摘要:高中數(shù)學(xué)是一門具有較強(qiáng)邏輯性、推理性的綜合性學(xué)科,所以在高中數(shù)學(xué)課堂的實(shí)際教學(xué)過(guò)程中,老師應(yīng)該緊密結(jié)合教學(xué)內(nèi)容和學(xué)生的實(shí)際情況進(jìn)行設(shè)疑,充分激發(fā)學(xué)生的探究欲望,促進(jìn)學(xué)生主動(dòng)學(xué)習(xí),從而有效提升高中數(shù)學(xué)課堂的教學(xué)效率。本文通過(guò)具體論述高中數(shù)學(xué)課堂設(shè)疑的策略,以便幫助學(xué)生在探究問題的過(guò)程中更加深入的掌握數(shù)學(xué)知識(shí)點(diǎn)。
關(guān)鍵詞:高中數(shù)學(xué);設(shè)疑;策略
課堂設(shè)疑就是一種根據(jù)數(shù)學(xué)學(xué)科的教學(xué)目標(biāo)有計(jì)劃、有目的進(jìn)行教學(xué)的重要手段。其中,在高中數(shù)學(xué)課堂教學(xué)過(guò)程中設(shè)疑是拓展學(xué)生思維的重要?jiǎng)恿Γ情_啟學(xué)生智慧之門的重要鑰匙,也是提升高中數(shù)學(xué)課堂教學(xué)效能的重要途徑。然而,為了充分發(fā)揮設(shè)疑的作用,便需要高中數(shù)學(xué)老師在課堂的實(shí)際教學(xué)過(guò)程中根據(jù)學(xué)生的學(xué)習(xí)情況和學(xué)習(xí)特點(diǎn),設(shè)置多元化的提問策略,并將課堂設(shè)疑作為高中數(shù)學(xué)課堂教學(xué)開展的重要切入點(diǎn),從而促使高中學(xué)生在日常的學(xué)習(xí)過(guò)程中實(shí)現(xiàn)“再創(chuàng)造”,最大限度增強(qiáng)學(xué)生的數(shù)學(xué)思維。
一、 在舊知識(shí)的回顧中設(shè)疑
由于高中數(shù)學(xué)知識(shí)涉及的知識(shí)點(diǎn)較多,所以學(xué)生在學(xué)習(xí)的過(guò)程中難免會(huì)弄混淆。因此,高中數(shù)學(xué)老師在日常教學(xué)過(guò)程中應(yīng)該指導(dǎo)學(xué)生適當(dāng)?shù)幕仡櫯f知識(shí),通過(guò)設(shè)置疑問讓學(xué)生在思考中回顧知識(shí)。例如,在學(xué)習(xí)“雙曲線的幾何性質(zhì)”內(nèi)容的學(xué)習(xí)過(guò)程中,老師可引導(dǎo)學(xué)生簡(jiǎn)單的回顧橢圓的幾何知識(shí)點(diǎn),并根據(jù)學(xué)生的實(shí)際情況和教學(xué)目標(biāo)設(shè)置幾個(gè)合理的問題:(1)同學(xué)們,我們之前學(xué)習(xí)了橢圓的幾何性質(zhì),而你們又對(duì)橢圓的哪些性質(zhì)進(jìn)行了深入的研究呢?(2)在研究橢圓的性質(zhì)時(shí),我們主要采用的是方程研究呢,還是采用的是圖像研究呢?具體又是如何進(jìn)行研究的呢?(3)通過(guò)對(duì)橢圓性質(zhì)的方法進(jìn)行類比研究,可如何探究出關(guān)于雙曲線的性質(zhì)呢?
通過(guò)在回顧舊知識(shí)的過(guò)程中設(shè)置疑問,不但能夠讓學(xué)生更加系統(tǒng)的掌握橢圓的幾何性質(zhì),而且還能夠讓學(xué)生準(zhǔn)確的掌握雙曲線幾何性質(zhì)和橢圓幾何性質(zhì)之間的聯(lián)系。
二、 以課文為主,準(zhǔn)確抓住教學(xué)的重難點(diǎn)
數(shù)學(xué)教材內(nèi)容是學(xué)生學(xué)習(xí)的重要條件,所以高中數(shù)學(xué)老師在日常的教學(xué)過(guò)程中應(yīng)該始終以教材內(nèi)容為主,指導(dǎo)學(xué)生準(zhǔn)確抓住數(shù)學(xué)教材中的重難點(diǎn)知識(shí)。因此,老師在數(shù)學(xué)課堂設(shè)疑時(shí)也應(yīng)該以教材內(nèi)容為依據(jù),充分認(rèn)識(shí)到教材中重難點(diǎn)內(nèi)容的重要性,以便為提升高中數(shù)學(xué)課堂的教學(xué)效率奠定堅(jiān)實(shí)的基礎(chǔ)。例如,在學(xué)習(xí)“三角函數(shù)”的知識(shí)點(diǎn)時(shí),由于學(xué)生很容易將正弦函數(shù)和余弦函數(shù)的知識(shí)點(diǎn)弄混淆,難以準(zhǔn)確找出余弦和正弦之間存在的差異性,所以這部分內(nèi)容就是“三角函數(shù)”部分的重難點(diǎn)知識(shí)。因此,老師在這節(jié)內(nèi)容的實(shí)際教學(xué)過(guò)程中,可根據(jù)學(xué)生的實(shí)際情況提出:“余弦與正弦之間有何區(qū)別”的數(shù)學(xué)問題,讓學(xué)生能夠在深入思考這個(gè)問題的過(guò)程中將余弦和正弦等相關(guān)的知識(shí)點(diǎn)放在一起比較,從而更加深入的理解正弦函數(shù)和余弦函數(shù)的知識(shí)點(diǎn)。通過(guò)指導(dǎo)學(xué)生采用比較的方式來(lái)學(xué)習(xí)三角函數(shù),能夠讓學(xué)生更好的掌握復(fù)雜的三角函數(shù),從而最大限度提升高中數(shù)學(xué)課堂的教學(xué)效率。
三、 科學(xué)設(shè)疑,充分吸引學(xué)生的注意力
在高中數(shù)學(xué)課堂的學(xué)習(xí)過(guò)程中,學(xué)生是課堂的主體,所以只有當(dāng)學(xué)生積極主動(dòng)的投身到高中數(shù)學(xué)課堂的教學(xué)過(guò)程中,才能夠最大限度提升高中數(shù)學(xué)課堂的教學(xué)效率,增強(qiáng)學(xué)生的數(shù)學(xué)核心素養(yǎng)。然而,部分學(xué)生在整個(gè)數(shù)學(xué)課堂教學(xué)過(guò)程中并不會(huì)時(shí)時(shí)刻刻都集中注意力,所以需要數(shù)學(xué)老師在教學(xué)過(guò)程中應(yīng)該科學(xué)設(shè)疑,充分吸引學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí)的注意力,以便能夠能夠在集中注意力學(xué)習(xí)的過(guò)程中更加準(zhǔn)確的掌握數(shù)學(xué)的相關(guān)重點(diǎn)知識(shí)。例如,在學(xué)習(xí)“指數(shù)函數(shù)與對(duì)數(shù)函數(shù)”的知識(shí)點(diǎn)時(shí),對(duì)于指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的關(guān)系是學(xué)生在數(shù)學(xué)課堂學(xué)習(xí)過(guò)程中的重難點(diǎn),而由于指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的內(nèi)容非常抽象,所以導(dǎo)致學(xué)生無(wú)法時(shí)刻保持較高的注意力。因此,老師在講解這兩者關(guān)系的時(shí)候,老師可指導(dǎo)學(xué)生上講臺(tái)將指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的圖象畫出來(lái),并讓學(xué)生深入探究這兩者中的聯(lián)系,促使學(xué)生主動(dòng)進(jìn)行思考,這樣便能夠充分吸引學(xué)生的注意力,而老師再對(duì)這兩者反函數(shù)的關(guān)系進(jìn)行全面分析,便能夠最大限度提升高中數(shù)學(xué)課堂的教學(xué)效率。
四、 靈活設(shè)疑,指導(dǎo)學(xué)生科學(xué)探究
在高中數(shù)學(xué)課堂教學(xué)中設(shè)置疑問,為學(xué)生預(yù)留科學(xué)的思考題,則會(huì)讓學(xué)生積極的開動(dòng)腦筋去解決實(shí)際的數(shù)學(xué)問題,有效拓展學(xué)生的數(shù)學(xué)思維。同時(shí),老師還可以設(shè)置合理的數(shù)學(xué)預(yù)習(xí)問題,為學(xué)生創(chuàng)設(shè)良好的求知探究空間,以便學(xué)生在不斷探究新知識(shí)的過(guò)程中發(fā)現(xiàn)問題、解決問題,從而深入感知數(shù)學(xué)知識(shí)點(diǎn)的魅力。
例如,老師在講解了“正弦的概念”內(nèi)容之后,老師便開始采用提問的方式引導(dǎo)學(xué)生自主推導(dǎo)出余弦和正切,讓學(xué)生深入學(xué)習(xí)正弦公式,以便學(xué)生能夠在之后遇到相同問題的過(guò)程中能夠自己推導(dǎo)出余弦和正切公式。
總之,在高中數(shù)學(xué)課堂教學(xué)過(guò)程中,指導(dǎo)學(xué)生思考,培養(yǎng)學(xué)生的創(chuàng)造性思維是一種非常直接的教學(xué)方法,也是老師掌握學(xué)生學(xué)習(xí)情況的一種反饋性的途徑。因此,在高中數(shù)學(xué)課堂教學(xué)過(guò)程中,老師可根據(jù)實(shí)際情況靈活設(shè)疑,讓學(xué)生能夠更加積極主動(dòng)的參與到數(shù)學(xué)課堂的教學(xué)過(guò)程中,從而最大限度提升高中數(shù)學(xué)課堂的教學(xué)質(zhì)量,增強(qiáng)學(xué)生的數(shù)學(xué)核心素養(yǎng)。
參考文獻(xiàn):
[1]任天友.高中數(shù)學(xué)課堂設(shè)疑技巧微探[J].教壇聚焦,2010:37.
[2]方向明.試論高中數(shù)學(xué)課堂設(shè)疑的作用[J].新課程學(xué)習(xí):中,2014,(5).
作者簡(jiǎn)介:
胡浩,江蘇省高郵市,江蘇省高郵中學(xué)。endprint