• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Assimilation of Feng-Yun-3B Satellite Microwave Humidity Sounder Data over Land

    2018-01-29 11:35:40KeyiCHENNielsBORMANNStephenENGLISHandJiangZHU
    Advances in Atmospheric Sciences 2018年3期

    Keyi CHEN,Niels BORMANN,Stephen ENGLISH,and Jiang ZHU

    1School of Atmospheric Sciences,Chengdu University of Information&Technology,Chengdu,Sichuan 610225,China

    2International Centre for Climate and Environment Sciences,Institute of Atmospheric Physics,China,Beijing 100029,China

    3European Centre for Medium-Range Weather Forecasts,Reading RG2 9AX,UK

    1.Introduction

    Since 24 September 2014,Feng-Yun-3B(FY-3B)microwave humidity sounder(MWHS)data have been actively used in the ECMWF operational forecasting system(Chen et al.,2015).The data are assimilated over ocean only,excluding all data over land and sea ice.

    The assimilation of MWHS data over land requires an estimate of emissivity.One option is to use microwave land emissivity models(Weng et al.,2001);another is using an emissivity atlas(Karbou et al.,2005a);and a third is to retrieve emissivity dynamically from microwave window channels(Karbou et al.,2006).

    Physical land emissivity models require several inputs that must be estimated or derived from the NWP model or taken from the climatology.However,many input values are not usually available from land surface models.Therefore,most assimilation systems retrieve the land surface emissivity directly from the microwave observations at 50 GHz for temperature sounders(e.g.,AMSU-A)and 89 GHz for humidity sounders(e.g.,those onboard other satellites like NOAA or EUMETSAT–referred to as MHS hereafter to make the distinction with MWHS/FY-3B)(Karbou et al.,2006).

    In this study,we consider an approach in which emissivity is retrieved dynamically from MWHS/FY-3B channel 1[150 GHz(vertical polarization,V)],as no 89 GHz channel is available(Zhang et al.,2008,Lu et al.,2011),and compared with the use of an emissivity atlas based on 89 GHz observations from other sensors.

    The structure of the paper is as follows:section 2 describes the emissivity and experimental settings for adding data over the snow-covered surfaces;section 3 presents the results;and conclusions are provided in section 4.

    2.Quality control and surface characterization

    2.1.Emissivity estimation

    To assimilate MWHS/FY-3B over land,two approaches to specify surface emissivity are compared.One is to use an 89 GHz emissivity atlas derived from instruments on other satellites.This evolves over time using a Kalmanfilter and the emissivity is parameterized as a polynomial of the scan angle θ to account for the different effective polarization within the swath,assuming the emissivity changes occur slowly(Krzeminski et al.,2009).The other is to retrieve emissivity from the 150 GHz(V)channel;MWHS/FY-3B does not have an 89 GHz channel(Table 1).150 GHz is more sensitive to water vapor than 89 GHz,so is useful when the total column water vapor is low,e.g.,at high latitude,but more problematic at low latitudes.Figure 1 shows the difference between the retrieved dynamic emissivity from 150 GHz(V)of MWHS/FY-3B and the 89 GHz emissivity atlas at 0000 UTC 3 October 2013.For most locations,the differences are within 0.05.Larger differences are found over the snow-covered surfaces,as would be expected,since the emissivity of snow is more variable both in time and frequency than that of snow-free surfaces.This means we have low con-fidence in the emissivity estimate in these regions,as we do not know whether to trust the atlas or the 150 GHz dynamic emissivity estimate more.150 GHz is more sensitive to the atmosphere,but the retrieved emissivity is also more representative of the emissivity at 183 GHz,due to being closer in frequency.We therefore compare using the atlas alone to using the retrieved 150 GHz emissivity.To ensure that 150 GHzhas sufficient surface sensitivity to perform a reliable emissivity retrieval,we require that the surface-to-space transmittance is larger than 0.5.If this condition is not fulfilled(e.g.,in tropical areas),the emissivity atlas is used instead.In addition,the dynamic emissivity is only used when the estimate differs from the emissivity atlas by less than 0.2.This threshold is designed to remove outliers for which the differences are much larger than what would be expected given typical uncertainties in the dynamic emissivity and the atlas emissivity.

    Table 1.MHS and MWHS channel frequencies.

    2.2.Quality control over snow-covered surfaces

    Noting the high level of uncertainty in the emissivity estimates over snow,MWHS/FY-3B observations are initially excluded where the skin temperature is lower than 278 K.278 K is taken as a proxy for snow,but clearly also rejects many snow-free scenes.An example of the winter data coverage is shown in Fig.2,taken from thefirst three months of 2015.Subsequent analysis shows that this quality-control criterion is too conservative for some channels.Figure 3 shows thefirst-guess departure standard deviations of the MWHS/FY-3B channel 3,which is sensitive to upper tropospheric humidity,with peak sensitivity around 400 hPa.The channel 3 clear data(Chen et al.,2015)are comparable to those of the equivalent channel in MHS/NOAA-18 for scenes where the skin temperature is less than or equal to 278 K(i.e.,the observations rejected by this quality-control check).No abnormally large standard deviations are found for snow-covered surfaces,while there are some large standard deviations over lower latitudes related to some scan position problems,which can be removed by the quality-control process of the assimilation(Chen et al.,2015).Therefore,for the MWHS/FY-3B channel3,theskin temperaturecheck isunnecessaryanddata can be assimilated in snow-covered regions.

    Fig.1.Difference between the retrieved dynamic emissivity from 150 GHz(V)of MWHS/FY-3B and the 89 GHz emissivity atlas at 0000 UTC 3 October 2013.Only regions where a successful 150 GHz retrieval can be performed are shown(see main text for details).

    Fig.2.MWHS/FY-3B channel 3 averaged number of data used in Northern Hemisphere boreal winter without using the dynamic emissivity.Time period:0000 UTC 1 January 2015 to 0012 UTC 31 March 2015.

    Fig.3.Time-averaged channel 3first-guess departure standard deviations of(a)MHS/NOAA-18 and(b)MWHS/FY-3B clear data over land where the orography is lower than 1500 m and the skin temperature is no larger than 278 K.Time period:0000 UTC 1 January 2015 to 0012 UTC 31 March 2015.

    For channel 4,the weighting function peaks at lower altitude,close to 600 hPa for a standard US atmosphere at nadir view.However,due to the broad weighting functions the impacts of the surface on this channel are significant(Figs.4c and d).The investigations suggest that,unlike channel 3,there is value to retaining a skin temperature check.However,the value can be set to a low value.Thefinal choice is 255 K,based on examining thefirst-guess departure standard deviations of the MWHS/FY-3B channel 4 clear data(Fig.4b).These are comparable to MHS(Fig.4a)for the skin temperatures between 255 K and 278 K,except that the MWHS observations have higher noise due to higher NEDT(noise equivalent differential temperature)and some points with gross error that the general quality-control procedure in four-dimensional variational(4D-Var)data assimilation can easily remove(Chen et al.,2015).As for the regions where the skin temperatures are lower than 255 K,thefirst-guess departure standard deviations of both MHS/NOAA-18 and MWHS/FY-3B are quite large(Figs.4c and d).The reason why it is worse for the skin temperatures lower than 255 K is not yet understood,but may reflect changes in snow morphology that make the atlas less representative,or larger skin temperature errors in these extreme conditions may lead to poorer emissivity retrievals and larger departures.

    So,to summarize,there are three scenarios being tested,testing sensitivity both to the choice of the emissivity estimate and quality-control checks,and these are described in the next section.

    2.3.Experimental settings

    Fig.4.(a,b)Time-averagedfirst-guess departure standard deviations of(a)MHS/NOAA-18 and(b)MWHS/FY-3B channel 4 clear data over land where the orography is lower than 1000 m and the skin temperatures are between 255 K and 278 K.(c,d)Time-averagedfirst-guess departure standard deviations of(c)MHS/NOAA-18 and(d)MWHS/FY-3B channel 4 clear data over land where the skin temperatures are below 255 K.The emissivity is based on the emissivity atlas.Time period:0000 UTC 1 January 2015 to 0012 UTC 31 March 2015.

    Assimilation experimentsareconducted using the ECMWF 12-h 4D-Var data assimilation system,with a model spatial resolution of around 40 km,afinal incremental analysis resolution of about 80 km,and 91 levels in the vertical direction.Background error covariance is based on an ensemble of data assimilations,providing situation-dependent estimates of the uncertainty in the short-range forecast.The control experiment is run from 1 January 2015 to 31 March 2015,and 10-day forecasts are run at 0000 UTC and 1200 UTC each day,which provide 180 forecast samples in total.The control run assimilates the same observations used operationally by ECMWF on these dates,i.e.,including MWHS/FY-3B data over ocean.Scan positions 12–81 are assimilated for channel 5,whereas the full scan is used for other channels(see Chen et al.,2015).To remove observations strongly affected by ice cloud and precipitation,a 5 K check on the absolute value of thefirst-guess departure of channel 1 is made(Chen et al.,2015).This definition of“clear sky”is used in this paper:it does not mean no clouds;rather,that the radiative impact of clouds can be considered small,and is not analyzed.Note that this criterion will also reject data for which the emissivity or skin temperature estimate is signifi-cantly in error.

    The thresholds of the orography are 1500 m,1000 m and 800 m for channels 3–5,respectively,for both MHS/NOAA-18 and MWHS/FY-3B,in order to avoid observations that are too sensitive to the surface,i.e.,where errors in the surface emissivity or skin temperatures play a large role.These thresholds reflect the different surface sensitivities of the sounding channels–tighter for the lowest channel(channel 5)and less tight for the higher channels.Also,the assigned observation errors over land are the same as those over ocean(Chen et al.,2015).

    Based on the control run settings,the BasicAtlas experiment assimilates MWHS/FY-3B over land using the emissivity atlas without adding data over the snow-covered surfaces;in the SnowAtlas experiment,MWHS/FY-3B is assimilated over land using the emissivity atlas to add data over the snow-covered surfaces(i.e.,using the relaxed skin temperature check);the SnowDynamic experiment is the same as the SnowAtlas run but uses the dynamic emissivity retrieved from 150 GHz(V).For the SnowDynamic run,the MWHS channel 1 observations cannot be used for both the clouds and precipitation screening and retrieving the emissivity.We therefore use channel 5 to identify clear observations,as it is the next available lowest-peaking channel with the strongest cloud sensitivity.The criterion for“clear data”remains at absolutefirst-guessdeparturesbelow5K,andtheMWHSchannel 5 observations are not assimilated.In addition,the same series of experiments are repeated for the Northern Hemisphere summer from 1 July 2014 to 30 September 2014,to test seasonal differences.

    3.Results

    3.1.Change in the number of used data

    Compared to the control run,many additional observations are assimilated over land in the BasicAtlas experiment(Fig.2),and even more channel 3 observations are added in the SnowAtlas experiment(Fig.5a).The time-averagedfirstguess departure standard deviations of MWHS/FY-3B channel 4 data used in the SnowAtlas experiment are reasonable over the snow-covered surfaces(Fig.5b),validating that the updated quality control is a good choice.The number of data usedarefurther increasedin snow-coveredareas inthe Snow-Dynamic experiment(Fig.6),which indicates that adopting the retrieved 150 GHz emissivity does allow more observations over the snow-covered surfaces being used.

    3.2.Analysis and forecast impact

    3.2.1. Analysis impact

    We now discuss the impact of adding MWHS/FY-3B data over land in the context of the full observing system used operationally at ECMWF at the time.This provides a stringent test of using the data in the“clear sky”case considering that the full system has many humidity observations over both sea and land.

    Assimilating MWHS/FY-3B observations over land does not show any negative impacts on thefirst-guessfit to other instruments in the ECMWF observing system.Departure statistics for ATMS are shown in Fig.7.Results are combined for the winter and summer trials,providing 364 samples in total.Adding data over land(BasicAtlas experiment)shows positive impacts on thefirst-guess departures,especially over the Northern Hemisphere(green line).Compared to the BasicAtlas experiment,the experiments with added data over the snow-covered surfaces indicate more positive impacts on the first-guess departures,but these differences are not statistically significant.The impacts are more neutral for the Southern Hemisphere and the tropics as there is less land(not shown).Improvements are also found in thefirst-guess departures of the humidity channels of other instruments,such as HIRS(High-resolution Infrared Radiation Sounder)and SSMIS(Special Sensor Microwave Imager/Sounder)(not shown).

    3.2.2.Forecast impacts

    Fig.5.(a)Average increase in data use coverage of MWHS/FY-3B channel 3 over snow-covered surfaces in the SnowAtlas experiment relative to the BasicAtlas experiment.(b)Time-averagedfirst-guess departure standard deviations of MWHS/FY-3B channel 4 data used in the SnowAtlas experiment.Time period:0000 UTC 1 January 2015 to 0012 UTC 31 March 2015.

    Fig.7.Standard deviations of thefirst-guess departures of ATMS data used in the Northern Hemisphere,normalized by values for the control experiment.Horizontal bars indicate 95%confidence intervals.Green line for the BasicAtlas experiment;red line for the SnowAtlas experiment;black line for the Snow-Dynamic experiment.The period merges 1 July 2014 to 30 September 2014 and 1 January 2015 to 31 March 2015 together.

    With both seasons combined,the SnowDynamic experiment shows significantly positive forecast impacts for the vector wind in the Southern Hemisphere out to day 3 or 4 of the forecast,a positive impact at day 2 in the Northern Hemisphere,andneutralresultsin thetropics(Fig.8).Thestronger positive forecast impact over the Southern Hemisphere is somewhat unexpected,given the smaller amount of data added in these regions.A possible reason might be that the Southern Hemisphere is less well constrained by other observations,particularly conventional ones,so even smaller amounts of data can have a notable impact.There is some indication of a negative impact at longer forecast ranges in the Northern Hemisphere at days 5–9,but this is not statistically significant.Neutral results are found in the BasicAtlas and SnowAtlas experiment.The scores are verified against the ECMWF operational analyses.Similar conclusions can be obtained not only for the vector wind,but also for the geopotential height,temperature and humidity(not shown).Figure 9 shows the vertical structure of the forecast impact,demonstrating again the statistically significant positive impact in the Southern Hemisphere but inconclusive results in the Northern Hemisphere.The two seasons are also examined individually,and the results in both periods are broadly consistent.

    4.Conclusions

    In this study,observations over land from MWHS/FY-3B aretestedintheECMWFIntegratedForecastingSystem.The MWHS data quality has been demonstrated previously by Chen et al.(2015).Assimilation of satellite sounder radiances over land is highly sensitive to the choice of emissivity and quality-control procedures,and hence different approaches are studied.The experiments assimilating MWHS/FY-3B data over land by using the emissivity atlas improve thefirstguess departures of the ATMS humidity channels,despite the lack of observations in snow-covered areas.The forecast impacts from these experiments are,however,found to be more neutral.

    Fig.8.Normalized difference in the root-mean-squared vector wind error at 500 hPa(top)and 850 hPa(bottom)as a function of forecast range(days)over the Southern Hemisphere(left),tropics(middle)and Northern Hemisphere(right)of the BasicAtlas experiment(green line),SnowAtlas experiment(red line),and SnowDynamic experiment(black line).Negative normalized differences indicate an improvement in forecast quality.Vertical bars show the 95%confidence range.The period merges 1 July 2014 to 30 September 2014 and 1 January 2015 to 31 March 2015 together.Statistics are based on a total of 364 forecasts and verified against the ECMWF operational analysis.

    Fig.9.Zonal means of the difference in forecast errors of the vector wind with time between the SnowDynamic experiment and the control run,normalized by the control run.The period merges 1 July 2014 to 30 September 2014 and 1 January 2015 to 31 March 2015 together.Statistics are based on a sample of 364 forecasts over the study period and verified against the ECMWF operational analysis.Cross-hatching indicates 95%confidence.

    The quality control used initially rejects most data for the snow-covered surfaces.A revised quality-control procedure that allows more data over the snow-covered surfaces to be assimilated is tested.Analysis of thefirst-guess departure statistics indicates that assimilating more MWHS/FY-3B data over land,particularly in snow-covered areas,again significantly improves the fit of short-range forecasts to other observations in the Northern Hemisphere–most notably the ATMS humidity channels.However,the forecast impact of this configuration is again found to be neutral.

    Finally,the configuration using 150 GHz(V)dynamic emissivity is found to give broadly similar results to the emissivity atlas with less stringent quality control in terms of thefirst-guessfit to ATMS,but this configuration does show some positive forecast impacts,especially in the Southern Hemisphere.

    To summarize,the forecast impact from MWHS over land is strongest when 150 GHz emissivity is used with the less stringent skin temperature quality-control option,to increase data coverage in snow-covered regions.However,for the same instrument,adding an 89 GHz channel would be useful(as is done for MWHS-2),so that the same methods can be used as for MHS.Having 150 GHz and 89 GHz observations together would be beneficial for the forecasts in both higher and lower latitudes.

    Acknowledgements.This work was supported by the National Natural Science Foundation of China(Grant No.41505014).The authors would like to thank Heather LAWRENCE,Cristina LUPU and Alan GEER for all kinds of help during this study.

    Chen,K.Y.,S.English,N.Bormann,and J.Zhu,2015:Assessment ofFY-3AandFY-3BMWHS observations.Wea.Fore-casting,30(5),1280–1290,https://doi.org/10.1175/WAF-D-15-0025.1.

    Karbou,F.,F.Aires,C.Prigent,and L.Eymard,2005a:Potential of advanced microwave sounding unit-A(AMSU-A)and AMSU-B measurements for atmospheric temperature and humidity profiling over land.J.Geophys.Res.,110,D07109,https://doi.org/10.1029/2004JD005318.

    Karbou,F.,C.Prigent,L.Eymard,and J.Pardo,2005b:Microwave land emissivity calculations using AMSU measurements.IEEE Transactions on Geoscience and Remote Sensing,43(5),948–959,https://doi.org/10.1109/TGRS.2004.837503.

    Karbou,F.,E.G′erard,and F.Rabier,2006:Microwave land emissivity and skin temperature for AMSU-A and-B assimilation over land.Quart.J.Roy.Meteor.Soc.,132,2333–2355,https://doi.org/10.1256/qj.05.216.

    Krzeminski,B.,N.Bormann,F.Karbou,and P.Bauer,2009:Improved use of surface-sensitive microwave radiances at ECMWF.EUMETSAT Meteor.Satell.Conf.,21–25.

    Lu,Q.F.,W.Bell,P.Bauer,N.Bormann,and C.Peubey,2011:Characterizing theFY-3Amicrowave temperature sounder using the ECMWF model.J.Atmos.Oceanic Technol.,28,1373–1389,https://doi.org/10.1175/JTECH-D-10-05008.1.

    Weng,F.Z.,B.H.Yan,and N.C.Grody,2001:A microwave land emissivity model.J.Geophys.Res.,106,20 115–20 123,https://doi.org/10.1029/2001JD900019.

    Zhang,S.W.,J.Li,J.S.Jiang,M.H.Sun,and Z.Z.Wang,2008:Design and development of microwave humidity sounder for FY-3 meteorological satellite.Journal of Remote Sensing,12(2),199–207,https://doi.org/10.11834/jrs.20080226.(in Chinese with English abstract)

    午夜两性在线视频| 女人高潮潮喷娇喘18禁视频| 青青草视频在线视频观看| 亚洲天堂av无毛| 五月开心婷婷网| 精品国产一区二区三区四区第35| 中文字幕精品免费在线观看视频| 亚洲国产欧美在线一区| 中国美女看黄片| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲 欧美一区二区三区| 在线观看免费日韩欧美大片| 久久久水蜜桃国产精品网| 日韩欧美国产一区二区入口| 在线十欧美十亚洲十日本专区| 国产成人啪精品午夜网站| 啪啪无遮挡十八禁网站| 亚洲成人国产一区在线观看| 日韩免费av在线播放| 高清欧美精品videossex| 91大片在线观看| 一本—道久久a久久精品蜜桃钙片| 母亲3免费完整高清在线观看| 中文字幕人妻丝袜一区二区| 日本五十路高清| 悠悠久久av| 久久精品亚洲熟妇少妇任你| 国产精品一区二区在线不卡| 无人区码免费观看不卡 | 亚洲中文日韩欧美视频| 免费久久久久久久精品成人欧美视频| 一区二区三区精品91| 色综合婷婷激情| 亚洲色图 男人天堂 中文字幕| 成在线人永久免费视频| 久久狼人影院| 少妇精品久久久久久久| 一区二区三区激情视频| 精品国产国语对白av| 国产精品 欧美亚洲| 精品久久久久久电影网| 99国产精品一区二区蜜桃av | 亚洲精品自拍成人| 人人妻人人澡人人爽人人夜夜| 精品国产一区二区三区四区第35| 国产成人欧美| 五月天丁香电影| 亚洲欧美一区二区三区久久| av天堂久久9| 高潮久久久久久久久久久不卡| 首页视频小说图片口味搜索| 久久天躁狠狠躁夜夜2o2o| 国产男女超爽视频在线观看| 亚洲,欧美精品.| 国产亚洲精品一区二区www | 国产亚洲午夜精品一区二区久久| 亚洲精品乱久久久久久| 中文欧美无线码| 性色av乱码一区二区三区2| 国产欧美亚洲国产| 宅男免费午夜| 99久久人妻综合| 一边摸一边做爽爽视频免费| 成人永久免费在线观看视频 | 国产又色又爽无遮挡免费看| 丝袜在线中文字幕| 999久久久精品免费观看国产| 9热在线视频观看99| 成年人午夜在线观看视频| 日日爽夜夜爽网站| 色尼玛亚洲综合影院| 日本vs欧美在线观看视频| 久久性视频一级片| 叶爱在线成人免费视频播放| 他把我摸到了高潮在线观看 | 亚洲人成伊人成综合网2020| 制服诱惑二区| 色精品久久人妻99蜜桃| 日韩大码丰满熟妇| 国产成人精品久久二区二区91| 国产欧美亚洲国产| 18禁国产床啪视频网站| 日本欧美视频一区| 18禁观看日本| 国产精品一区二区精品视频观看| xxxhd国产人妻xxx| 亚洲欧洲精品一区二区精品久久久| 欧美精品av麻豆av| 亚洲免费av在线视频| 国产精品偷伦视频观看了| 欧美在线一区亚洲| 大香蕉久久网| 一区福利在线观看| 亚洲欧美色中文字幕在线| 久久久久久久大尺度免费视频| 咕卡用的链子| 女人精品久久久久毛片| 在线观看免费日韩欧美大片| 欧美激情极品国产一区二区三区| 国产欧美日韩一区二区三区在线| 久久国产精品人妻蜜桃| kizo精华| 午夜福利欧美成人| 亚洲欧美一区二区三区久久| 丰满迷人的少妇在线观看| 久久久精品94久久精品| 精品午夜福利视频在线观看一区 | 91麻豆av在线| 免费在线观看黄色视频的| 后天国语完整版免费观看| 欧美精品一区二区大全| 精品久久久久久久毛片微露脸| 日本黄色日本黄色录像| 久久久久精品人妻al黑| 久久精品人人爽人人爽视色| 日韩视频一区二区在线观看| 美女高潮到喷水免费观看| 国产一区二区激情短视频| 亚洲精品美女久久久久99蜜臀| 精品人妻在线不人妻| 两个人免费观看高清视频| 日本欧美视频一区| 国产不卡一卡二| 日韩欧美一区视频在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲伊人色综图| 久久久久久久大尺度免费视频| 下体分泌物呈黄色| 国产在视频线精品| 老司机深夜福利视频在线观看| 黑人操中国人逼视频| 99国产精品99久久久久| 免费一级毛片在线播放高清视频 | 国产亚洲精品一区二区www | 丰满少妇做爰视频| 少妇猛男粗大的猛烈进出视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲午夜理论影院| 女人爽到高潮嗷嗷叫在线视频| 久久 成人 亚洲| 久久 成人 亚洲| 国产av国产精品国产| 精品国产乱子伦一区二区三区| 黄色怎么调成土黄色| 香蕉久久夜色| 黑人操中国人逼视频| 亚洲中文日韩欧美视频| 久久 成人 亚洲| 91精品国产国语对白视频| 黄色毛片三级朝国网站| 中文字幕av电影在线播放| 日日摸夜夜添夜夜添小说| 国产av国产精品国产| 一本大道久久a久久精品| 免费在线观看视频国产中文字幕亚洲| 一区二区三区国产精品乱码| 久久 成人 亚洲| 大片免费播放器 马上看| 少妇猛男粗大的猛烈进出视频| 91精品国产国语对白视频| 99国产精品99久久久久| 色综合婷婷激情| 王馨瑶露胸无遮挡在线观看| 丝袜美足系列| 午夜日韩欧美国产| 香蕉久久夜色| 水蜜桃什么品种好| 老司机在亚洲福利影院| 精品福利观看| 麻豆成人av在线观看| 日本黄色视频三级网站网址 | 成年人午夜在线观看视频| 激情在线观看视频在线高清 | 一二三四在线观看免费中文在| 一二三四在线观看免费中文在| 大型av网站在线播放| 69av精品久久久久久 | 久久久久网色| 亚洲专区国产一区二区| 黄网站色视频无遮挡免费观看| 美女视频免费永久观看网站| 999精品在线视频| 亚洲 国产 在线| 日本五十路高清| 天天影视国产精品| 考比视频在线观看| 久久av网站| 久久精品人人爽人人爽视色| 久久中文字幕人妻熟女| 免费女性裸体啪啪无遮挡网站| 国产成人精品无人区| 男人操女人黄网站| 女人精品久久久久毛片| 欧美另类亚洲清纯唯美| 婷婷丁香在线五月| 国产aⅴ精品一区二区三区波| 精品国产乱子伦一区二区三区| 91精品国产国语对白视频| 在线观看舔阴道视频| 中文字幕精品免费在线观看视频| 欧美日韩av久久| 18禁观看日本| 色在线成人网| 久久精品aⅴ一区二区三区四区| 亚洲,欧美精品.| 岛国毛片在线播放| 欧美在线一区亚洲| 嫁个100分男人电影在线观看| 后天国语完整版免费观看| 热99re8久久精品国产| 日韩中文字幕视频在线看片| 国产人伦9x9x在线观看| 日日夜夜操网爽| 精品久久久精品久久久| 黄色视频在线播放观看不卡| 12—13女人毛片做爰片一| 91成人精品电影| 日韩欧美一区视频在线观看| 亚洲男人天堂网一区| av有码第一页| 最近最新中文字幕大全免费视频| 久久久国产成人免费| 久久久久精品人妻al黑| 老司机影院毛片| av网站免费在线观看视频| 高清毛片免费观看视频网站 | 人人妻人人添人人爽欧美一区卜| a级毛片黄视频| 另类精品久久| 久久久久久久国产电影| 欧美在线黄色| 亚洲av美国av| 午夜福利在线免费观看网站| 久久久久久久久久久久大奶| 99在线人妻在线中文字幕 | 成年人免费黄色播放视频| 欧美激情高清一区二区三区| 久久精品91无色码中文字幕| 后天国语完整版免费观看| 狂野欧美激情性xxxx| 欧美久久黑人一区二区| 亚洲国产欧美网| 大型黄色视频在线免费观看| 国产精品九九99| 天天操日日干夜夜撸| 免费观看a级毛片全部| 精品久久蜜臀av无| 国产精品一区二区在线不卡| 一区二区三区国产精品乱码| 亚洲va日本ⅴa欧美va伊人久久| 老司机靠b影院| 欧美黑人精品巨大| 啦啦啦 在线观看视频| 性色av乱码一区二区三区2| 如日韩欧美国产精品一区二区三区| 久久久久视频综合| 亚洲欧洲精品一区二区精品久久久| 黑人操中国人逼视频| 麻豆国产av国片精品| 99热网站在线观看| 久久午夜综合久久蜜桃| 精品久久久精品久久久| 欧美成人午夜精品| 亚洲美女黄片视频| 精品人妻熟女毛片av久久网站| 亚洲 欧美一区二区三区| 啦啦啦在线免费观看视频4| 女性被躁到高潮视频| 12—13女人毛片做爰片一| 成年动漫av网址| 国产亚洲欧美在线一区二区| 一级,二级,三级黄色视频| 国产单亲对白刺激| 两个人看的免费小视频| 久久精品亚洲精品国产色婷小说| 搡老熟女国产l中国老女人| 丰满饥渴人妻一区二区三| 国产不卡av网站在线观看| 亚洲天堂av无毛| 在线观看舔阴道视频| 国产xxxxx性猛交| 精品国产一区二区三区久久久樱花| 人人妻,人人澡人人爽秒播| 黑丝袜美女国产一区| 91大片在线观看| 免费黄频网站在线观看国产| 免费女性裸体啪啪无遮挡网站| 亚洲国产中文字幕在线视频| 热re99久久国产66热| 精品亚洲成国产av| 亚洲熟妇熟女久久| 亚洲人成伊人成综合网2020| 手机成人av网站| 成年人免费黄色播放视频| 老司机影院毛片| 999久久久精品免费观看国产| 99re在线观看精品视频| 亚洲色图 男人天堂 中文字幕| 咕卡用的链子| 精品一品国产午夜福利视频| 两性夫妻黄色片| 丰满少妇做爰视频| 国产免费av片在线观看野外av| 麻豆国产av国片精品| 中文字幕精品免费在线观看视频| 蜜桃在线观看..| 久久香蕉激情| 午夜91福利影院| 日本欧美视频一区| 亚洲国产欧美一区二区综合| 一级毛片电影观看| 久热爱精品视频在线9| 国产伦理片在线播放av一区| 欧美乱妇无乱码| 美女福利国产在线| 午夜免费成人在线视频| 精品国产乱码久久久久久男人| 在线av久久热| 在线 av 中文字幕| 亚洲精品久久成人aⅴ小说| 亚洲一区二区三区欧美精品| 黄色怎么调成土黄色| 亚洲 国产 在线| 视频在线观看一区二区三区| 咕卡用的链子| 他把我摸到了高潮在线观看 | 搡老乐熟女国产| 波多野结衣av一区二区av| 免费人妻精品一区二区三区视频| 王馨瑶露胸无遮挡在线观看| 日本五十路高清| 大香蕉久久网| 精品人妻在线不人妻| 露出奶头的视频| 日韩大码丰满熟妇| 国产精品亚洲av一区麻豆| 757午夜福利合集在线观看| 亚洲成人免费av在线播放| 精品亚洲成国产av| 老司机影院毛片| 国产欧美日韩综合在线一区二区| 国产一区二区 视频在线| 少妇粗大呻吟视频| 国产伦人伦偷精品视频| 桃红色精品国产亚洲av| 成人18禁高潮啪啪吃奶动态图| 曰老女人黄片| 美女午夜性视频免费| 国内毛片毛片毛片毛片毛片| 亚洲国产av新网站| 丁香六月欧美| 大型黄色视频在线免费观看| 国产欧美日韩精品亚洲av| 精品国产乱码久久久久久小说| 50天的宝宝边吃奶边哭怎么回事| 国产视频一区二区在线看| 久久精品aⅴ一区二区三区四区| 十八禁人妻一区二区| 黄色丝袜av网址大全| 一二三四在线观看免费中文在| 久久精品aⅴ一区二区三区四区| 亚洲精华国产精华精| 国产精品 欧美亚洲| 一边摸一边做爽爽视频免费| 欧美变态另类bdsm刘玥| 久久99一区二区三区| 在线天堂中文资源库| 亚洲精品自拍成人| 正在播放国产对白刺激| 国产视频一区二区在线看| 欧美午夜高清在线| 一区二区三区精品91| 看免费av毛片| 黄网站色视频无遮挡免费观看| 亚洲成人国产一区在线观看| 久久精品成人免费网站| 在线播放国产精品三级| 九色亚洲精品在线播放| 久久国产精品男人的天堂亚洲| 中文字幕人妻丝袜制服| 狂野欧美激情性xxxx| 色婷婷久久久亚洲欧美| 一区二区av电影网| 亚洲精品久久午夜乱码| 老汉色∧v一级毛片| 成年人免费黄色播放视频| 欧美人与性动交α欧美精品济南到| 看免费av毛片| 日韩免费av在线播放| 国产一区二区激情短视频| 精品国产一区二区久久| 精品卡一卡二卡四卡免费| 国产淫语在线视频| 中国美女看黄片| 热re99久久国产66热| 捣出白浆h1v1| 国产高清videossex| 精品视频人人做人人爽| 亚洲成国产人片在线观看| 国产亚洲一区二区精品| 亚洲精品中文字幕一二三四区 | 动漫黄色视频在线观看| 亚洲精品国产精品久久久不卡| 国产成人免费观看mmmm| 一边摸一边抽搐一进一出视频| 18禁国产床啪视频网站| 可以免费在线观看a视频的电影网站| 亚洲五月色婷婷综合| 在线天堂中文资源库| 欧美一级毛片孕妇| 国产亚洲一区二区精品| 香蕉丝袜av| 国产亚洲午夜精品一区二区久久| 久久精品国产a三级三级三级| 免费人妻精品一区二区三区视频| 国产精品久久久久成人av| 国产欧美亚洲国产| 国产片内射在线| 美女视频免费永久观看网站| 久久精品91无色码中文字幕| 一本久久精品| 捣出白浆h1v1| 国产高清videossex| 在线观看人妻少妇| 一区二区三区精品91| 手机成人av网站| 视频区欧美日本亚洲| 欧美精品av麻豆av| 免费黄频网站在线观看国产| 免费观看a级毛片全部| 久久国产精品影院| 91av网站免费观看| 免费在线观看日本一区| 精品人妻在线不人妻| 免费不卡黄色视频| 女人被躁到高潮嗷嗷叫费观| 亚洲一区二区三区欧美精品| 国产亚洲精品一区二区www | 国产一区二区三区综合在线观看| 欧美日韩亚洲国产一区二区在线观看 | 中文欧美无线码| 757午夜福利合集在线观看| 久久精品人人爽人人爽视色| 天堂8中文在线网| 搡老岳熟女国产| 午夜老司机福利片| 麻豆成人av在线观看| 满18在线观看网站| 色播在线永久视频| 免费观看a级毛片全部| 亚洲av日韩精品久久久久久密| 欧美日韩亚洲国产一区二区在线观看 | 狠狠狠狠99中文字幕| 亚洲情色 制服丝袜| 热99久久久久精品小说推荐| 超色免费av| 大片免费播放器 马上看| 深夜精品福利| 操美女的视频在线观看| 黄色 视频免费看| 1024视频免费在线观看| 色播在线永久视频| 国产主播在线观看一区二区| 国产成人一区二区三区免费视频网站| 啦啦啦视频在线资源免费观看| 新久久久久国产一级毛片| 丝袜人妻中文字幕| 91九色精品人成在线观看| 精品乱码久久久久久99久播| av网站在线播放免费| 久久久久久久大尺度免费视频| 中亚洲国语对白在线视频| 亚洲av片天天在线观看| 蜜桃在线观看..| 日韩一卡2卡3卡4卡2021年| 亚洲五月色婷婷综合| 国产伦人伦偷精品视频| 美女福利国产在线| 国产一卡二卡三卡精品| 婷婷丁香在线五月| 狠狠精品人妻久久久久久综合| 交换朋友夫妻互换小说| 亚洲中文日韩欧美视频| 国产精品国产av在线观看| 少妇的丰满在线观看| 纯流量卡能插随身wifi吗| 1024视频免费在线观看| 女性被躁到高潮视频| 99国产精品免费福利视频| 亚洲欧洲精品一区二区精品久久久| 91成人精品电影| 最黄视频免费看| 另类精品久久| 一级,二级,三级黄色视频| 午夜日韩欧美国产| 中文字幕人妻丝袜一区二区| 黑人猛操日本美女一级片| 免费看a级黄色片| 国产精品美女特级片免费视频播放器 | 成人国语在线视频| 欧美成人午夜精品| 亚洲精华国产精华精| 曰老女人黄片| 最近最新中文字幕大全免费视频| 王馨瑶露胸无遮挡在线观看| 五月开心婷婷网| 黄色毛片三级朝国网站| 大香蕉久久网| 啦啦啦视频在线资源免费观看| 欧美日本中文国产一区发布| 国产在线精品亚洲第一网站| 国产伦理片在线播放av一区| 天堂8中文在线网| 99在线人妻在线中文字幕 | 在线观看舔阴道视频| 色94色欧美一区二区| 精品卡一卡二卡四卡免费| 久久久国产精品麻豆| 真人做人爱边吃奶动态| 国产一区二区激情短视频| 国产av国产精品国产| 日韩 欧美 亚洲 中文字幕| 美女扒开内裤让男人捅视频| 国产精品久久久av美女十八| 成人国语在线视频| 免费少妇av软件| 777米奇影视久久| 精品国产一区二区三区四区第35| 亚洲综合色网址| 精品国产超薄肉色丝袜足j| 两性夫妻黄色片| 少妇粗大呻吟视频| 精品国产一区二区久久| 天天躁夜夜躁狠狠躁躁| 交换朋友夫妻互换小说| 欧美 亚洲 国产 日韩一| 免费在线观看完整版高清| 丰满迷人的少妇在线观看| 1024香蕉在线观看| 色尼玛亚洲综合影院| 一区二区日韩欧美中文字幕| 国产亚洲午夜精品一区二区久久| 久久精品熟女亚洲av麻豆精品| 老司机福利观看| 午夜福利欧美成人| 可以免费在线观看a视频的电影网站| 日本五十路高清| 夜夜夜夜夜久久久久| 日韩欧美国产一区二区入口| 免费观看a级毛片全部| 悠悠久久av| 69精品国产乱码久久久| 男人舔女人的私密视频| 久9热在线精品视频| 欧美性长视频在线观看| 男女之事视频高清在线观看| 国产成+人综合+亚洲专区| 少妇裸体淫交视频免费看高清 | 搡老乐熟女国产| 久久久欧美国产精品| 高清在线国产一区| 蜜桃在线观看..| 人人妻人人添人人爽欧美一区卜| 精品乱码久久久久久99久播| 亚洲免费av在线视频| 国产精品麻豆人妻色哟哟久久| 国产单亲对白刺激| 久久久国产欧美日韩av| 日本撒尿小便嘘嘘汇集6| 精品亚洲成a人片在线观看| 久久久久久亚洲精品国产蜜桃av| 在线观看人妻少妇| 久久久久视频综合| 99re在线观看精品视频| 成人三级做爰电影| 80岁老熟妇乱子伦牲交| 久久人妻av系列| 美女高潮喷水抽搐中文字幕| 人人妻人人添人人爽欧美一区卜| 亚洲精品美女久久av网站| 日日爽夜夜爽网站| 19禁男女啪啪无遮挡网站| 香蕉久久夜色| 在线看a的网站| 美女国产高潮福利片在线看| 国产精品久久久久久人妻精品电影 | 欧美激情久久久久久爽电影 | 这个男人来自地球电影免费观看| 黑人巨大精品欧美一区二区mp4| 汤姆久久久久久久影院中文字幕| 久久久久久免费高清国产稀缺| 操美女的视频在线观看| 少妇被粗大的猛进出69影院| 中文字幕最新亚洲高清| 人妻一区二区av| 黄色怎么调成土黄色| 国产在线视频一区二区| 亚洲色图综合在线观看| 日本精品一区二区三区蜜桃| 久久青草综合色| 国产欧美亚洲国产| 亚洲国产欧美网| 天天添夜夜摸| 又黄又粗又硬又大视频| 天堂中文最新版在线下载| 两性午夜刺激爽爽歪歪视频在线观看 | 搡老岳熟女国产| 大码成人一级视频| 一区福利在线观看| 久久精品国产99精品国产亚洲性色 | 成人黄色视频免费在线看| 欧美亚洲日本最大视频资源| 菩萨蛮人人尽说江南好唐韦庄| 热re99久久精品国产66热6| 亚洲av第一区精品v没综合|