• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Methods of spacecraft impulsive relative hovering and trajectory safety analysis

    2018-01-15 06:09:18CHENGBoYUANJianpingQIANYingjingMAWeihua
    中國空間科學技術 2017年6期

    CHENG Bo, YUAN Jianping, QIAN Yingjing, MA Weihua

    1.School of Astronautics, Northwestern Polytechnical University, Xi′an 710072, China 2.Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China 3.National Key Laboratory of Aerospace Flight Dynamics, Xi′an 710072, China

    With the continuous improvement of human space activities, the complexity of the space missions ongoing and planed has been increased. The structure of the spacecraft has becoming complicated, and the spacecraft capability has been increased. In such a situation, scholars put their eyes on the stable operation of spacecraft on orbit. Therefore, the need for on-orbit service is extremely urgent, such as refueling, maintenance, replacing, updating and other servicing operations of spacecraft[1-2].

    Spacecraft relative hovering is viewed as a significant part of the on-orbit service technology. By using the force and moment, a relative hovering mission can maintain the relative distance of active spacecraft respect to the target spacecraft in a specified reference coordinate frame[3].

    There have been some literatures about the relative hovering technique. Scholars studied the hovering problems near asteroids and between two spacecraft[4]. Zeng et al deduced the dynamic equations of hovering flight over elongated asteroids for solar sails with the ability of active sail areas control, and the feasible hovering detection area was analyzed by using the dynamic model[5]. Wang and Xu proposed a feedback control law for the orbit-attitude hovering of a spacecraft in the body-fixed frame of a uniformly rotating asteroid based on the non-canonical Hamiltonian structure. Using this control law, the artificial equilibrium can be created at the desired hovering position-attitude and be successfully stabilized in the Lyapunov sense[6]. An adaptive sliding mode control scheme, which can be used for autonomous body-fixed hovering maneuvers of a rigid spacecraft in the proximity of an asteroid involving uncertainties and time-varying external disturbances, was proposed by Lee and Vukovich to guarantee the asymptotic stability of states for position and attitude stabilization[7]. Dang established a precise analytic model of hovering control with the influence ofJ2perturbation, both in circular and elliptical reference orbit. With the models, the maximum and minimum force positions were determined, and the formula for calculating fuel consumption was derived[8]. Zhang et al analyzed the hovering acceleration inR-bar andV-bar direction and obtained an analytical form of the control force and velocity increment of hovering[9]. The works above solved the problems of modeling and control of spacecraft hovering efficiently. However, most of the dynamic models in previous works were based on the continuous thrust, which brought difficulties to the propulsion system of active spacecraft. Therefore, some scholars based their studies on the impulsive thrust orbit control method.

    Based on the Clohessy-Wiltshire equations, Pan studied the impulse control strategy and the entry method of drip-drop hovering orbit[10]. Rao et al presented the absolute orbit relationship between the target and mission spacecraft, and described the configuration of the hovering orbit in and out of the target spacecraft orbital plane based on the relative orbital elements. An interval impulse control strategy for hovering formation was derived in their work, which could make the mission spacecraft remain at a specified position to the target spacecraft for a long time[11]. Using the open-loop, interval impulse control method, the works above reduced the difficulty of implementation of hovering mission, but their control schemes were only fit for the circular and near circular reference orbit hovering.

    For the closed, long-term hovering study, the hovering trajectory safety should be pay more attention to avoid the collision between the two spacecraft. Based on the collision probability, some scholars studied the trajectory safety of relative motion between two space objects[12-14].

    Based on the analytic solutions of Tschauner-Hempel equations (T-H equations) and its state transition matrix form, a method of spacecraft hovering is proposed in this work. This method can be used for mission design of circular and elliptical reference orbit hovering. The velocity pulse calculated by the method would be easier for the propulsion system to control the relative hovering. The true anomaly intervals for orbit maneuver are optimized by using the nonlinear mathematical programming method, which would reduce the mean position deviation of the hovering. The hovering trajectory safety analysis method presented in this paper establishes an approximate calculation model of collision probability, which quantifies the collision risk of hovering.

    The numerical simulations in this paper show that, the method can be used to design the hovering mission on circular and elliptical reference orbit, under certain precision. The local optimal solution of the mean position deviation can be obtained by calculating with the optimized true anomaly intervals. The maximum collision probability and the minimum relative distance of the two spacecraft appear nearly at the same time. Moreover, the smaller the relative distance is, the larger the collision probability.

    1 Relative motion modeling

    The earth-centered inertial coordinationO-XYZ(ECI) and a rotating orthogonal coordinate systemo-xyz(TCO) with its origin at the centre of the mass of target spacecraft are selected to describe the relative hovering motion.

    As illustrated in Fig.1, the origin of ECI is located at the centre of the earth, theXaxis is in the equatorial plane, pointing to the direction of vernal equinox, theYaxis is also in the equatorial plane, perpendicular to theXaxis, and theZaxis completing the right-handed frame of the system. Unit vectors in the direction of each axis of the TCO coordinates are defined as follows:

    WhereRtis the position vector of target spacecraft;htis the orbital angular momentum of reference orbit defined by

    In the TCO coordinate frame, the relative motion dynamical equations (T-H equations) are established with the true anomalyθas a variable[15-16].

    Fig.1 Coordinate frame for hovering spacecraft

    Where(·)′means derivation respect to the true anomalyθ;eis the eccentricity of the reference orbit;ξ=1+ecosθ; the control and interference acceleration vectorais defined by

    Eq.(1) are non-homogeneous differential equations when the acceleration vectorais an arbitrary time function. It is hard to obtain the analytic solutions of Eq.(1)[17]. Considering that the active spacecraft is free from external force, the variables of Eq.(1) can be changed as follows:

    We can obtain the analytic solutions of T-H equations[18]:

    The elements ofΦθare as below:

    WhereJ=(h/p2)(t-t0);c=ξcosθ;s=ξsinθ;c′=-sinθ-esin(2θ);s′=cosθ+ecos(2θ).

    Expressing the analytic solutions of T-H equations in a state transition matrix notation, we obtain:

    Furthermore, we obtain:

    Inserting Eq.(5) into the notation ofΦθ, the determinant ofΦθ0:

    2 Impulsive hovering method

    Spacecraft hovering is to apply the corresponding control force, so that the active spacecraft position, respect to the target spacecraft, remains unchanged. The relative velocity and relative acceleration of the active spacecraft are equal to zero in the TCO coordinate frame[3]:

    2.1 Velocity increment of impulsive hovering

    For the troubles of continuous thrust bring to the control and propulsion system of active spacecraft, the relative acceleration control in Eq.(8) is difficult to achieve. Therefore, we consider using impulsive control method to keep the relative position unchanged within a certain period. If the deviation is small enough, or meets the engineering requirements, it can be considered that the two spacecraft have achieved a continuous relative hovering approximately.

    Every block in Eq.(9) is three dimensional matrix.

    Recall that the velocity calculated by Eq.(12) should be converted into the true values using Eq.(2).

    2.2 Energy consumption analysis

    Using the impulsive orbital maneuvering method, the active spacecraft transfers from the hovering point through a cycle back to the previous point. For a short enough control period, the impulsive hovering method can be considered as the discrete form of the continuous thrust method. Furthermore, for a minimal control period, the velocity increment of impulsive hovering method should be approximately similar to that of the continuous thrust hovering. Therefore, with the continuous thrust hovering method, the trends of the velocity of the active spacecraft at different hovering points are the same as those of the impulsive one. The control accelerations of continuous thrust hovering method are expressed as follows:

    Eq.(13) shows that, the control accelerations are proportional to the relative position. Moreover, the hovering motion perpendicular to the orbital plane is decoupled from the one in the orbital plane. We can obtain the velocity increment by integrating Eq.(13):

    The velocity increment of hovering during one reference orbit period can be calculated by Eq.(14).

    2.3 Optimization of impulsive hovering maneuver

    Assuming the true anomaly intervals of one reference orbit period are

    Δθi,i=1,2,…,N

    WhereNis the pulse number.

    The mean position deviation of the multi-pulse hovering can be calculated as follows:

    Δθican be optimized using the mathematical programming method[21-22].

    The optimization can be described as below:

    The problem described by Eq.(16) is to find a minimum of constrained nonlinear multivariable function. The sequential quadratic programming method and trust region method can be used to solve this problem.

    2.4 Impulsive thrust model

    Idealizing the impulsive working mode of orbital maneuvering engine system as a finite thrust model[23], we can calculate the velocity increment using the equation below:

    Fig.2 illustrates the impulsive thrust mode of engine.

    Fig.2 Impulsive thrust model of engine

    In Fig.2,τrepresents the rise time and the drop-out time of the impulsive thrust,Tis the steady-state working time andFmaxis the deputy of ultimate thrust. The equivalent thrust of engine can be calculated:

    We can obtaintby donating the velocity increment into Eq.(17). If the equivalent thrust is on the small side, a longer working time is required to allow the active spacecraft to obtain the velocity increment for hovering. However, during establishing the velocity increment, the relative states of the two spacecraft will change greatly, which will affect the accuracy of the orbit maneuver. Therefore, it is necessary to select an appropriate engine for improving the accuracy and stability of the impulsive hovering.

    3 Trajectory safety analysis

    Based on the analytic solutions of T-H equations and its state transition matrix form, the open-loop control method of spacecraft relative hovering is introduced in the former section. Comparing with the continuous thrust control method, the impulsive one is applicable for the engineering application. It is noteworthy that linearization and approximation are introduced in the derivation of the relative motion dynamic equations. Furthermore, the method takes no consideration of the gravitational perturbation. Therefore, this method induces some targeting error, especially for closed, long-term hovering, which could lead to the active spacecraft colliding with the target one. In this section, we discuss the trajectory safety of hovering based on the collision probability.

    WhereEis expectation operator. Using Eq.(19) we can obtain the covariance matrix of relative states for arbitrary time.

    Two assumptions are introduced for the hovering motion collision probability calculation:

    1) The position state of the target spacecraft is a certain amount, and the uncertainty of the relative position of the two spacecraft is attached to the active spacecraft.

    2) The structure of the spacecraft is shaped as an envelope ball, and the envelopes of the two spacecraft are combined into a total envelope ballV, whose centre is the centroidal of target spacecraft and whose radius is the sum of the two radiuses.

    According to the assumptions above, the collision probability of relative hovering is equivalent to the integration of probability density of Eq.(20). If the total envelop ball has uniform probability density, the integration can be simplified to be an algebraic operation:

    (21)

    For the relative hovering trajectory safety analysis, the prediction of the collision probability can be obtained by Eq.(21). If the prediction is greater than the thresholdPalarm, orbital maneuver should be imposed for reducing the collision probability.

    4 Numerical verification

    The numerical simulations are applied to verify the correctness of the impulsive relative hovering method and the trajectory safety analysis. Simulation conditions are summarized in Table 1.

    Table 1 Initial condition of target spacecraft

    The relative position and velocity at initial time areρ0(km) andv0(km/s) respectively:

    The hovering point and the initial relative position are set to be the same.

    4.1 Spacecraft impulsive hovering

    The fmincon function of Matlab is used to optimize the true anomaly intervals Δθi. The number of impulse (IN) in one orbital period is 6, 9 and 12 respectively. The initial optimization value of the anomaly intervals are equal.

    Table 2 Optimization of the true anomaly intervals

    The simulation results in Table 2 show that, as the impulse number increases the mean position deviation reduces. The optimization method applied in this paper is helpful to increasing the accuracy of hovering. It should be noted that the optimal solution of the nonlinear programming method is probably the local optimal solution. Whether it is the global optimal solution depends on the initial value.

    With the optimized true anomaly intervals shown in Table 2, Fig.3 compares the hovering trajectory. The dotted line represents the case when IN=9, and the solid line shows the case when IN=12.

    Fig.3 Trajectories of the impulsive relative hovering

    As it is shown in Fig.3, due to the first order linearization and approximation of relative motion model, there are errors between the relative hovering trajectory and the desired hovering point. Meanwhile, the error accumulation of impulsive hovering method also contributes to the deviation.

    4.2 Trajectory safety of hovering

    In this simulation case, the radius of the total envelope ball is 100 m, and the standard deviations of relative position and velocity are 250 m and 0.3 m/s respectively.The independent relative states obey normal distribution. The diagonal elements of the covariance matrix of relative states distribution at the initial time are the square of the standard deviation of the relative states, and off-diagonal elements are all zeros.

    Fig.4 shows the relative distance of two spacecraft under the situation of 8 equal true anomaly intervals during two reference orbit periods. The collision probability during orbital maneuvers is shown in Fig.5.

    Fig.4 Relative distance of impulsive relative hovering

    Fig.5 Collision probability of impulsive relative hovering

    As it is shown in Fig.4, there is a minimum relative distance during every orbital maneuver. The relative position changes during the hovering. At the end of the orbit period, the relative position regresses basically. The collision probability of relative hovering is related to the relative distance.

    Fig.5 shows the collision probability of relative hovering. Comparing with Fig.4, during every impulse the relative distance decreases at first and then increases; the collision probability increases and then decreases. The maximum collision probability changes when the minimum relative distance changes. The maximum collision probability and the minimum relative distance appear almost at the same time.

    For the spacecraft hovering task design, if the collision probability is greater than the thresholdPalarm, orbital maneuver should be imposed to reduce it to avoid collision.

    5 Conclusions

    On the consideration of the analytical solutions of T-H equations with its state transition matrix form, a relative hovering method was developed. Using the method of nonlinear mathematical programming, the true anomaly intervals of the hovering impulse were optimized to reduce the mean position deviation. Based on the calculation of collision probability, the method of safety analysis and risk management was proposed.

    The numerical simulations show that the relative hovering method introduced in this paper can be used for circular and elliptical reference orbits hovering, which is promising for practical engineering use. Shortening the period of the orbit maneuver pulse can improve the relative hovering. The maximum collision probability and the minimum relative distance appear almost at the same time. Furthermore, the smaller the relative distance is, the larger the collision probability.

    [1] CUI N G, WANG P, GUO J F, et al. A review on-orbit servicing[J]. Journal of Astronautics, 2007,28(4):33-39(in Chinese).

    [2] CHEN X Q, YUAN J P, YAO W, et al. On-orbit servicing technology of spacecraft[M]. Beijing:China Astronautic Publishing House, 2009:1-22(in Chinese).

    [3] YUAN J P, LI J F, HE X S, et al. Relative motion orbit dynamics of spacecraft[M]. Beijing:China Astronautic Publishing House, 2013:482-561(in Chinese).

    [4] ZHU Y W. Study on orbital characteristics and control of hovering spacecraft[D]. Changsha: National University of Defense Technology, 2010(in Chinese).

    [5] ZENG X Y, GONG S P, LI J F, et al. Hovering flight over elongated asteroids by using solar sails[J]. Journal of Deep Space Exploration,2015,2(1):48-52(in Chinese).

    [6] WANG Y, XU S J. Body-fixed orbit-attitude hovering control over an asteroid using non-canonical Hamiltonian structure[J]. Acta Astronautica, 2015,117:450-468.

    [7] LEE D, VUKOVICH G. Adaptive sliding mode control for spacecraft body-fixed hovering in the proximity of an asteroid[J]. Aerpspace Science and Technology, 2015,46:471-483.

    [8] DANG Z H, WANG Z K, ZHANG Y L. Modeling and analysis of relative hovering control for spacecraft[J]. Journal of Guidance Control and Dynamics, 2014,37(4):1091-1102.

    [9] ZHANG J R, ZHAO S G, YANG Y Z. Characteristic analysis for elliptical orbit hovering based on relative dynamics[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013,49(4):2742-2750.

    [10] PAN Y. Study on spacecraft relative drip-drop hovering orbit[J]. Spacecraft Engineering, 2014,23(4):13-18(in Chinese).

    [11] RAO Y R, HAN C, YIN J F, et al. Method of spacecraft hovering formation design and control[J]. Acta Aeronautica et Astronautica Sinica, 2015,36(7):2361-2371(in Chinese).

    [12] XU X L, XIONG Y Q. Analysis of the applicability of collision probability algorithms for nonlinear relative motion[J]. Science China, Physics, Mechanics & Astronomy, 2013,56(5):1041-1046.

    [13] SLATER G L, BYRAM S M, WILLIAMS T W. Collision avoidance for satellites in formation flight[J]. Journal of Guidance Control and Dynamics, 2012, 29(5):1140-1146.

    [14] BAI X Z, CHEN L. Research on calculational method of collision probability between space objects[J]. Journal of Astronautics, 2008,29(4):1435-1442(in Chinese).

    [15] CAO Y H, FAN P C, BAI X Z, et al. Initial error propagation of elliptical orbit based on T-H equation[J]. Chinese Space Science and Technology, 2014, 34(2):28-35(in Chinese).

    [16] BAI X Z. Research on orbital prediction error and collision probability of space objects[D]. Changsha: National University of Defense Technology, 2013(in Chinese).

    [17] LIU T, ZHAO J. Dynamics of spacecraft[M]. Harbin:Harbin Institute of Technology Press,2003:83-101(in Chinese).

    [18] YAMANAKA K, ANKERSEN F. New state transition matrix for relative motion on an arbitrary elliptical orbit[J]. Journal of Guidance Control and Dynamics, 2002,25(1):60-66.

    [19] ZHANG A P. Determination and solution of invertible matrix[J]. Journal of Chifeng University,2011,27(3):12-13(in Chinese).

    [20] INALHAN G, TILLERSON M, HOW J P. Relative dynamics and control of spacecraft formation in eccentric orbits[J]. Journal of Guidance Control and Dynamics, 2002,25(1):48-59.

    [21] YUAN Y X. Nonlinear optimization calculation method[M]. Beijing:Science Press,2008:136-224(in Chinese).

    [22] HUANG H X, HAN J Y. Mathematical programming[M]. Beijing:Tsinghua University Press,2006:220-324(in Chinese).

    [23] GU L X, GONG C L, HAO B. Design and simulation of KKV control scheme[J]. Journal of Northwestern Polytechnical University, 2007,25(3):402-405(in Chinese).

    [24] YANG B H. Spacecraft guidance, navigation and control[M]. Beijing:China Science and Technology Press,2011:51-95(in Chinese).

    [25] LIN L X. Space rendezvous and docking technology[M]. Beijing:National Defense Industry Press,1995:108-211(in Chinese).

    [26] GOTTLIEB R G, SPONAUGLE S J, GAYLOR D E. Orbit determination accuracy requirements for collision avoidance[C].AIAA/AAS Space Flight Mechanics Meeting. Santa Barbara:AIAA,2001:1105-1121.

    [27] ZHU J P. Applied multivariate statistical analysis[M]. Beijing:Science Press,2012:8-26(in Chinese).

    (Editor: GAO Zhen)

    伊人久久国产一区二区| 大片免费播放器 马上看| 久久午夜福利片| 国产视频内射| 欧美高清成人免费视频www| 人妻夜夜爽99麻豆av| 久久精品久久久久久噜噜老黄| 亚洲国产精品一区三区| 日本黄色片子视频| 亚洲av成人精品一区久久| 老司机影院毛片| 在线观看免费日韩欧美大片 | 两个人的视频大全免费| 国产亚洲欧美精品永久| av不卡在线播放| 国产v大片淫在线免费观看| 91狼人影院| 日韩一本色道免费dvd| 精品午夜福利在线看| 日韩欧美精品免费久久| 亚洲精品一区蜜桃| 波野结衣二区三区在线| 亚洲综合色惰| 国产精品久久久久成人av| 国产久久久一区二区三区| 亚洲欧美日韩东京热| 一区二区三区精品91| 国国产精品蜜臀av免费| 99热全是精品| 99国产精品免费福利视频| freevideosex欧美| 久久综合国产亚洲精品| 亚洲精品456在线播放app| 18+在线观看网站| 边亲边吃奶的免费视频| 国产精品欧美亚洲77777| 国内精品宾馆在线| h视频一区二区三区| 在线看a的网站| 十分钟在线观看高清视频www | 男人爽女人下面视频在线观看| 日日啪夜夜爽| 国产精品久久久久久久电影| 在线观看三级黄色| 国产美女午夜福利| 久久亚洲国产成人精品v| 亚洲激情五月婷婷啪啪| 综合色丁香网| 国产爽快片一区二区三区| 欧美激情国产日韩精品一区| 亚洲美女视频黄频| 插阴视频在线观看视频| 国产一区有黄有色的免费视频| 免费av不卡在线播放| 精品国产三级普通话版| 最近手机中文字幕大全| 一级毛片aaaaaa免费看小| 制服丝袜香蕉在线| 丰满乱子伦码专区| 韩国高清视频一区二区三区| 亚洲欧美日韩东京热| 成人黄色视频免费在线看| 丰满迷人的少妇在线观看| 麻豆乱淫一区二区| 国产精品99久久久久久久久| 黄片wwwwww| 欧美zozozo另类| 亚洲av不卡在线观看| 在线精品无人区一区二区三 | 国产久久久一区二区三区| 网址你懂的国产日韩在线| 国产一区二区在线观看日韩| 五月玫瑰六月丁香| 欧美精品国产亚洲| 亚洲最大成人中文| 亚洲,欧美,日韩| h日本视频在线播放| 久久女婷五月综合色啪小说| 中文字幕免费在线视频6| 亚洲成人一二三区av| 亚洲精华国产精华液的使用体验| 哪个播放器可以免费观看大片| 精品少妇久久久久久888优播| 性色av一级| 亚洲无线观看免费| 亚洲欧美成人综合另类久久久| 综合色丁香网| 亚洲国产精品国产精品| 我的老师免费观看完整版| 精品久久久久久久久av| 啦啦啦啦在线视频资源| 国产黄片美女视频| 国产男人的电影天堂91| 麻豆精品久久久久久蜜桃| 人人妻人人爽人人添夜夜欢视频 | 国产乱人视频| 日本av手机在线免费观看| 欧美成人精品欧美一级黄| 黄色配什么色好看| 国产一区亚洲一区在线观看| 三级国产精品片| 高清视频免费观看一区二区| 日本vs欧美在线观看视频 | 老女人水多毛片| 欧美日韩一区二区视频在线观看视频在线| 精品久久国产蜜桃| 欧美成人精品欧美一级黄| 成人免费观看视频高清| 国产亚洲91精品色在线| 午夜激情福利司机影院| 欧美激情极品国产一区二区三区 | 国产欧美日韩精品一区二区| 亚洲精品日韩av片在线观看| 毛片女人毛片| 欧美变态另类bdsm刘玥| 男女下面进入的视频免费午夜| 国产成人a∨麻豆精品| 尤物成人国产欧美一区二区三区| 永久免费av网站大全| 国国产精品蜜臀av免费| 成年av动漫网址| 人体艺术视频欧美日本| 日韩强制内射视频| 久久久久久久久久久丰满| 国产精品久久久久久久电影| 一级二级三级毛片免费看| 欧美 日韩 精品 国产| 成人免费观看视频高清| 啦啦啦在线观看免费高清www| 人妻少妇偷人精品九色| 久久精品国产亚洲av涩爱| 欧美日韩精品成人综合77777| 亚洲高清免费不卡视频| 赤兔流量卡办理| 欧美精品一区二区免费开放| 一级毛片我不卡| 国产成人精品一,二区| 91午夜精品亚洲一区二区三区| 国产精品精品国产色婷婷| 亚洲国产成人一精品久久久| 成人毛片60女人毛片免费| 激情五月婷婷亚洲| 97在线人人人人妻| 久久热精品热| av卡一久久| 国产一区有黄有色的免费视频| 久久久亚洲精品成人影院| 人人妻人人添人人爽欧美一区卜 | 日本av免费视频播放| 午夜福利视频精品| 日韩欧美一区视频在线观看 | 校园人妻丝袜中文字幕| 又黄又爽又刺激的免费视频.| 两个人的视频大全免费| 一二三四中文在线观看免费高清| 免费人成在线观看视频色| 日本与韩国留学比较| 91久久精品国产一区二区成人| 亚洲美女搞黄在线观看| 成年美女黄网站色视频大全免费 | 午夜激情久久久久久久| 国产精品蜜桃在线观看| 亚洲av日韩在线播放| 国产视频首页在线观看| 最近最新中文字幕大全电影3| 交换朋友夫妻互换小说| 亚洲欧美日韩卡通动漫| 午夜免费观看性视频| 91aial.com中文字幕在线观看| 毛片一级片免费看久久久久| kizo精华| 成人国产av品久久久| 久久久久久久精品精品| 国产色爽女视频免费观看| 亚洲av国产av综合av卡| 亚洲国产最新在线播放| 国产精品99久久久久久久久| 一边亲一边摸免费视频| 久热久热在线精品观看| 国产乱人视频| 午夜福利影视在线免费观看| 欧美变态另类bdsm刘玥| 一本—道久久a久久精品蜜桃钙片| 国产 精品1| 亚洲最大成人中文| 一级毛片电影观看| 伊人久久国产一区二区| 国产一区二区三区av在线| 久久午夜福利片| 久久精品熟女亚洲av麻豆精品| 国产精品偷伦视频观看了| 好男人视频免费观看在线| 在线观看免费视频网站a站| av免费观看日本| 最后的刺客免费高清国语| 青春草视频在线免费观看| 日本av免费视频播放| 国语对白做爰xxxⅹ性视频网站| 国产欧美日韩精品一区二区| 日日撸夜夜添| 欧美日韩亚洲高清精品| 亚洲一区二区三区欧美精品| 春色校园在线视频观看| 九草在线视频观看| 久久ye,这里只有精品| 久久久久久久久久久丰满| 亚洲精品自拍成人| 国产精品久久久久成人av| 亚洲,欧美,日韩| 亚洲精品乱久久久久久| 亚洲av不卡在线观看| 成人毛片60女人毛片免费| 少妇裸体淫交视频免费看高清| 新久久久久国产一级毛片| 国产亚洲5aaaaa淫片| 一本久久精品| 国产伦理片在线播放av一区| 欧美精品国产亚洲| 高清在线视频一区二区三区| 精品人妻视频免费看| 高清欧美精品videossex| 人妻 亚洲 视频| 成人国产麻豆网| 午夜激情福利司机影院| 熟女电影av网| 亚洲精品久久午夜乱码| 亚洲av中文字字幕乱码综合| 丰满人妻一区二区三区视频av| 国产视频内射| 日韩一本色道免费dvd| 亚洲婷婷狠狠爱综合网| 国产伦在线观看视频一区| 最近最新中文字幕免费大全7| 成年免费大片在线观看| av网站免费在线观看视频| 在线观看免费高清a一片| 成人午夜精彩视频在线观看| 国产精品国产三级国产av玫瑰| 国产视频内射| 亚洲精品亚洲一区二区| 99久国产av精品国产电影| 日本黄色日本黄色录像| 亚洲内射少妇av| 内地一区二区视频在线| 亚洲真实伦在线观看| 国产精品久久久久成人av| 免费看光身美女| 免费久久久久久久精品成人欧美视频 | 天堂俺去俺来也www色官网| 国产精品久久久久久久电影| 亚洲婷婷狠狠爱综合网| 欧美激情极品国产一区二区三区 | 五月开心婷婷网| 国产视频首页在线观看| 99热这里只有是精品50| 亚洲av.av天堂| 妹子高潮喷水视频| 婷婷色麻豆天堂久久| 最近手机中文字幕大全| 老司机影院毛片| 天美传媒精品一区二区| 在线播放无遮挡| 日韩三级伦理在线观看| 内地一区二区视频在线| 精品久久久久久久久亚洲| a 毛片基地| 女人久久www免费人成看片| 中国国产av一级| 男人添女人高潮全过程视频| 一本色道久久久久久精品综合| 女的被弄到高潮叫床怎么办| 日本与韩国留学比较| 丝袜脚勾引网站| 国产有黄有色有爽视频| 久久午夜福利片| 国产一区二区三区综合在线观看 | 国产白丝娇喘喷水9色精品| 一级二级三级毛片免费看| 男人添女人高潮全过程视频| 亚州av有码| 纯流量卡能插随身wifi吗| 亚洲av国产av综合av卡| 狂野欧美白嫩少妇大欣赏| 永久网站在线| 中文字幕精品免费在线观看视频 | 中文乱码字字幕精品一区二区三区| 国产黄片美女视频| 在线观看美女被高潮喷水网站| 男女无遮挡免费网站观看| www.色视频.com| 超碰97精品在线观看| 亚洲精品乱码久久久久久按摩| 我要看黄色一级片免费的| 看十八女毛片水多多多| 卡戴珊不雅视频在线播放| 麻豆成人av视频| 国产精品三级大全| 日韩欧美一区视频在线观看 | 久久久久网色| 国产免费福利视频在线观看| 美女cb高潮喷水在线观看| 亚洲色图av天堂| 亚洲精品久久午夜乱码| 精品少妇黑人巨大在线播放| 久久综合国产亚洲精品| 高清视频免费观看一区二区| 久久综合国产亚洲精品| 欧美+日韩+精品| 男女国产视频网站| 国产精品国产av在线观看| 高清av免费在线| 国产高清三级在线| 国产一区亚洲一区在线观看| 亚洲av成人精品一区久久| www.色视频.com| 成年av动漫网址| 日本色播在线视频| 嘟嘟电影网在线观看| 久久99精品国语久久久| 久久精品久久久久久久性| 午夜日本视频在线| 一级黄片播放器| 久久久亚洲精品成人影院| 成年人午夜在线观看视频| 免费观看av网站的网址| 最近手机中文字幕大全| 亚洲第一区二区三区不卡| 丰满少妇做爰视频| 成人亚洲欧美一区二区av| 午夜福利视频精品| 成人免费观看视频高清| 99久久综合免费| 黄色配什么色好看| 国产成人免费无遮挡视频| 欧美激情国产日韩精品一区| 国产黄片视频在线免费观看| 日韩,欧美,国产一区二区三区| 国产视频首页在线观看| 日日摸夜夜添夜夜添av毛片| 青春草亚洲视频在线观看| 日韩欧美一区视频在线观看 | 国产成人aa在线观看| 日韩欧美 国产精品| 国产精品嫩草影院av在线观看| 日本免费在线观看一区| 99久国产av精品国产电影| 夜夜看夜夜爽夜夜摸| 最后的刺客免费高清国语| av福利片在线观看| 一级毛片我不卡| 大陆偷拍与自拍| 卡戴珊不雅视频在线播放| 国产在线免费精品| 91精品伊人久久大香线蕉| 国产精品一区二区三区四区免费观看| 国产成人免费无遮挡视频| 黄色配什么色好看| 一二三四中文在线观看免费高清| 一个人看的www免费观看视频| 久久99热这里只频精品6学生| 亚洲在久久综合| 黄色怎么调成土黄色| 哪个播放器可以免费观看大片| 日韩亚洲欧美综合| 看十八女毛片水多多多| 亚洲国产精品一区三区| 亚洲三级黄色毛片| 国产精品av视频在线免费观看| 99热全是精品| 国产永久视频网站| 国精品久久久久久国模美| 久久久欧美国产精品| 2018国产大陆天天弄谢| 国产 一区 欧美 日韩| 免费高清在线观看视频在线观看| 中文字幕精品免费在线观看视频 | 国产成人精品久久久久久| 久久久久人妻精品一区果冻| 蜜桃久久精品国产亚洲av| 久久精品人妻少妇| 国产精品久久久久久av不卡| 永久网站在线| 国精品久久久久久国模美| 久热这里只有精品99| 亚洲伊人久久精品综合| 久久精品久久久久久久性| 高清黄色对白视频在线免费看 | 亚洲四区av| 国产在线免费精品| 97在线视频观看| av在线app专区| 精品人妻视频免费看| 下体分泌物呈黄色| 国产高清不卡午夜福利| 日本猛色少妇xxxxx猛交久久| 成人二区视频| 国产精品偷伦视频观看了| 麻豆乱淫一区二区| 国产一区二区三区av在线| 男人爽女人下面视频在线观看| 精品酒店卫生间| a级毛片免费高清观看在线播放| 国产乱人偷精品视频| 亚洲精品自拍成人| 日本一二三区视频观看| 人人妻人人澡人人爽人人夜夜| 亚洲内射少妇av| 久久久久久久久久久丰满| 免费人妻精品一区二区三区视频| 成年人午夜在线观看视频| 伦理电影大哥的女人| 久久久精品94久久精品| 国产成人a区在线观看| 免费观看a级毛片全部| 女性被躁到高潮视频| 国产精品一区二区三区四区免费观看| 国产精品一区二区在线不卡| 欧美一级a爱片免费观看看| 久久精品久久久久久噜噜老黄| 国产黄色视频一区二区在线观看| 免费观看av网站的网址| 亚洲婷婷狠狠爱综合网| 国产在线视频一区二区| 国产精品爽爽va在线观看网站| 国产大屁股一区二区在线视频| 欧美日韩视频精品一区| 国产精品99久久99久久久不卡 | 精品久久久久久久久av| 最近最新中文字幕大全电影3| 日本午夜av视频| 欧美xxxx性猛交bbbb| 国产精品久久久久久久电影| 美女福利国产在线 | 国产精品成人在线| 狂野欧美白嫩少妇大欣赏| 高清黄色对白视频在线免费看 | 国产av一区二区精品久久 | 免费人成在线观看视频色| 黑人猛操日本美女一级片| 亚洲国产精品999| 亚洲精品久久午夜乱码| 国产高清不卡午夜福利| 女性被躁到高潮视频| 男女边摸边吃奶| 色视频www国产| 婷婷色综合大香蕉| 老师上课跳d突然被开到最大视频| 亚洲天堂av无毛| 如何舔出高潮| 国产成人91sexporn| 久久久久久久亚洲中文字幕| 国国产精品蜜臀av免费| 国产探花极品一区二区| 久久国产亚洲av麻豆专区| 欧美日韩综合久久久久久| 春色校园在线视频观看| 男的添女的下面高潮视频| 亚洲精品第二区| 国产黄频视频在线观看| 亚洲不卡免费看| 日韩三级伦理在线观看| 免费看不卡的av| 日本av手机在线免费观看| 黄色日韩在线| 免费观看的影片在线观看| 边亲边吃奶的免费视频| 免费看av在线观看网站| 国产成人91sexporn| 欧美一级a爱片免费观看看| av一本久久久久| 日本黄色日本黄色录像| 日韩免费高清中文字幕av| 亚洲av欧美aⅴ国产| 啦啦啦啦在线视频资源| www.色视频.com| 成年女人在线观看亚洲视频| 青春草亚洲视频在线观看| 国产在线免费精品| 99久国产av精品国产电影| 亚洲av国产av综合av卡| 成年av动漫网址| 国产欧美另类精品又又久久亚洲欧美| 国产精品人妻久久久久久| 一区二区三区四区激情视频| 最近中文字幕2019免费版| 麻豆成人午夜福利视频| 国产真实伦视频高清在线观看| 国产91av在线免费观看| 国产一区亚洲一区在线观看| 亚洲精品一二三| 女人十人毛片免费观看3o分钟| 熟女电影av网| 韩国av在线不卡| 看非洲黑人一级黄片| 国产精品麻豆人妻色哟哟久久| 国产精品三级大全| 欧美激情极品国产一区二区三区 | 天天躁夜夜躁狠狠久久av| 午夜福利影视在线免费观看| 伦理电影大哥的女人| 免费观看性生交大片5| www.色视频.com| 2021少妇久久久久久久久久久| 成人午夜精彩视频在线观看| 搡女人真爽免费视频火全软件| 国产中年淑女户外野战色| 波野结衣二区三区在线| 舔av片在线| 中文在线观看免费www的网站| 在线观看免费日韩欧美大片 | 精品亚洲成国产av| 这个男人来自地球电影免费观看 | 国产黄频视频在线观看| 少妇猛男粗大的猛烈进出视频| 久久国产精品男人的天堂亚洲 | 久久女婷五月综合色啪小说| 亚洲国产欧美人成| 久久久久久人妻| 日韩人妻高清精品专区| 在线观看免费高清a一片| 日韩成人伦理影院| 成年美女黄网站色视频大全免费 | 老师上课跳d突然被开到最大视频| 中国三级夫妇交换| 久久久久久久亚洲中文字幕| xxx大片免费视频| 在线观看一区二区三区激情| 最近最新中文字幕免费大全7| 黑人猛操日本美女一级片| 在线播放无遮挡| 亚洲欧美日韩卡通动漫| 国产熟女欧美一区二区| 国产 精品1| 男人舔奶头视频| 中文字幕制服av| xxx大片免费视频| 亚洲国产精品999| 91久久精品国产一区二区成人| 熟女电影av网| 国产精品99久久99久久久不卡 | 久久精品国产亚洲网站| 只有这里有精品99| 91精品国产九色| 精品久久久久久电影网| 日本欧美视频一区| 亚洲精品国产色婷婷电影| 国产精品一区二区三区四区免费观看| 婷婷色综合www| 亚洲av中文av极速乱| 欧美丝袜亚洲另类| 国产精品av视频在线免费观看| 亚洲人成网站高清观看| 亚洲欧洲日产国产| 久久精品国产a三级三级三级| 中文精品一卡2卡3卡4更新| 中国美白少妇内射xxxbb| 天天躁日日操中文字幕| 国产女主播在线喷水免费视频网站| 久久99热6这里只有精品| 成人国产麻豆网| 香蕉精品网在线| 少妇丰满av| 黄色视频在线播放观看不卡| 日韩av在线免费看完整版不卡| 免费看日本二区| 亚洲伊人久久精品综合| 男人添女人高潮全过程视频| 精品一区在线观看国产| 色综合色国产| 美女cb高潮喷水在线观看| 制服丝袜香蕉在线| 久久99热6这里只有精品| 99久久精品热视频| 国产淫语在线视频| 丰满迷人的少妇在线观看| 九草在线视频观看| av不卡在线播放| 日本与韩国留学比较| 国产乱人偷精品视频| 国产亚洲午夜精品一区二区久久| 国产一区二区三区综合在线观看 | 在线亚洲精品国产二区图片欧美 | 永久免费av网站大全| 国产69精品久久久久777片| 日韩伦理黄色片| 夜夜爽夜夜爽视频| 嫩草影院新地址| 欧美三级亚洲精品| 久久精品久久久久久久性| av免费在线看不卡| 亚洲丝袜综合中文字幕| 精品少妇久久久久久888优播| 日本-黄色视频高清免费观看| 久久人人爽人人片av| 又大又黄又爽视频免费| 国产欧美日韩精品一区二区| 亚洲欧美日韩卡通动漫| 亚洲精品aⅴ在线观看| 特大巨黑吊av在线直播| xxx大片免费视频| 国产在线视频一区二区| 国产精品嫩草影院av在线观看| 日本av免费视频播放| 国产成人a区在线观看| 午夜免费鲁丝| 肉色欧美久久久久久久蜜桃| 人妻系列 视频| 色吧在线观看| 高清视频免费观看一区二区| 中文字幕精品免费在线观看视频 | 99久久精品国产国产毛片| 国产精品偷伦视频观看了| 少妇精品久久久久久久| 日韩大片免费观看网站| 色5月婷婷丁香|