• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    因子von Neumann代數(shù)上完全保*-Jordan零積的映射的研究

    2018-02-13 01:28:52劉紅玉霍東華
    關(guān)鍵詞:雙邊太原代數(shù)

    劉紅玉 霍東華

    摘?要:為了研究因子von Neumann代數(shù)上完全保*-Jordan零積的滿射的刻畫(huà)問(wèn)題,依據(jù)雙邊完全保*-Jordan零積和雙邊2-保*-Jordan零積的定義,采用完全保持的方法,證明了如果Φ是von Neumann代數(shù)A到B的一個(gè)滿射,則Φ是線性或共軛線性*-同構(gòu)的非零常數(shù)倍。

    關(guān)鍵詞:雙邊完全保*-Jordan零積;雙邊2-保*-Jordan零積;因子 von Neumann 代數(shù)

    DOI:10.15938/j.jhust.2018.06.027

    中圖分類號(hào): O152.2

    文獻(xiàn)標(biāo)志碼: A

    文章編號(hào): 1007-2683(2018)06-0151-04

    Abstract:In order to characterize the maps completely preserving *-Jordan zero-products on factor von Neumann algebras??according to the definition of bilateral complete preserving *-Jordan zero-products and bilateral 2-preserving *-Jordan zero-products??taking a completely preserve approach?it is proved that if Φ is a surjection of von Neumann algebra A to B,then Φis the non-zero scalar multiple of linear or conjugate ?linear*-isomorphism.

    Keywords:bilateral complete preserving *-Jordan zero-products; bilateral 2-preserving *-Jordan zero-products; factor von Neumann algebras

    參 考 文 獻(xiàn):

    [1]?CUI J.?L?LI C.?K.?Maps Preserving ?Product XY-YX* on Factor von Neumann Algebra[J].?Linear Algebra and Its Applications?2009?431:833-842.

    [2]?BAI Z.?F?DU S.?P.?Maps Preserving Products XY-YX* on von Neumann Algebras [J].?Journal of Mathematical Analysis and Applications?2012?386(1):103-109.

    [3]?LIU L?GUO X.?Maps Preserving Product X*Y+YX* on Factor von Neumann Algebra [J].?Linear and Multilinear Algebra?2011?59:951-955.

    [4]?LI C.?J?LU F.?Y?FANG X.?Nonlinear Mappings Preserving Product XY-YX* on Factor von Neumann Algebra[J].?Linear Algebra and Its Applications?2013?438:2339-2345.

    [5]?焦美艷.?Von Neumann代數(shù)套子代數(shù)上保因子交換性的線性映射[J].?數(shù)學(xué)學(xué)報(bào),2014,57(2):409-416.

    [6]?CUI J.?L?PARK C.?Strong Lie Skew-products Preserving Maps on Factor Von Neumann Algebra[J]. Acta Math.?Sci?2012,32B(2): 531-538.

    [7]?QI X.?F?HOU J.?C.?Strong Skew Commutativity Preserving Maps on Von Neumann Algebras[J]. J.?Math.?Anal.?Appl?2013?397: 362-370.

    [8]?齊霄霏,侯晉川.?保持斜 Lie 零積的可加映射[J].?中國(guó)科學(xué)雜志社,2015,45(2):151-165.

    [9]?CHEN C?LU F.?Y.?Nonlinear Maps Preserving Higher Dimensional Numerical Range of Skew Lie Product of Operators [J].?Operator and Matrices?2016?10(2):335-344.

    [10]HOU J.?C?HUANG L.?Characterizing Isomorphisms in Terms of Completely Preserving Invertibility or Spectrum [J].?Journal of Mathematical Analysis and Applications?2009?359(1): 81-87.

    [11]黃麗,路召飛,李俊林.?標(biāo)準(zhǔn)算子代數(shù)上完全保斜冪等性的可加映射[J].?中北大學(xué)學(xué)報(bào): 自然科學(xué)版,2011,32(1):71-73.

    [12]HUANG L?LIU Y.?X.?Maps Completely Preserving Commutativity and Maps Completely Preserving Jordan Zero-product[J].?Linear Algebra and Its Applications?2014?462(12):233-249.

    [13]劉艷曉,黃麗.?完全保持不同因子交換性的映射[J].?太原科技大學(xué)學(xué)報(bào),2015,36(3):237-240.

    [14]李文慧.?完全保持斜Jordan零積和斜交換性映射的研究[D].?太原:太原科技大學(xué),2017.

    (編輯:溫澤宇)

    猜你喜歡
    雙邊太原代數(shù)
    太原清廉地圖
    兩個(gè)有趣的無(wú)窮長(zhǎng)代數(shù)不等式鏈
    Hopf代數(shù)的二重Ore擴(kuò)張
    什么是代數(shù)幾何
    科學(xué)(2020年1期)2020-08-24 08:08:06
    除夜太原寒甚
    電子產(chǎn)品回收供應(yīng)鏈的雙邊匹配策略
    新型自適應(yīng)穩(wěn)健雙邊濾波圖像分割
    一個(gè)非平凡的Calabi-Yau DG代數(shù)
    雙邊同步驅(qū)動(dòng)焊接夾具設(shè)計(jì)
    焊接(2015年5期)2015-07-18 11:03:41
    中厚板雙邊剪模擬剪切的研究
    天津冶金(2014年4期)2014-02-28 16:52:46
    永嘉县| 垦利县| 巢湖市| 绥阳县| 芒康县| 垣曲县| 内丘县| 朔州市| 古田县| 桓台县| 霍邱县| 潞城市| 宜兰市| 来宾市| 五大连池市| 工布江达县| 南木林县| 普陀区| 娱乐| 共和县| 松江区| 彭泽县| 凤山县| 鄂尔多斯市| 调兵山市| 荣昌县| 泊头市| 都安| 彭山县| 鹰潭市| 渭源县| 申扎县| 淮阳县| 佛教| 泗水县| 米泉市| 丹棱县| 沁源县| 河曲县| 新野县| 谢通门县|