• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic Orientation System Based on Magnetometer, Accelerometer and Gyroscope

    2018-01-12 06:58:40ZhiweiChuChilaiChenYoujiangLiuYingxianWangandXinhuaLin

    Zhiwei Chu, Chilai Chen, Youjiang Liu, Yingxian Wang, and Xinhua Lin

    1 Introduction

    The magnetic azimuth is the angle relative to the orientation of the earth magnetic field component in the horizontal plane, indicating the knowledge of the horizontal or vertical plane must be required to correct the measured magnetic value in the application of magnetic orientation systems. The tilt angles are commonly obtained by measuring the gravity vector at rest. In the previous report[1], it has been shown that the azimuth derived from the values of magnetometers and tilt contains and propagates the errors present in the attitude angles themselves. Thus, the orientation precision of magnetic orientation systems not only depends on the calibration validity of magnetometers, but also was closely related to the errors of tilt angles.

    Usually, accelerometers are used to compensate for the azimuth by achieving attitude angles information[2-8]. In these references, the magnetic orientation systems have high precision partly because they are working in static state. However, when the magnetic orientation system works in dynamical state, the acceleration field obtained from the accelerometers contains kinematic acceleration besides gravitational acceleration. Thus, the real dynamic attitude of magnetic orientation systems can’t be resolved from the output of accelerometers. As a result, just based on the data of magnetometers and accelerometers the azimuth error of magnetic orientation systems will be enlarged in the case of movement. Especially, when the kinematic acceleration disturbance is violent, the magnetic orientation systems will lose its functionality.

    To deal with this problem, gyroscopes are introduced into magnetic orientation systems[10-12, 15]. These studies mainly focus on the sensor fusion algorithms and less analysis is applied to the calibration of sensors. However, the large measurement error in the output of sensors will lead to the large error of the data fusion results and poor convergence ability. Thus, at first magnetometer, accelerator and gyroscope in magnetic orientation system must be calibrated in order to obtain the actual real-time azimuth and attitude through the data fusion algorithm. Complementary filter (CF) algorithm is widely used in the field of unmanned aerial vehicles (UAV) and micro aerial vehicles (MAV). For the CF, a set of attitude angles are estimated in each measurement and they are multiplied with the corresponding gain factors. The eventual attitude angles are the sum of the parts. The more accurate estimations can be made by adjusting the gain factors. CF can be realized easily, but its accuracy is relatively low. It is only suitable for the low-dynamic application due to its slow response[16-18, 20]. The quaternion based extended Kalman filter (EKF) is appropriate for non-linear plant models. Among the variants of the Kalman filtering framework, EKF is the most prominent one for its relatively high accuracy. However, in this algorithm the magnetic measurement is fused into roll and pitch, resulting in the larger error of yaw and the low precision in the pitch and roll angles once magnetic interference occurs[10, 18, 19, 21]. In addition, Jacobi matrix needs to be calculated in EKF, which will introduce the linearization error inevitably.

    Based on the previous studies of the tri-axis magnetometer calibration with error-separation method[8], the tri-axis accelerometer calibration with multi-position method[5, 6]and the tri-axis gyroscope calibration through the method of three-position with six different angular velocities[9], a quaternion based Kalman filter (KF) is proposed in this paper to fuse the data from sensors and to estimate the orientation. In the measurement model, the state vector of quaternion is converted from the Euler angles which are resolved from the output of accelerometer and magnetometers instead of the accelerometer and magnetometers measurement vectors which are used in the traditional method of EKF[19]. So we can apply KF to the system without calculating Jacobi matrix since the process model and the measurement model are linear, which means no linearization error, lower cost of computation and less computational time. Better yet, when magnetic disturbances are present their influence is only limited to the heading angle. The achievement of the high-precise magnetic orientation system which can work well under various operation conditions demonstrated that the calibration and data fusion algorithm of multi-sensors are effective. And, the magnetic orientation system is suited to the practical application since it is composed of commercial-off-the-shelf components.

    2 The Principle of Magnetic Orientation System without Gyroscope

    The case body frame of magnetic orientation system is denoted as thebcoordinate frame and has three orthogonal axes ofxb,ybandzb. We define thatxl,ylandzlare the axes of the local horizontal frame (l). Thexlis along the direction of horizontal projection ofxb,zlis along the downward direction, andxl,ylandzlobey the right-hand rule.

    So, ifθdenotes the pitch angle of the vehicle andφdenotes roll angle of the vehicle, the components of Earth magnetic field in thexlandyldirection can be calculated as follows:

    (1)

    The magnetic headingψis obtained by the following formula:

    (2)

    (3)

    Simplifying (3) and taking into account that:

    (4)

    whereδis the inclination of the magnetic vector andHhthe horizontal magnetic field. The error produced can be written as:

    Δψ=-Δθ·tanδ·cosψ-Δφ·tanδ·sinψ

    (5)

    3 Calibration of Sensors

    The magnetic orientation system we developed comprises with three single axis magnetometers, a tri-axis accelerometer, and a tri-axis gyroscope. The calibration methods of sensors will be introduced as follows.

    3.1 Calibration of three single axis magnetometers

    According to Eq. (2), the absolute magnitude ofhi(i=x,y,z) is not necessary to compute the magnetic heading. In this paper, the error-separation method[8]is adopted to calibrate the magnetometers in consideration that it is convenient to evaluate the influence of different error sources and to get high precision of measurement. The output model of magnetometers can be expressed as follows:

    (6)

    At the right side of Eq. (6), the first diagonal matrix accounts for the different sensitivities of the magnetometers, the second 3×3 matrix represents the output influence from non-orthogonality and misalignment of the three magnetometers, and the bias is embodied in the matrix aboutb.

    With the three-axis non-magnetic rotation platform, the parameters in Eq. (6) can be obtained, so the errors from the sensitivity inconsistency, the non-orthogonality and misalignment and the combined biases can be eliminated independently. Now we get the output components of earth magnetic field in the body frame as follows:

    (7)

    Finally, the magnetic heading can be calculated by above Eqs. (1) and (2). After the calibration of magnetometers is accomplished, the relevant parameters are also acquired. The angles between the axes in the measurement frame and the body frame are shown in Table 1. The characteristic curves of magnetometers acquired with a linear least squares fit are shown in Fig.1. According to the fitted curves, the parameters in the calibration matrix could be obtained. The result is shown as follows:

    Fig.1 Fitted curves between the outputs of magnetometers and the component of the earth magnetic field in the direction of the magnetic sensor axes (xmaxis: —, ymaxis: — and zm axis: — ) and the original outputs of magnetometers (xmaxis:■, ymaxis: ● and zmaxis: ▲); He is equal to the magnitude of the earth magnetic field.

    Now all the parameters to calibrate the magnetometers have been obtained. And if the true pitch angle and roll angle (as in static state) are known, we can determine orientation of the vehicle precisely with equations (1) and (2).

    Table 1 Angles between the axes in the measurement frame and the body frame.

    3.2 Calibration of tri-axis accelerometer

    Unlike magnetometer, the accelerometer is immune to environmental impact because the gravity vector stays almost unchanged wherever it works. There are lots of methods to calibrate the tri-axis accelerometer. The so-called multiposition calibration is used mostly hitherto and has been proved to be effective[5,6].

    Table 2 Sign definition of the tri-axis accelerometer raw measurements.

    (8)

    where[A_m]3×3is the 3×3 matrix representing the misalignment between the accelerometer sensing axes and the device body axes.A_Si(i=x,yorz) is the sensitivity andA_Oi(i=x,yorz) is the offset.

    Then, the pitch and roll angles of device can be calculated as the following:

    (9)

    (10)

    (11)

    According to the above equations (8-10), we need 12 parameters fromA10toA33to calibrate the tri-axis accelerometer. By mounting the magnetic orientation system on the 3-D rotation platform which has a high-precision digital encoder, calibration can be operated at 6 stationary positions as shown in Table 2. We collect at least 100 sets of data at each position and take the averages. The 12 desired coefficients are extracted from the obtained data by the least square method as shown in Table 3.

    Table 3 Coefficients of calibration for the tri-axis accelerometer.

    3.3 Calibration of tri-axis gyroscope

    Tri-axis gyroscope works by sensing angular velocity around the three sensitive axes. However, to ensure high precision, tri-axis gyroscope must be calibrated before use[9].

    The output model of the tri-axis gyroscope can be expressed in a matrix form as follows:

    (12)

    The 12 parameters about k can be calculated with least square method as follows:

    (13)

    (14)

    (15)

    (16)

    After the processing of calibration, the matrix K is listed as follows:

    (17)

    4 Data Fusion

    In order to diminish the influence of non-gravitational acceleration, after the above calibrations, the data obtained from the sensors are further combined based on Kalman filtering with a state vector consisting of four elements (the quaternion components), a linear process model and a linear measurement model. The quaternion converted from Euler angles (computed with the Eqs. (2), (9) and (10)) is taken as the measurement for the Kalman filter to correct the predicted state obtained by processing the readings provided by the angular rate sensor (the tri-axis gyroscope). Using this method, all the output equations are linear, which simplifies the design of the filter, and the nonlinear error from EKF can be eliminated.

    4.1 Process model

    In the prediction step, the angular velocity vector, measured by the tri-axis gyroscope, is used to compute the first estimation of the orientation in quaternion form. It is well known that the rigid body angular motion obeys a vector differential equation[10,11]describing the rate of change of the orientation as quaternion derivative:

    (18)

    where

    (19)

    (20)

    (21)

    represents the standard vector cross-product[11].

    In this paper, quaternion represents the notation from:

    (22)

    whereq1,q2,q3andq4are real numbers andi,j, andkare unit vectors directed along thex,y, andzaxis respectively. A quaternion is unit quaternion[12]if:

    The direct cosine matrix given in terms of the orientation quaternion can be expressed as the following matrix:

    (23)

    Thus, we can establish the process model as the following:

    (24)

    wherekis the sampling number, dtis the sampling period, and

    (25)

    (26)

    4.2 Measurement model

    After calibration, the Euler angles can be computed with equations (2), (6) and (7) according to the output of the accelerometer and the magnetometers. The quaternion converted from the Euler angles is used in the measurement update step. The transformation formula is expressed in the reference[13]:

    (27)

    wherecφ=cos(φ/2),sφ=sin(φ/2),θis pitch angle,φis roll angle, andψis heading angle (computed with Eqs. (2), (6) and (7)). The measurement model can be expressed as the following equation:

    Z(k)=q(k)+ξ(k)

    (28)

    whereξ(k) is the measurement noise which is approximated as a white Gaussian noise obtained from the propagation of the acceleration and magnetic field measurement noise[14]. The measurement noise covariance matrix isRk.

    4.3 Kalman filter

    As a recursive estimator, the following formulas are used in computation:

    (29)

    (30)

    5 Experimental Results

    For verification of the calibration methods and the proposed algorithm of data fusion, a 3-D non-magnetic platform that can rotate around three axes by manual operation was used. Before data fusion, the accuracy of error-separation calibration method in static state is shown in Fig.2 where the horizontal coordinate axis stands for platform readings. We can see that with the magnitudes of both pitch and roll angles increasing, the heading errors exhibited an increasing trend. But the maximum error in the heading was only about 0.4° even if the magnitudes of both pitch and roll angles increased up to 60°. And precision comparisons of different calibration methods are listed in Table 4. The ellipsoid fitting method and the traditional method are provided by [5] and [7]. These results demonstrated that the calibration method of error- separation was very effective and efficient.

    Fig.2 Heading errors of magnetic orientation system with the different attitudes, () θ=0°, γ=0°; () θ=30°, γ=30° and () θ=30°, γ=-30°; () θ=-30°, γ=30°; ()θ=-30°, γ=-30°; () θ=60°, γ=60°; () θ=60°, γ=-60°; ()θ=-60°, γ=60° and () θ=-60°, γ=-60°.

    After calibrating the sensors, two modes of experiments had been carried out to evaluate accuracy of our magnetic orientation system. Mode 1 is the static state, and Mode 2 is the dynamic state. The results from the proposed Kalman filter (q-KF) are provided and for comparison, the corresponding results from EKF and CF are also shown.

    Table 4 The heading accuracies of different calibration methods in different attitudes.

    In Mode 1, the magnetic orientation system was rigidly mounted on the 3-D non-magnetic platform and was kept static (remain level: true pitch and roll angles were equal 0° ) when we were collecting data outputs. The results are shown in Fig.3. The data called Measured (blue) were computed without data fusion only from the output of the tri-axis accelerometer and the magnetometers (as Eqs. (2), (9) and (10)), while the data called Estimated (green) were computed by the q-KF (as Eq. (30)). The black solid line called Reference represents the readings of the 3-D non-magnetic platform. We can see that with the Kalman filter algorithm proposed this paper, the magnetic orientation system is steadier (0.1° ) than the one without data fusion (0.4° ). And the errors of yaw, pitch, and roll angles computed by the data fusion in our magnetic orientation system are very small as about 0.1°.

    In Mode 2, the magnetic orientation system was mounted on the 3-D non-magnetic platform, then we carried out two kinds of operation conditions (Mode 2 (a) and Mode 2 (b)). In Mode 2 (a), the roll angle was dynamically changed by manual operation when the pitch angle was kept at 0°. From Fig.4, it can be seen that after calibration and data fusion based on q-KF (Estimated), the maximum error of yaw angle was about 2.8° and the maximum error of pitch angle was about 0.3°. But, without the data fusion (Measured) the maximum error of yaw angle was more than 10° and the maximum error of pitch angle was about 2.5°. In Mode 2 (b), when the roll angle was kept at 0°, the pitch angle was dynamically changed by manual operation. As shown in Fig.5, with the q-KF the maximum errors of yaw and roll angles decreased from about 6.5° (Measured) to about 2.5° (Estimated) and from about 2.5° (Measured) to about 1.8° (Estimated) in Mode 2 (b), respectively. The above results demonstrate that the heading and attitude precision were improved significantly with our calibration methods and data fusion algorithm based on Kalman filter. It’s worth mentioning that since roll angle (Mode 2 (a)) and pitch angle (Mode 2 (b)) of the 3-D non-magnetic platform was changed by manual operation, their real angle values were unobservable during changing with time. Thus, the data of roll angles (Mode 2 (a)) and pitch angles (Mode 2 (b)) are not shown in this paper.

    Fig.3 Test in Mode 1: Outputs of pitch, roll and yaw angles in static state.

    Fig.4 Test in Mode 2 (a): Outputs of yaw and pitch angles in dynamic state when roll angle was dynamically changed.

    Fig.5 Test in Mode 2 (b): Outputs of yaw and roll angles in dynamic state when pitch angle was dynamically changed.

    Obviously, in the dynamic circumstance the magnetic orientation system without gyroscope and data fusion is useless and the errors, especially the error of yaw angle, are large. After this magnetic orientation system was applied with our calibration methods and data fusion algorithm, the error of yaw angle was less than 3° and the attitude (pitch and roll) errors were less than 2°. At last, the precision comparisons between different data fusion algorithms are shown in Table 5. The above experimental results show that our magnetic orientation system has the good performance and practicability even in dynamic work conditions.

    Table 5 The heading accuracies of different data fusion methods in static and dynamic state.

    6 Conclusions

    In this paper, the magnetic orientation system was developed with three magnetometers, a tri-axis accelerometer and a tri-axis gyroscope. Magnetometer and accelerometer were calibrated with the error-separation method and six-position method, respectively. And, the method of three-position with six different angular velocities was adopted for calibrating gyroscope. Finally, in order to keep the functionality of the magnetic orientation system in dynamic state, a data fusion algorithm base on linear Kalman filter (q-KF) was developed. The experimental results show that the accuracy of the heading and attitude was improved significantly both in static and dynamic states after the improved data fusion. The maximum error of yaw angle was about 0.1° in static state and 2.8° in dynamic state. And the maximum error of attitude (pitch/roll angle) was about 0.1° in static state and 1.8° in dynamic state. The achievement of magnetic orientation system with high precision demonstrated that the methods of calibration and the data fusion algorithm were effective and practical. It is worth mentioning that in terms of the estimation accuracy, due to the various dynamic conditions this paper does not claim that the parameters of Kalman filter are effective and suitable in any dynamic condition. In other words, the kinematic condition must be considered in term of the severity of the external accelerations in order to improve the estimation performance by adjusting the parameters of Kalman filter. Thus, a future research direction will be focused on an adaptive algorithm for learning the parameters in real time to further improve the adaptability of magnetic orientation systems.

    Acknowledgment

    The research is supported by National Natural Science Foundation of China (Project number: U1732152).

    [1]Q.Ladetto, J.V.Seeters, S.Sokolowski S, Z.Sagan, and B.Merminod, Digital Magnetic Compass and Gyroscope for Dismounted Soldier Position & Navigation, inProceedingsofNATO-RTOMeetings, Istanbul, Turkey.2002.

    [2]M.Sipos, J.Rohac, and P.Novacek, Improvement of electronic compass accuracy based on magnetometer and accelerometer calibration,ActaPhys.PolonicaA, vol.121, no.4, pp.945-949, 2012.

    [4]V.Renaudin, M.H.Afzal, and L.Gérard, Complete Triaxis Magnetometer Calibration in the Magnetic Domain,JournalofSensors, vol.2010, pp.23-59, 2010.

    [5]J.Fang, H.Sun H, J.Cao, X.Zhang, and Y.Tao, A Novel Calibration Method of Magnetic Compass Based on Ellipsoid Fitting,IEEETransactionsonInstrumentation&Measurement, vol.60, no.6, pp.2053-2061, 2011.

    [6]Z.F.Syed, P.Aggarwal, C.Goodall, X.Niu, and E.El-Sheimy, A new multi-position calibration method for MEMS inertial navigation systems,Meas.Sci.Technol., vol.18, pp.1897-1907, 2007.

    [7]J.Yun, J.Ko, J.Lee, and J.M.Lee, An inexpensive and accurate absolute position sensor for driving assistance,IEEETrans.Instrum.Meas.,vol.57, no.4, pp.864-873, 2008.

    [8]Z.Chu, X.Lin, K.Gao, and C.L.Chen, Error-separation method for the calibration of magnetic compass,Sensors&ActuatorsAPhysical, vol.250, pp.195-201, 2016.

    [9]X.D.Peng, Y.Chen, J.Y.Li, G.Q.Yan, and T.M.Zhang, Study on calibration method of MEMS 3-axis digital gyroscope,Transducer&MicrosystemTechnologies, vol.32, no.6, pp.63-68, 2013.

    [10] S.M.Sabatini, Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing,IEEETransactionsonBiomedicalEngineering, vol.53, no.7, pp.1346-1356, 2006.

    [11] R.G.Valenti, I.Dryanovski, and J.Xiao, A Linear Kalman Filter for MARG Orientation Estimation Using the Algebraic Quaternion Algorithm,IEEETransactionsonInstrumentation&Measurement, vol.65, no.2, pp.467-481, 2016.

    [12] J.L.Marins, X.Yun, E.R.Bachmann, R.B.McGhee, and M.J.Zyda, An extended Kalman filter for quaternion-based orientation estimation using MARG sensors, inProceedingsof2001IEEE/RSJInternationalConferenceonIntelligentRobotsandSystems, 2001, vol.4, pp.2003-2011.

    [13] M.D.Shuster, Survey of attitude representations,JournaloftheAstronauticalSciences, vol.41, no.4, pp.439-517, 1993.

    [14] J.K.Lee, E.J.Park, and S.N.Robinovitch, Estimation of Attitude and External Acceleration Using Inertial Sensor Measurement During Various Dynamic Conditions,IEEETransactionsonInstrumentation&Measurement, vol.61, no.8, pp.2262-2273, 2012.

    [15] Y.H.Huang, Y.Rizal, and M.T.Ho, Development of attitude and heading reference systems, in 2015InternationalAutomaticControlConference(CACS), 2015, pp.13-18.

    [16] T.Gao, C.Shen, Z.Gong, J.Rao, and J.Luo, An Adaptive Filter for a Small Attitude and Heading Reference System Using Low Cost Sensors,AdvancesinComputer,Communication,ControlandAutomation, pp.131-139, 2012.

    [17] M.T.Leccadito, T.Bakker, R.Niu, and R.H.Klenke,AKalmanFilterBasedAttitudeHeadingReferenceSystemUsingaLowCostInertialMeasurementUnit.Virginia Commonwealth University, 2013.

    [18] M.Nowicki, J.Wietrzykowski, and P.Skrzypczynski, Simplicity or flexibility? Complementary Filter vs.EKF for orientation estimation on mobile devices, in 2015IEEE2ndInternationalConferenceonCybernetics(CYBCONF), 2015, pp.166-171.

    [19] R.G.Valenti, I.Dryanovski, and J.Xiao, A Linear Kalman Filter for MARG Orientation Estimation Using the Algebraic Quaternion Algorithm,IEEETransactionsonInstrumentation&Measurement, vol.65, no.2, pp.467-481, 2016.

    [20] Y.Naidoo, R.Stopforth, and G.Bright, Quad-rotor unmanned aerial vehicle helicopter modelling & control,InternationalJournalofAdvancedRoboticSystems, vol.8, pp.139-149, 2011.

    [21] R.Munguia and A.Grau, Attitude and Heading System based on EKF total state configuration, inIEEEInternationalSymposiumonIndustrialElectronics, 2011, pp.2147-2152.

    男的添女的下面高潮视频| 人人妻人人爽人人添夜夜欢视频| 久久av网站| 亚洲经典国产精华液单| 欧美亚洲 丝袜 人妻 在线| 99久久中文字幕三级久久日本| 日韩强制内射视频| 嫩草影院入口| 特大巨黑吊av在线直播| kizo精华| 天天躁夜夜躁狠狠久久av| 日韩不卡一区二区三区视频在线| 欧美性感艳星| 久久人人爽人人片av| 91成人精品电影| 日韩一区二区视频免费看| 亚洲经典国产精华液单| 婷婷色综合大香蕉| 视频中文字幕在线观看| 国产乱来视频区| 伊人久久国产一区二区| 大香蕉久久网| 亚洲精品日韩av片在线观看| 青春草亚洲视频在线观看| 成人无遮挡网站| 日本黄色片子视频| 久久亚洲国产成人精品v| 色网站视频免费| 美女主播在线视频| 一区二区三区四区激情视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲无线观看免费| 日韩av在线免费看完整版不卡| 日产精品乱码卡一卡2卡三| 美女国产视频在线观看| 久久 成人 亚洲| 97精品久久久久久久久久精品| 国产乱人偷精品视频| a级片在线免费高清观看视频| 欧美xxⅹ黑人| 爱豆传媒免费全集在线观看| 日韩成人av中文字幕在线观看| 人妻少妇偷人精品九色| 午夜影院在线不卡| av.在线天堂| 久久精品久久久久久噜噜老黄| 国产视频首页在线观看| 最近的中文字幕免费完整| 新久久久久国产一级毛片| 麻豆成人av视频| 国产黄色免费在线视频| 亚洲欧洲日产国产| 人妻少妇偷人精品九色| 亚洲三级黄色毛片| 纵有疾风起免费观看全集完整版| 国产亚洲欧美精品永久| av电影中文网址| 女的被弄到高潮叫床怎么办| 精品人妻熟女毛片av久久网站| a级毛片在线看网站| 中国三级夫妇交换| 春色校园在线视频观看| 国产免费又黄又爽又色| 欧美精品人与动牲交sv欧美| 男女边吃奶边做爰视频| 久久久久国产精品人妻一区二区| 另类亚洲欧美激情| 天天操日日干夜夜撸| 搡女人真爽免费视频火全软件| 国产亚洲欧美精品永久| 精品人妻熟女av久视频| av视频免费观看在线观看| 男女免费视频国产| 高清av免费在线| 欧美日韩国产mv在线观看视频| 久久久久久久大尺度免费视频| 国产精品人妻久久久久久| 精品熟女少妇av免费看| 国产国拍精品亚洲av在线观看| 一级毛片我不卡| 亚洲人成网站在线播| 亚洲性久久影院| 亚洲激情五月婷婷啪啪| 日韩强制内射视频| 啦啦啦啦在线视频资源| 亚洲国产日韩一区二区| 3wmmmm亚洲av在线观看| 嫩草影院入口| av在线老鸭窝| 天天操日日干夜夜撸| 日韩大片免费观看网站| 美女国产高潮福利片在线看| 成人午夜精彩视频在线观看| 边亲边吃奶的免费视频| xxx大片免费视频| 99久久精品国产国产毛片| 伊人久久国产一区二区| 久久久久久久久久人人人人人人| 亚洲精品日韩av片在线观看| 国精品久久久久久国模美| 在线观看www视频免费| 精品一品国产午夜福利视频| 亚洲av日韩在线播放| 亚洲精品乱久久久久久| 大香蕉97超碰在线| 91成人精品电影| 免费观看在线日韩| 男女边吃奶边做爰视频| 在线观看www视频免费| 午夜免费观看性视频| 男的添女的下面高潮视频| 一级片'在线观看视频| 国产高清有码在线观看视频| 黑人巨大精品欧美一区二区蜜桃 | 欧美日韩亚洲高清精品| 亚洲无线观看免费| 少妇丰满av| 国产高清有码在线观看视频| 十八禁高潮呻吟视频| 精品酒店卫生间| 欧美日韩在线观看h| 亚洲情色 制服丝袜| 夜夜骑夜夜射夜夜干| 丝袜喷水一区| 久久久久久久久久久久大奶| 久久久久视频综合| 狂野欧美白嫩少妇大欣赏| 热99久久久久精品小说推荐| 欧美日韩视频精品一区| 18禁在线播放成人免费| 国产视频内射| 看十八女毛片水多多多| 国产精品人妻久久久影院| 我要看黄色一级片免费的| 精品久久久噜噜| 欧美日韩一区二区视频在线观看视频在线| 久久人人爽人人爽人人片va| 日韩一区二区三区影片| 大香蕉久久网| 精品久久蜜臀av无| 日韩一区二区三区影片| 免费大片黄手机在线观看| 在线观看免费日韩欧美大片 | 99国产综合亚洲精品| 黑人高潮一二区| 在线 av 中文字幕| 国产在线视频一区二区| 亚洲怡红院男人天堂| 亚洲婷婷狠狠爱综合网| 国产色婷婷99| 永久免费av网站大全| 黑人猛操日本美女一级片| 国产视频内射| 国产在线免费精品| 大码成人一级视频| 啦啦啦啦在线视频资源| 插逼视频在线观看| 男女边吃奶边做爰视频| 熟妇人妻不卡中文字幕| 成人毛片60女人毛片免费| 男女高潮啪啪啪动态图| 亚洲欧美中文字幕日韩二区| 日韩在线高清观看一区二区三区| 亚洲伊人久久精品综合| 亚洲精品第二区| 不卡视频在线观看欧美| 国产成人精品婷婷| 婷婷成人精品国产| 欧美 日韩 精品 国产| 国产成人一区二区在线| 大香蕉久久网| 午夜av观看不卡| 国产高清国产精品国产三级| 久久久久久人妻| 国产精品.久久久| 日韩中文字幕视频在线看片| 亚洲五月色婷婷综合| 免费看不卡的av| 亚洲色图 男人天堂 中文字幕 | 亚洲av电影在线观看一区二区三区| 九色亚洲精品在线播放| 女人久久www免费人成看片| 97超视频在线观看视频| 少妇 在线观看| 国产成人freesex在线| 久久久久久久久大av| 男人爽女人下面视频在线观看| 久久久精品免费免费高清| 亚洲精品乱码久久久久久按摩| 久久青草综合色| 高清在线视频一区二区三区| av在线观看视频网站免费| 日日摸夜夜添夜夜爱| 国产一区有黄有色的免费视频| 22中文网久久字幕| 亚洲欧美日韩卡通动漫| h视频一区二区三区| 大话2 男鬼变身卡| 精品一区二区免费观看| 夜夜骑夜夜射夜夜干| 欧美成人精品欧美一级黄| 精品酒店卫生间| 啦啦啦在线观看免费高清www| 韩国高清视频一区二区三区| 久久久久久久久久人人人人人人| 美女xxoo啪啪120秒动态图| 韩国av在线不卡| 亚洲中文av在线| 久久久久视频综合| 国产无遮挡羞羞视频在线观看| 国产精品国产av在线观看| 久久久午夜欧美精品| 9色porny在线观看| 久久久久久久亚洲中文字幕| 国产熟女午夜一区二区三区 | 欧美亚洲 丝袜 人妻 在线| 毛片一级片免费看久久久久| 少妇被粗大的猛进出69影院 | xxx大片免费视频| 在线观看www视频免费| 大陆偷拍与自拍| 欧美精品国产亚洲| 久久精品国产亚洲av天美| 成人毛片a级毛片在线播放| 人人澡人人妻人| 在线观看人妻少妇| 婷婷色麻豆天堂久久| 黄色毛片三级朝国网站| 在线播放无遮挡| 极品人妻少妇av视频| 久久久久国产精品人妻一区二区| 狠狠婷婷综合久久久久久88av| a级毛片免费高清观看在线播放| 亚洲国产成人一精品久久久| 亚洲精品视频女| 国产精品久久久久久av不卡| 高清视频免费观看一区二区| 久久久精品94久久精品| 乱码一卡2卡4卡精品| 亚洲精品日韩在线中文字幕| 免费观看的影片在线观看| 国产精品国产av在线观看| 亚洲美女视频黄频| 超碰97精品在线观看| 熟女电影av网| 丰满迷人的少妇在线观看| 91成人精品电影| 国产精品偷伦视频观看了| 一区二区三区乱码不卡18| 午夜免费男女啪啪视频观看| 一本色道久久久久久精品综合| 热re99久久精品国产66热6| 久久国产精品大桥未久av| 欧美另类一区| 久久久久久久亚洲中文字幕| 日本与韩国留学比较| 夜夜骑夜夜射夜夜干| 中国美白少妇内射xxxbb| 日韩大片免费观看网站| 欧美丝袜亚洲另类| 久久免费观看电影| 一本大道久久a久久精品| 精品少妇黑人巨大在线播放| 国产精品免费大片| 免费黄网站久久成人精品| 久久免费观看电影| 一区二区三区乱码不卡18| 欧美老熟妇乱子伦牲交| 国产成人精品婷婷| 中文字幕人妻熟人妻熟丝袜美| 久久99蜜桃精品久久| 中文字幕精品免费在线观看视频 | 亚洲天堂av无毛| 大香蕉97超碰在线| 人人妻人人澡人人爽人人夜夜| 久久久久人妻精品一区果冻| 一区二区日韩欧美中文字幕 | 国产精品免费大片| 老熟女久久久| 最黄视频免费看| 免费黄色在线免费观看| 女性生殖器流出的白浆| 国产黄片视频在线免费观看| 久久久久久久久久成人| 青春草亚洲视频在线观看| 亚洲三级黄色毛片| 国产男人的电影天堂91| 欧美精品高潮呻吟av久久| 日韩中字成人| 欧美成人精品欧美一级黄| 婷婷色麻豆天堂久久| 色婷婷久久久亚洲欧美| 日本-黄色视频高清免费观看| 国产免费视频播放在线视频| 黄色配什么色好看| 一区二区三区四区激情视频| 伊人久久精品亚洲午夜| 国产综合精华液| 在线观看免费视频网站a站| 成人国产av品久久久| 大话2 男鬼变身卡| 欧美 亚洲 国产 日韩一| 免费大片黄手机在线观看| 99九九线精品视频在线观看视频| 亚洲欧美成人精品一区二区| 国产片内射在线| 欧美97在线视频| 亚洲av男天堂| 精品亚洲乱码少妇综合久久| 亚洲欧美成人综合另类久久久| 欧美丝袜亚洲另类| 91国产中文字幕| 51国产日韩欧美| 久久精品人人爽人人爽视色| 国产免费视频播放在线视频| 伦理电影大哥的女人| 青青草视频在线视频观看| 亚洲三级黄色毛片| 久久久国产一区二区| 国产亚洲av片在线观看秒播厂| 精品国产乱码久久久久久小说| 久久人人爽人人片av| 中文天堂在线官网| 精品人妻熟女av久视频| 日本黄大片高清| 丰满少妇做爰视频| 女性生殖器流出的白浆| 男男h啪啪无遮挡| 伊人久久精品亚洲午夜| av在线播放精品| 国产精品99久久久久久久久| 黄色怎么调成土黄色| 在线播放无遮挡| 97在线视频观看| 久久国产精品男人的天堂亚洲 | 国产免费视频播放在线视频| 国产成人精品福利久久| 久久精品久久精品一区二区三区| 色5月婷婷丁香| 自拍欧美九色日韩亚洲蝌蚪91| 99久久人妻综合| 人人妻人人澡人人看| 蜜桃国产av成人99| 久久国产精品大桥未久av| 国产免费视频播放在线视频| 一区二区日韩欧美中文字幕 | 人妻 亚洲 视频| 五月玫瑰六月丁香| 三上悠亚av全集在线观看| 欧美人与性动交α欧美精品济南到 | 久久久国产一区二区| 国产精品一二三区在线看| 91午夜精品亚洲一区二区三区| 国产成人免费无遮挡视频| 夜夜爽夜夜爽视频| 精品久久蜜臀av无| 国产无遮挡羞羞视频在线观看| 一区二区三区精品91| 夜夜骑夜夜射夜夜干| 欧美人与善性xxx| 亚洲情色 制服丝袜| 久久久久久久久久久丰满| 中文字幕人妻丝袜制服| 在线 av 中文字幕| 久久99热6这里只有精品| 伦精品一区二区三区| 亚洲国产精品一区三区| 午夜精品国产一区二区电影| 亚洲美女视频黄频| 免费黄色在线免费观看| 亚洲精品,欧美精品| 春色校园在线视频观看| 在线看a的网站| 中文精品一卡2卡3卡4更新| 99热这里只有精品一区| 亚洲一区二区三区欧美精品| 亚洲五月色婷婷综合| 久久这里有精品视频免费| 亚洲欧洲日产国产| 久久久精品区二区三区| 欧美精品一区二区免费开放| 少妇猛男粗大的猛烈进出视频| 性高湖久久久久久久久免费观看| 成人影院久久| 人妻一区二区av| 国产不卡av网站在线观看| 九色成人免费人妻av| 美女视频免费永久观看网站| 国产一区二区三区av在线| 国模一区二区三区四区视频| 大陆偷拍与自拍| 3wmmmm亚洲av在线观看| 狂野欧美激情性bbbbbb| 只有这里有精品99| 国产成人91sexporn| 伊人久久国产一区二区| 国产精品一国产av| 美女内射精品一级片tv| 国产在线免费精品| 成人国产麻豆网| 亚洲精品一区蜜桃| 欧美日韩综合久久久久久| 我的女老师完整版在线观看| 国产免费又黄又爽又色| 国产成人免费观看mmmm| 亚洲欧美色中文字幕在线| 欧美日韩在线观看h| a 毛片基地| 亚洲激情五月婷婷啪啪| 女性被躁到高潮视频| 波野结衣二区三区在线| 国产成人av激情在线播放 | 丝袜美足系列| a级片在线免费高清观看视频| 在线观看美女被高潮喷水网站| 一个人免费看片子| 午夜激情久久久久久久| 久久久久久久大尺度免费视频| 亚洲欧美成人综合另类久久久| 久久久精品区二区三区| 男女啪啪激烈高潮av片| 日本黄色片子视频| 亚洲av欧美aⅴ国产| 黄色视频在线播放观看不卡| 高清午夜精品一区二区三区| 大码成人一级视频| 国产不卡av网站在线观看| 777米奇影视久久| 日韩欧美一区视频在线观看| 成人国产av品久久久| 久久综合国产亚洲精品| 91精品三级在线观看| 国产亚洲欧美精品永久| 亚洲av成人精品一区久久| 一级a做视频免费观看| av在线app专区| 在线看a的网站| 51国产日韩欧美| 免费观看在线日韩| 午夜激情福利司机影院| 久久99一区二区三区| 午夜福利视频精品| 熟女电影av网| 人人妻人人添人人爽欧美一区卜| 在线观看一区二区三区激情| 日韩制服骚丝袜av| 九九爱精品视频在线观看| 国产伦精品一区二区三区视频9| 国产亚洲欧美精品永久| av黄色大香蕉| 亚洲欧洲国产日韩| 青春草国产在线视频| 欧美日韩视频精品一区| 麻豆乱淫一区二区| 免费播放大片免费观看视频在线观看| 婷婷成人精品国产| 日韩av不卡免费在线播放| 另类精品久久| 日产精品乱码卡一卡2卡三| 欧美日韩亚洲高清精品| 欧美日韩在线观看h| 久久精品国产亚洲av天美| 国产男人的电影天堂91| 一级毛片aaaaaa免费看小| 伦理电影免费视频| 少妇高潮的动态图| 国产精品嫩草影院av在线观看| 国产女主播在线喷水免费视频网站| 免费观看的影片在线观看| 男女啪啪激烈高潮av片| 日本欧美国产在线视频| 只有这里有精品99| 人妻少妇偷人精品九色| 免费观看a级毛片全部| 99热这里只有是精品在线观看| 日本午夜av视频| 国产精品一二三区在线看| 亚洲美女黄色视频免费看| 久久精品夜色国产| 国产一区二区在线观看日韩| 91成人精品电影| 人人妻人人澡人人看| 天天影视国产精品| 日韩强制内射视频| 国产在线免费精品| 亚洲精品日本国产第一区| 欧美亚洲 丝袜 人妻 在线| 精品99又大又爽又粗少妇毛片| 黑人高潮一二区| 久久久久久人妻| 少妇人妻 视频| 久久久a久久爽久久v久久| 国产亚洲欧美精品永久| 日韩视频在线欧美| 综合色丁香网| 蜜桃在线观看..| 亚洲,一卡二卡三卡| 99国产综合亚洲精品| 一本久久精品| 亚洲精品乱码久久久久久按摩| 熟女人妻精品中文字幕| 大话2 男鬼变身卡| 在线观看免费高清a一片| 国产成人精品福利久久| 国产黄片视频在线免费观看| 狠狠婷婷综合久久久久久88av| 啦啦啦中文免费视频观看日本| 大陆偷拍与自拍| 51国产日韩欧美| 亚洲精品亚洲一区二区| 成年av动漫网址| 日本午夜av视频| 在线观看一区二区三区激情| 国产成人av激情在线播放 | 视频区图区小说| 亚洲不卡免费看| 日韩av免费高清视频| 久久毛片免费看一区二区三区| 多毛熟女@视频| 国产精品一区二区三区四区免费观看| 少妇猛男粗大的猛烈进出视频| 午夜福利网站1000一区二区三区| 99九九在线精品视频| 大陆偷拍与自拍| 国产精品久久久久久av不卡| 国产精品一区二区在线观看99| videossex国产| av有码第一页| 久久青草综合色| 精品酒店卫生间| 久久韩国三级中文字幕| 三上悠亚av全集在线观看| 搡女人真爽免费视频火全软件| 久久这里有精品视频免费| 国产极品天堂在线| a级毛色黄片| 一级毛片 在线播放| 老女人水多毛片| 亚洲情色 制服丝袜| 高清午夜精品一区二区三区| 日本欧美国产在线视频| 国产 一区精品| av黄色大香蕉| 免费不卡的大黄色大毛片视频在线观看| 91精品一卡2卡3卡4卡| 欧美日韩国产mv在线观看视频| 国产av码专区亚洲av| 久久99热6这里只有精品| 十分钟在线观看高清视频www| 久久久a久久爽久久v久久| 亚洲情色 制服丝袜| 免费观看av网站的网址| 欧美亚洲日本最大视频资源| 国产成人精品婷婷| 欧美激情极品国产一区二区三区 | 国产在线一区二区三区精| 亚洲精品国产色婷婷电影| 成人亚洲精品一区在线观看| 九色亚洲精品在线播放| 亚洲伊人久久精品综合| 尾随美女入室| 日本欧美国产在线视频| 最黄视频免费看| 午夜免费观看性视频| 嫩草影院入口| 蜜臀久久99精品久久宅男| 高清在线视频一区二区三区| 9色porny在线观看| 寂寞人妻少妇视频99o| 亚洲精品456在线播放app| 亚洲精品色激情综合| 日韩,欧美,国产一区二区三区| 99久久精品国产国产毛片| av免费观看日本| 亚洲精品久久成人aⅴ小说 | 高清视频免费观看一区二区| 中文字幕精品免费在线观看视频 | 少妇人妻 视频| 亚洲国产毛片av蜜桃av| 激情五月婷婷亚洲| 高清午夜精品一区二区三区| 大香蕉97超碰在线| av福利片在线| 日日啪夜夜爽| 视频中文字幕在线观看| 不卡视频在线观看欧美| 水蜜桃什么品种好| 成人手机av| 日韩电影二区| 久久影院123| 一级毛片黄色毛片免费观看视频| 亚洲精品日本国产第一区| 亚洲精品乱码久久久久久按摩| 国产一级毛片在线| 99热网站在线观看| 午夜免费观看性视频| 国产精品一区二区在线不卡| 久久久久国产网址| 精品人妻熟女av久视频| 街头女战士在线观看网站| 久久狼人影院| 欧美少妇被猛烈插入视频| 99国产综合亚洲精品| 国产精品嫩草影院av在线观看| 日韩精品有码人妻一区| 欧美 日韩 精品 国产| 美女国产视频在线观看| 不卡视频在线观看欧美| 久久国产亚洲av麻豆专区| 超色免费av| 久久久久久久大尺度免费视频| av一本久久久久| 人妻制服诱惑在线中文字幕| 免费黄色在线免费观看| 亚洲av男天堂|