina ratio on adsorption heat

    The adsorption heat of quinoline homologues on FAU zeolite with different silica/alumina ratio at 573.15 K to 873.15 K is calculated, with the results shown in Table 4.

    Table 4 Adsorption heat of quinoline homologues on FAU zeolite with different silica/alumina ratios

    It can be concluded from Table 4 that the smaller the silica/alumina ratio, the greater the isosteric heat formed on the molecular sieves with the same crystal cell. The reason might be that silicon atoms have much less activity than that of aluminum atoms, and the aluminum atoms can form stronger protonic acid in zeolites.

    4.2 Influence of silica/alumina ratio on adsorption capacity

    The capacity for adsorption of quinoline homologues on the FAU zeolite with different silica/alumina ratios at 573.15 K under a pressure ranging from 0 to 100 MPa ispresented in Figure 6—8.

    Figure 6 Adsorption isotherms of quinoline on FAU zeolite with different silica/alumina ratio

    Figure 7 Adsorption isotherms of isoquinoline on FAU zeolite with different silica/alumina ratios

    Figure 8 Adsorption isotherms of 2-methyl quinoline on FAU zeolite with different/silica alumina ratios

    It can be concluded that the influence of silica/alumina ratio on the adsorption heat and the capacity for adsorption of quinoline homologues in FAU zeolite are consistent with the results presented in Figures 6—8. During the initial adsorption stage, the bigger the silica/alumina ratio was, the smaller the adsorption capacity would be. The difference between them gradually tapers off with the increase in the pressure. At a pressure of 100 MPa, the adsorption capacity is basically identical. It has been shown that aluminum atoms can form stronger protonic acid under smaller pressure. However, the quinoline homologues have stronger alkalinity than other compounds. Thus, the smaller the silica/alumina ratio was, the greater the isosteric capacity would be. The saturated adsorption is basically identical with the case of operation under increased pressure.

    5 Conclusions

    (1) Universal force-feld was more favorable for calculating the isosteric heat of quinoline in the FAU zeolite the Si/Al ratio of which was 1.1 than that calculated by the Compass and Dreiding force-feld methods. The value of isosteric heat of quinoline was 97.5 kJ/mol which was in accordance with the literature value obtained under the Universal force-feld.

    (2) It was shown that the isosteric heat of quinoline homologues decreased in the following order: 2,4-dimethyl quinoline > 2-methyl quinoline > quinoline, which complied with the order of quinoline homologues in terms of their adsorbate basicity

    (3) The Langmuir model can be utilized to ft the adsorption isotherms of quinoline homologues on FAU zeolite under the Universal force feld.

    (4) The competitive adsorption capacity of three quinoline homologues on the FAU zeolite decreased in the following order: quinoline > 2-methyl quinoline > 2,4-dimethyl quinoline. The saturated adsorption capacity is related to the molecular size of quinoline homologues. The smaller the molecule size was, the greater the adsorption capacity would be.

    (5) The quinoline homologues occupied the main channels of twelve-membered-ring pore system primarily. Quinoline and 2-methyl quinoline occupied the fourmembered-ring channels and six-membered-ring channels in a small quantity and at random distribution, while 2,4-dimethyl quinoline only occupied the main twelvemembered-ring channels.

    (6) The adsorption heat and adsorption capacity of quinoline homologues on the FAU zeolite increased with thedecrease of silica/alumina ratio.

    Reference

    [1] Sang Y, Jiao Q Z, Li H S, et al. HZSM-5/MCM-41 composite molecular sieves for the catalytic cracking of endothermic hydrocarbon fuel: nano-ZSM-5 zeolites as the source[J]. Journal of Nanoparticle Research, 2014, 16(12): 2755-2765

    [2] Hong X, Tang K. Modification and nitrogen adsorption properties of zeolite NaY [J]. Journal of Fuel Chemistry and Technology, 2015, 43(2): 214-220 (in Chinese)

    [3] De Baerdemaeker T, Yilmaz B, Muller U, et al. Catalytic applications of OSDA-free Beta zeolite[J]. Journal of Catalysis, 2013, 308: 73-81

    [4] Xu X Y, Sun Y, Shen J, et al. Adsorption behavior of basic nitrides in model oil on HY and USY molecular sieves [J]. Chemical Industry and Engineering Progress, 2014, 33(4): 1035-1040 (in Chinese)

    [5] Bastiani R, Lam Y L, Henriques C A, et al. Application of ferrite zeolite in high-olefn catalytic cracking[J]. Fuel, 2013, 107: 680-687

    [6] Lai J L, Song L J, Sun Z L. A frequency-response study on sorption of thiophene and benzene on NiY zeolite [J]. China Petroleum Processing and Petrochemical Technology, 2011, 13(2): 24-28

    [7] Tang L, Shen J. USY zeolite adsorption properties of basic nitrogen in CGO and its application in dentrification [J]. Specialty Petrochemicals, 2014, 31(4): 18-21(in Chinese)

    [8] Liu Yibin, Li Yuzhen, Ding Xue. Adsorption Simulation of Basic Nitrogen Compounds in ZSM-5 and USY Zeolites by Grand Canonical Monte Carlo Method [A]. Advanced Materials Research, 2015, 1096:189-193

    [9] Jiang H, Sun W, Wang P. Molecular simulation of adsorption properties of propane on NanZSM-5 zeolites with different Si/Al ratios [J]. Yunnan Chemical Industry, 2011, 38(6): 1-5 (in Chinese)

    [10] Sethia G, PillaiR S, Dangi G P, et al. Sorption of methane, nitrogen, oxygen, and argon in ZSM-5 with different SiO2/ Al2O3ratios: Grand Canonical Monte Carlo simulation and volumetric measurements [J]. Industrial & Engineering Chemistry Research, 2010, 49(5): 2353-2362

    [11] Chen X B, Sun J P, Shen B Y, et al. Effect of basic nitrogen compounds of USY and ZSM-5-type catalytic cracking catalysts and catalytic properties[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2012, 36(5): 164-168, 174(in Chinese)

    [12] Li Z K, Wang G, Liu Y D, et al. Study on reaction performance and competitive adsorption effect during coker gas oil catalytic cracking[J]. Fuel Process Technol, 2013, 115: 1-10

    [13] Li Z K, Wang G, Shi Q, et al. Retardation effect of basic nitrogen compounds on hydrocarbons catalytic cracking in coker gas oil and their structural identifcation[J]. Ind Eng Chem Res, 2011, 50(7): 4123-4132

    [14] Shen B X, Chen X B, Sun J P, et al. FCC catalyst poisoning mechanism of nitrogen-containing compounds and their countermeasures[J]. Petrochemical Technology, 2013, 44(4): 457-462

    [15] Wang G, Liu Y D, Wang X Q, et al. Studies on the catalytic cracking performance of coker gas oil[J]. Energy Fuels, 2009, 23(4): 1942–1949

    [16] Wang B, Zhang Y, Zuo M, et al. Kinetics of pyridine desorption from acid sites on HY zeolite and characterization of its acid strength[J]. Petrochemical Technology, 2014, 43(3): 264-268.(in Chinese)

    [17] Liu Y J, Sun X Y, Long Y Z, et al. H-STI zeolite adsorption molecular simulation of ammonia molecules[J]. Journal of Jilin Institute of Chemical Technology, 2010, 27 (1): 12-14(in Chinese)

    [18] Shen X Z, Li M Q, Zhou H, et al. Molecular simulation of adsorption of amine on FAU zeolite nitride[J]. Computers and Applied Chemistry, 2011, 28(1): 1-4(in Chinese)

    [19] Zhang J F, Burke N, Yang Y X. Molecular simulation of propane adsorption in FAU zeolites[J]. Journal of Physical Chemistry C, 2012, 116(17): 9666-9674

    [20] Ding X, Liu Y B, Yang C H, et al. Molecular simulation and thermodynamic analysis of FCC dry gas adsorption in ZSM-5 zeolite[J]. Petroleum Processing and Petrochemicals, 2015, 46(9): 58-64 (in Chinese)

    [21] Ding X, Liu Y B, Yang C H, et al. Molecular simulations of FCC dry gas components adsorption in zeolite Y[J]. China Petroleum Processing and Petrochemical Technology, 2016, 18 (1): 99-107

    [22] Zhang J F, Burke N, Zhang S C, et al. Thermodynamic analysis of molecular simulations CO2and CH4adsorption in FAU zeolites[J]. Chemical Engineering Science, 2014, 113: 54-61

    [23] Sun X Y, Li J W, Li Y X, et al. Adsorption of benzeneand propylene in zeolite ZSM-5: Grand Canonical Monte Carlo simulations[J]. Chem Res Chin Univ, 2009, 25(3): 377-382

    [24] Wang Y F, Bu C J, Chi Z M, et al. Adsorption of quinoline on zeolite Al-MCM-41[J]. Journal of Chemical Industry and Engineering (China), 2015, 9: 3597-3604 (in Chinese)

    [25] Santarossa G, Iannuzzi M, Vargas A, et al. Adsorption of naphthalene and quinoline on Pt, Pd and Rh: A DFT study [J].Chem Phys Chem, 2008, 9(3): 401-413

    [26] Yu D Y, Xu H, Que G H, et al. Study on conversion of basic nitrogen compound quinoline in FCC [J]. Journal of Fuel Chemistry and Technology, 2004, 32(1): 43-47(in Chinese)

    [27] Tkhoang K S, Romanovskiy B V, Topchieva K V, et al. Adsorptive capacity and catalytic activity of zeolites. II. Heats of adsorption of several hydrocarbons and nitrogencontaining compounds on type-Y zeolite[J]. Journal of Catalysis,1968, 10(2): 209-211

    Received date: 2016-09-18; Accepted date: 2016-10-24.

    Prof. Shen Xizhou, Telephone:+86-13886050956; E-mail: xzhoush@163.com

    一级片'在线观看视频| 久久香蕉精品热| 天天躁夜夜躁狠狠躁躁| 久久精品国产清高在天天线| 欧美日韩乱码在线| 精品久久久久久电影网| 美女福利国产在线| 自线自在国产av| 欧美激情 高清一区二区三区| 天堂中文最新版在线下载| 黄色片一级片一级黄色片| 校园春色视频在线观看| 欧美 亚洲 国产 日韩一| 国产精品综合久久久久久久免费 | 50天的宝宝边吃奶边哭怎么回事| 中文亚洲av片在线观看爽 | 国产日韩一区二区三区精品不卡| 久久香蕉精品热| 久久亚洲精品不卡| 亚洲五月天丁香| 国产成人一区二区三区免费视频网站| 精品国产乱子伦一区二区三区| 亚洲午夜精品一区,二区,三区| 久久国产乱子伦精品免费另类| videosex国产| 热99re8久久精品国产| 怎么达到女性高潮| 大型黄色视频在线免费观看| 人人妻人人澡人人爽人人夜夜| 成人手机av| 高清在线国产一区| a级毛片黄视频| 午夜影院日韩av| 人人妻人人澡人人爽人人夜夜| 69精品国产乱码久久久| 一区二区三区国产精品乱码| 每晚都被弄得嗷嗷叫到高潮| 日本精品一区二区三区蜜桃| 青草久久国产| 国产精品电影一区二区三区 | 首页视频小说图片口味搜索| 99国产精品一区二区三区| 精品亚洲成a人片在线观看| 黄色视频不卡| 成人黄色视频免费在线看| 国产精品一区二区在线不卡| 国产精品久久久久久精品古装| 久久天堂一区二区三区四区| 亚洲精品自拍成人| 国产在线精品亚洲第一网站| 老熟妇仑乱视频hdxx| 日本精品一区二区三区蜜桃| 国产av又大| 精品第一国产精品| 亚洲国产欧美日韩在线播放| 国产精品.久久久| av福利片在线| 亚洲色图综合在线观看| 国产一区二区三区视频了| 亚洲第一青青草原| 亚洲熟女精品中文字幕| 久久 成人 亚洲| 一进一出抽搐gif免费好疼 | 成人国语在线视频| 老司机亚洲免费影院| 国产在线观看jvid| 夜夜爽天天搞| 正在播放国产对白刺激| 亚洲精品在线美女| 日韩三级视频一区二区三区| 日本wwww免费看| 看黄色毛片网站| 丝瓜视频免费看黄片| 视频区欧美日本亚洲| 午夜精品久久久久久毛片777| 我的亚洲天堂| 精品电影一区二区在线| 成在线人永久免费视频| 久久久国产一区二区| 免费不卡黄色视频| 色婷婷久久久亚洲欧美| 亚洲精品一二三| 欧美日韩成人在线一区二区| 亚洲情色 制服丝袜| 女同久久另类99精品国产91| 捣出白浆h1v1| 色婷婷av一区二区三区视频| 超碰成人久久| 午夜福利一区二区在线看| 性色av乱码一区二区三区2| 国产成人欧美在线观看 | 久久天躁狠狠躁夜夜2o2o| 亚洲国产中文字幕在线视频| 亚洲欧美激情在线| 久久精品国产清高在天天线| 国产极品粉嫩免费观看在线| 国产亚洲精品一区二区www | 一级毛片女人18水好多| 午夜免费成人在线视频| 最近最新中文字幕大全免费视频| 最近最新中文字幕大全电影3 | 啪啪无遮挡十八禁网站| 久久久久精品国产欧美久久久| 久久国产精品影院| 免费在线观看完整版高清| 欧美亚洲 丝袜 人妻 在线| 91老司机精品| 亚洲少妇的诱惑av| 电影成人av| 91大片在线观看| 老司机靠b影院| 欧美激情极品国产一区二区三区| 99久久国产精品久久久| 热99国产精品久久久久久7| av欧美777| 亚洲五月天丁香| 国产aⅴ精品一区二区三区波| 动漫黄色视频在线观看| 亚洲精品美女久久av网站| 免费在线观看黄色视频的| 亚洲中文日韩欧美视频| 国产又色又爽无遮挡免费看| 男人的好看免费观看在线视频 | 999精品在线视频| 黄色视频不卡| 亚洲综合色网址| 欧美精品亚洲一区二区| 一二三四社区在线视频社区8| 日本一区二区免费在线视频| 亚洲自偷自拍图片 自拍| 久久狼人影院| 国产黄色免费在线视频| 91精品国产国语对白视频| av中文乱码字幕在线| 国产亚洲精品久久久久5区| 国产男女内射视频| 久久婷婷成人综合色麻豆| 大香蕉久久网| 中出人妻视频一区二区| 超碰97精品在线观看| 国产午夜精品久久久久久| 免费不卡黄色视频| 一边摸一边做爽爽视频免费| 黄色视频不卡| 国产精品久久电影中文字幕 | 满18在线观看网站| 国产精品一区二区免费欧美| 精品亚洲成a人片在线观看| 免费人成视频x8x8入口观看| 啦啦啦在线免费观看视频4| www.自偷自拍.com| 最近最新免费中文字幕在线| 一级毛片高清免费大全| 波多野结衣av一区二区av| 夜夜爽天天搞| 国产99久久九九免费精品| 新久久久久国产一级毛片| 男女免费视频国产| 国产片内射在线| 久久婷婷成人综合色麻豆| 成人亚洲精品一区在线观看| 多毛熟女@视频| 国产99白浆流出| 90打野战视频偷拍视频| 国产人伦9x9x在线观看| 亚洲成人免费av在线播放| 最近最新免费中文字幕在线| 日日爽夜夜爽网站| 精品视频人人做人人爽| 久久香蕉激情| 亚洲va日本ⅴa欧美va伊人久久| 久久精品国产清高在天天线| 国产亚洲欧美98| 女性被躁到高潮视频| 在线免费观看的www视频| 国产精品美女特级片免费视频播放器 | 91国产中文字幕| 久久国产亚洲av麻豆专区| 国产在线观看jvid| 中文字幕人妻熟女乱码| 9热在线视频观看99| 人妻一区二区av| 国产成人av教育| 国产成+人综合+亚洲专区| 免费黄频网站在线观看国产| 嫁个100分男人电影在线观看| 久久 成人 亚洲| 国产xxxxx性猛交| 桃红色精品国产亚洲av| 又黄又粗又硬又大视频| 午夜免费观看网址| 亚洲免费av在线视频| 久久国产精品影院| 中文字幕另类日韩欧美亚洲嫩草| 伦理电影免费视频| 国产一区二区三区视频了| 免费高清在线观看日韩| 国产精品一区二区在线不卡| 午夜福利视频在线观看免费| tocl精华| 777久久人妻少妇嫩草av网站| 日本精品一区二区三区蜜桃| 免费在线观看亚洲国产| 亚洲精品成人av观看孕妇| 国产一区二区三区综合在线观看| 亚洲综合色网址| 亚洲精品在线美女| 51午夜福利影视在线观看| 黑人猛操日本美女一级片| 超碰97精品在线观看| 俄罗斯特黄特色一大片| 50天的宝宝边吃奶边哭怎么回事| 在线观看一区二区三区激情| 亚洲熟女精品中文字幕| av免费在线观看网站| 国产一区二区三区综合在线观看| 黑人猛操日本美女一级片| 日韩欧美国产一区二区入口| 亚洲aⅴ乱码一区二区在线播放 | 国产精品国产高清国产av | 国产在视频线精品| 久久久久精品人妻al黑| √禁漫天堂资源中文www| 一进一出抽搐gif免费好疼 | 91老司机精品| 人妻 亚洲 视频| 很黄的视频免费| 黑人巨大精品欧美一区二区mp4| 成人免费观看视频高清| 国产aⅴ精品一区二区三区波| 极品少妇高潮喷水抽搐| 久久久久国内视频| 超碰成人久久| 深夜精品福利| 亚洲综合色网址| 天堂俺去俺来也www色官网| 色94色欧美一区二区| 国产激情久久老熟女| 亚洲专区中文字幕在线| 欧美日韩成人在线一区二区| 国产精品乱码一区二三区的特点 | 国产精品国产av在线观看| 久久久精品国产亚洲av高清涩受| 建设人人有责人人尽责人人享有的| 成在线人永久免费视频| 国精品久久久久久国模美| 啦啦啦免费观看视频1| av福利片在线| 精品一区二区三区视频在线观看免费 | 亚洲男人天堂网一区| 操美女的视频在线观看| 亚洲欧美激情在线| 老鸭窝网址在线观看| 热re99久久国产66热| 他把我摸到了高潮在线观看| 首页视频小说图片口味搜索| 国产深夜福利视频在线观看| 成人黄色视频免费在线看| 一边摸一边抽搐一进一出视频| 久久久久久久午夜电影 | 久久久精品区二区三区| 亚洲国产欧美一区二区综合| 午夜91福利影院| 亚洲男人天堂网一区| 精品午夜福利视频在线观看一区| 十八禁高潮呻吟视频| 国产色视频综合| 美女国产高潮福利片在线看| 五月开心婷婷网| 国产激情久久老熟女| 成人国产一区最新在线观看| 欧美日韩成人在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 岛国毛片在线播放| 国产高清videossex| 午夜福利视频在线观看免费| 极品人妻少妇av视频| 动漫黄色视频在线观看| 又大又爽又粗| 老熟妇乱子伦视频在线观看| 99国产综合亚洲精品| 久久久久久久久免费视频了| 在线观看免费视频网站a站| 99热国产这里只有精品6| 少妇 在线观看| 少妇裸体淫交视频免费看高清 | 色综合婷婷激情| a级片在线免费高清观看视频| 两人在一起打扑克的视频| 一边摸一边做爽爽视频免费| 啪啪无遮挡十八禁网站| 亚洲自偷自拍图片 自拍| 亚洲精品美女久久av网站| 国产成人啪精品午夜网站| 天天躁夜夜躁狠狠躁躁| 超色免费av| 欧美国产精品va在线观看不卡| 国产一区二区三区综合在线观看| 最近最新中文字幕大全电影3 | 日韩有码中文字幕| 欧美成人午夜精品| 亚洲av第一区精品v没综合| xxxhd国产人妻xxx| 国产精品国产av在线观看| 女人被狂操c到高潮| 不卡一级毛片| 高清毛片免费观看视频网站 | 日韩中文字幕欧美一区二区| 视频在线观看一区二区三区| 亚洲色图av天堂| 午夜亚洲福利在线播放| 成人永久免费在线观看视频| 黑丝袜美女国产一区| 日日摸夜夜添夜夜添小说| 亚洲av美国av| 国产aⅴ精品一区二区三区波| 一区福利在线观看| 欧美日韩亚洲国产一区二区在线观看 | 90打野战视频偷拍视频| 亚洲中文日韩欧美视频| 一个人免费在线观看的高清视频| 国产1区2区3区精品| 午夜福利,免费看| 久久久久精品国产欧美久久久| av欧美777| 精品久久蜜臀av无| 欧美在线黄色| 美女扒开内裤让男人捅视频| 亚洲第一av免费看| 久久久久视频综合| 啦啦啦免费观看视频1| 18禁裸乳无遮挡动漫免费视频| 亚洲伊人色综图| 中文字幕人妻熟女乱码| 18禁观看日本| 无人区码免费观看不卡| 亚洲av成人不卡在线观看播放网| 国产精品秋霞免费鲁丝片| 国产欧美日韩一区二区三区在线| 日本一区二区免费在线视频| 韩国精品一区二区三区| 极品人妻少妇av视频| 自线自在国产av| 在线观看免费午夜福利视频| 一进一出抽搐gif免费好疼 | 午夜91福利影院| 露出奶头的视频| 成人精品一区二区免费| 国产精品自产拍在线观看55亚洲 | 啪啪无遮挡十八禁网站| 一二三四在线观看免费中文在| 亚洲一码二码三码区别大吗| 精品福利观看| 久久精品成人免费网站| 亚洲成人免费电影在线观看| 香蕉国产在线看| 亚洲熟女毛片儿| 免费看十八禁软件| 久久久精品区二区三区| 久久久国产成人免费| 老汉色∧v一级毛片| 91国产中文字幕| 天堂俺去俺来也www色官网| 高清毛片免费观看视频网站 | 日韩制服丝袜自拍偷拍| 两人在一起打扑克的视频| 欧美+亚洲+日韩+国产| 国产欧美日韩一区二区精品| 成人av一区二区三区在线看| 女警被强在线播放| 国产男靠女视频免费网站| 无限看片的www在线观看| 成人av一区二区三区在线看| 亚洲av第一区精品v没综合| 免费在线观看日本一区| 女性被躁到高潮视频| 国产成人免费观看mmmm| 精品国产一区二区久久| 精品一区二区三区av网在线观看| 婷婷成人精品国产| 俄罗斯特黄特色一大片| 国产成人av激情在线播放| 婷婷成人精品国产| 日韩视频一区二区在线观看| 国产精品秋霞免费鲁丝片| 50天的宝宝边吃奶边哭怎么回事| 国产一区有黄有色的免费视频| 久久久久久久精品吃奶| 欧洲精品卡2卡3卡4卡5卡区| 精品福利观看| 国产91精品成人一区二区三区| 久久这里只有精品19| 看免费av毛片| 日韩制服丝袜自拍偷拍| 在线天堂中文资源库| 久久九九热精品免费| 人人妻人人添人人爽欧美一区卜| 91字幕亚洲| 欧美激情极品国产一区二区三区| 在线观看午夜福利视频| 精品欧美一区二区三区在线| netflix在线观看网站| 精品一区二区三区视频在线观看免费 | 久久国产精品影院| 久久99一区二区三区| 岛国在线观看网站| 国产亚洲精品久久久久5区| 午夜日韩欧美国产| 久久久久久久午夜电影 | 亚洲 欧美一区二区三区| av视频免费观看在线观看| 欧美国产精品一级二级三级| 天天躁夜夜躁狠狠躁躁| 久9热在线精品视频| 精品国产超薄肉色丝袜足j| 久久精品亚洲av国产电影网| 变态另类成人亚洲欧美熟女 | 老熟女久久久| 亚洲色图 男人天堂 中文字幕| 欧美日韩亚洲高清精品| 欧美日韩视频精品一区| 日韩欧美国产一区二区入口| 美女 人体艺术 gogo| 国产99白浆流出| 国产欧美日韩综合在线一区二区| 每晚都被弄得嗷嗷叫到高潮| 免费不卡黄色视频| 国产亚洲精品第一综合不卡| 一进一出抽搐动态| 999久久久国产精品视频| 久久国产精品大桥未久av| 国产精品久久久久成人av| 国产成人精品在线电影| 欧美日韩瑟瑟在线播放| av网站免费在线观看视频| 日韩免费av在线播放| 中文欧美无线码| 三上悠亚av全集在线观看| 99香蕉大伊视频| 日韩欧美国产一区二区入口| 免费在线观看亚洲国产| 国产淫语在线视频| 久久久国产成人精品二区 | 一级黄色大片毛片| 亚洲一卡2卡3卡4卡5卡精品中文| av线在线观看网站| 日韩一卡2卡3卡4卡2021年| 国产在线观看jvid| 国产男女内射视频| 亚洲av美国av| 精品国产乱子伦一区二区三区| videosex国产| 咕卡用的链子| 母亲3免费完整高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久国产精品人妻aⅴ院 | 久久精品亚洲精品国产色婷小说| 国产精品国产av在线观看| 久久人妻av系列| 午夜福利乱码中文字幕| 久久久久久久久免费视频了| 十八禁网站免费在线| 亚洲av成人一区二区三| 黑丝袜美女国产一区| 国产99久久九九免费精品| 99精品欧美一区二区三区四区| 一区二区三区国产精品乱码| 免费高清在线观看日韩| 亚洲午夜精品一区,二区,三区| 久久人妻熟女aⅴ| 老司机深夜福利视频在线观看| 免费女性裸体啪啪无遮挡网站| 久久国产精品影院| 18在线观看网站| 又紧又爽又黄一区二区| 国产国语露脸激情在线看| 每晚都被弄得嗷嗷叫到高潮| 国产成人欧美在线观看 | 一区在线观看完整版| 乱人伦中国视频| 老司机午夜十八禁免费视频| 精品国产一区二区三区四区第35| 欧美丝袜亚洲另类 | 成在线人永久免费视频| 精品福利观看| 男人的好看免费观看在线视频 | 亚洲精品一卡2卡三卡4卡5卡| 超色免费av| 亚洲三区欧美一区| 视频区图区小说| 午夜精品国产一区二区电影| 精品久久蜜臀av无| 国产欧美日韩一区二区三区在线| av超薄肉色丝袜交足视频| 十八禁人妻一区二区| 黑人欧美特级aaaaaa片| 国产高清激情床上av| 美女高潮喷水抽搐中文字幕| 99热网站在线观看| 亚洲中文日韩欧美视频| avwww免费| 日韩一卡2卡3卡4卡2021年| 午夜两性在线视频| 亚洲av第一区精品v没综合| 精品国内亚洲2022精品成人 | 一夜夜www| 亚洲第一欧美日韩一区二区三区| 中文亚洲av片在线观看爽 | 欧洲精品卡2卡3卡4卡5卡区| 变态另类成人亚洲欧美熟女 | 91国产中文字幕| 一区二区三区激情视频| 狠狠狠狠99中文字幕| 美女扒开内裤让男人捅视频| 亚洲 国产 在线| 欧美日韩一级在线毛片| 欧美精品亚洲一区二区| 国内毛片毛片毛片毛片毛片| 亚洲欧美日韩高清在线视频| 人人妻人人爽人人添夜夜欢视频| 一级片'在线观看视频| 男女午夜视频在线观看| 嫁个100分男人电影在线观看| 色老头精品视频在线观看| 午夜福利免费观看在线| 久久 成人 亚洲| 99国产综合亚洲精品| 国产精品国产高清国产av | 国产蜜桃级精品一区二区三区 | 丝袜美腿诱惑在线| 亚洲熟女毛片儿| e午夜精品久久久久久久| 午夜免费观看网址| 天天躁日日躁夜夜躁夜夜| 这个男人来自地球电影免费观看| 成人国产一区最新在线观看| 黑人猛操日本美女一级片| 视频区欧美日本亚洲| 精品福利观看| 99久久国产精品久久久| 另类亚洲欧美激情| 在线观看舔阴道视频| 久久精品91无色码中文字幕| 亚洲专区中文字幕在线| svipshipincom国产片| 人人妻人人澡人人爽人人夜夜| 久久国产精品影院| 两人在一起打扑克的视频| 免费在线观看完整版高清| 一本大道久久a久久精品| 两性夫妻黄色片| 在线视频色国产色| 国产99久久九九免费精品| 国产成人精品久久二区二区91| 女人被躁到高潮嗷嗷叫费观| 精品久久蜜臀av无| 欧美日本中文国产一区发布| 老司机亚洲免费影院| 别揉我奶头~嗯~啊~动态视频| 在线视频色国产色| 人妻丰满熟妇av一区二区三区 | 亚洲中文日韩欧美视频| 国产精品 国内视频| 亚洲伊人色综图| 精品第一国产精品| 亚洲七黄色美女视频| 免费在线观看影片大全网站| 自拍欧美九色日韩亚洲蝌蚪91| 成年人免费黄色播放视频| 成年版毛片免费区| 很黄的视频免费| 两个人免费观看高清视频| 午夜91福利影院| 成年人黄色毛片网站| 亚洲国产毛片av蜜桃av| 窝窝影院91人妻| 69av精品久久久久久| 亚洲av成人不卡在线观看播放网| 成人影院久久| 叶爱在线成人免费视频播放| 久久婷婷成人综合色麻豆| 亚洲国产中文字幕在线视频| 国产男女超爽视频在线观看| 动漫黄色视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 五月开心婷婷网| 国产精品亚洲一级av第二区| 可以免费在线观看a视频的电影网站| 亚洲精品美女久久av网站| 国产精品98久久久久久宅男小说| 国产麻豆69| 亚洲精品一二三| 超碰成人久久| 国产国语露脸激情在线看| 国产一卡二卡三卡精品| 欧美人与性动交α欧美软件| 在线观看免费午夜福利视频| 国产一卡二卡三卡精品| 成人永久免费在线观看视频| av福利片在线| 亚洲精品一二三| 在线十欧美十亚洲十日本专区| 国产成人av教育| 亚洲,欧美精品.| 亚洲自偷自拍图片 自拍| 日本一区二区免费在线视频| 18禁国产床啪视频网站| 久久精品亚洲熟妇少妇任你| 99精品久久久久人妻精品| 国产欧美日韩一区二区三| 老司机深夜福利视频在线观看| 女警被强在线播放| 亚洲第一青青草原| 曰老女人黄片| 精品一区二区三区四区五区乱码|