• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Efficient Approach for The Evaluation of Generalized Force Derivatives by Means of Lie Group

    2018-01-12 06:58:24KunYangandWenyuYang

    Kun Yang and Wenyu Yang

    1 Introduction

    Industrial robots are indispensable for reducing manufacturing costs and improving production flexibility in automated production lines. The productivity of these industrial processes is closely related to the time required to accomplish assigned tasks. However, as robot manipulators are highly nonlinear, coupled multivariable systems with nonlinear constraints, it’s difficult to make an optimal control in a direct way. Instead, the optimal control problem is solved by the trajectory planning and optimization, which can be divided into two steps: optimal trajectory planning for offline processing and corresponding online trajectory tracking[1]. Therefore, to improve the efficiency and performance of the industrial robot, the trajectory planning has become a highly interesting topic in recent researches.

    The aim of trajectory planning is to generate an optimal robot trajectory from a given path considering kinematic and dynamic constraints. In the earlier study, a nonlinear programming method was proposed by Lin et al.[2]to deal with the problem of the trajectory planning. Whereas, it suffers from the deficiency that the manipulator’s dynamic performance is not considered in the trajectory planning. In this case, robot’s joint actuators are likely to be underutilized. Thus, Tan et al.[3]introduced the constraint of joint torque to make the minimum time trajectory. Manipulator’s joint forces and torques, namely the generalized forces (GFs), are naturally bounded due to the actuator’s physical limits. To make full use of capabilities of robot joint actuators, the bounding of GFs is considered in the offline trajectory planning[4]and online trajectory planning[5-9].

    What’more, to prevent excessive mechanism wear, the necessity of limiting derivatives of generalized forces and torques (GFDs) can’t be neglected in the actual industrial application[10,11]. Meanwhile, some researches[12,13]pointed out that the limitation of GFDs results in smooth actuator loads so that it can improve the tracking accuracy, as well as the actuator’s life. However, there exist few researches considering constraints of GFDs in the trajectory planning because of the computational burden: it requires deducing higher derivatives of robot’s dynamic equations to evaluate GFDs. In recent years, Guarino et al.[14,15]proposed an online trajectory scaling approach that accounts for the simultaneous existence of constraints on GFs and GFDs. In this method, an efficient methodology based on Newton-Euler is proposed to calculate higher derivatives of kinematics and dynamics. As a result, the GFDs could be evaluated in a recursive way, and the computational burden has been largely reduced. According to his study, Buondonno et al.[16,17]also proposed an efficient recursive approach to deduce higher order kinematics and dynamics, so as to deal with the elastic joint in the inverse dynamic analysis.

    Common to these methods on the evaluation of GFDs is the use of Denavit-Hartenberg (DH) technique. Although the evaluation is expressed in a closed-form, the formulation for higher kinematics and dynamics based on DH technique is still complex and difficult to apply: the DH technique requires local coordinates in each joint, and it’s complex to obtain the corresponding geometric parameters. Rather, it requires repetitive coordinate transformation and cross operation to deduce derivatives of kinematics and dynamics.

    Instead of the general DH technique, the Lie group formulations for robot kinematics and dynamics have attracted widespread attention in recent years[18-20]. The appealing feature of this method is the frame invariance and compact representation of kinematics and dynamics. By using the Lie group, the formulation permits a high-level, coordinate-free view of robot dynamics that shows explicitly some of the connections with the larger body of work in mathematics and physics[18]. One of the strengths of the Lie group for the dynamics formulation is the ability to easily differentiate kinematics and dynamics with respect to parameters of interest.

    Inspired by Guarino’s recursive method, the main contribution of this paper is to propose a more efficient approach for the evaluation of GFDs based on the Lie group theory. In particular, high-order kinematics and dynamics are deduced by means of an algorithm obtained through adding new equations to the recursive dynamic model which is originally proposed in [18]. Compared to the DH technique in Guarino method, the advantage of the proposed method is threefold. First, the Lie group uses the twist to describe linear and angular quantities (velocity, acceleration and force), simplifying the corresponding formulation of kinematics and dynamics. Second, kinematics and dynamics are described by the exponential operation. Thus, it’s convenient to deduce higher-order kinematics and dynamics for the evaluation of GFDs. Third, with the compact representation and exponential operation, the computational burden for the evaluation of GFs and GFDs is much lower than that of the DH technique, and it’s more suitable to be used in online trajectory planning application.

    The paper is organized as follows. The background of the Lie group for robot kinematics and dynamics is presented in Section 2. The recursive method for the evaluation of GFDs is proposed in Section 3, while Section 4 demonstrates the detail formulation of the high-order kinematic and dynamic equations. Meanwhile, the simulation and discussion is given in Section 5, where an industrial serial robot HH-150 is used to validate the proposed method. Finally, some conclusions are reported in Section 6.

    2 Geometric Background

    This section presents the kinematic and recursive dynamic formulations for the serial industrial robot based on the Lie group techniques. We begin with a brief view of the geometric notation of the Lie group[21], and then follow by the recursive dynamic formulation as the traditional Newton-Euler equation[18].

    2.1 Lie group SE(3) and Lie algebra se(3)

    Usually, the base frame is attached to the base link of the robot, and the tool frame is fixed on the end-effector. The pose of the tool frame relative to the base frame can be expressed by a homogeneous matrix. And all of these matrices form a Lie group, representing the rigid body motion[22]. The element of such group is denoted as:

    (1)

    whereR∈SO(3) represents a 3×3 rotation matrix, andb∈R3.

    For the industrial serial robot, we associate a twist with each revolute joint, and the corresponding twist coordinate expressed in the reference frame is defined as:

    (2)

    Here,w=[wx,wy,wz] represents the unit vector along the joint axis, expressed in the reference frame, andpis a position vector locating any point on the joint axis, expressed in the reference frame.

    (3)

    where the operation ∧ is defined as:

    (4)

    Meanwhile, the element of thegcan also be obtained by the exponential map exp:se(3)→SE(3). And the detail relations are derived by the following closed-form formula.

    b=(e3-R)(w×υ)+θwwTυ

    (5)

    2.2 Adjoint mapping of SE(3) and se(3)

    (6)

    then, the relationship between these two corresponding twist coordinates could be obtained using the adjoint mappingAdg:se(3)→se(3).

    ξa=Adg(ξb)

    (7)

    Similarly, the element ofse(3) can also be identified with a linear mapping via a Lie bracketadξ:se(3)→se(3), which is defined as

    (8)

    (9)

    (10)

    (11)

    (12)

    2.3 Recursive formulations of robot dynamics

    By using the theory of the Lie group, Park et al.[18]developed a recursive formulation of rigid robot dynamics based on the standard Newton-Euler algorithm: in the forward iteration, the generalized velocities and accelerations of each link are propagated from the base to the tip. In the backward iteration, the generalized forces are propagated backward from the tip to the base. In order to better describe the formulation, some basic notations are adopted as follows.

    ?Airepresents the six-dimensional generalized acceleration of the linkiframe, expressed in linkiframe coordinates

    ?Gi∈R6×6is the generalized inertial matrix of linkidefined as

    (13)

    where (1)iIirepresents the inertial matrix of linkiabout center of mass, relative to a frame at the center of mass that is parallel to the linkiframe. (2)miis the mass of the linki. (3)riis the vector from the origin of the linkiframe to the center of mass linki, expressed in linkiframe coordinates.

    ?Firepresents the six-dimensional generalized force transmitted from linki-1 to linkithrough jointi, expressed in the linkicoordinate, and the first three components ofFiis the moment vector.

    ?τirepresents the joint torque of actuatori.

    With these notations, the recursive formulation of the robot inverse dynamics can be computed as follows.

    ? Forward recursion: fori=1,2,…,n

    (14)

    (15)

    ? Backward recursion: fori=n,n-1…1

    (16)

    (17)

    3 Efficient Approach for The Evaluation of GFDs

    The recursive approach based on the Lie group in this section efficiently evaluates the joint GFDs for rigid, open-chain manipulators. As usual, it returns the solution of the inverse dynamic problem given by

    (18)

    Because of the good characteristics of the exponential operation for differentiation, the Lie group can be used to evaluate GFDs by differentiating the dynamic equation (18).

    (19)

    In this way, the new efficient approach is implemented to traditional dynamic equation by adding new expressions. For each link of the manipulator, the forward recursion returns generalized velocities, accelerations and jerks. And the backward recursive formulation gives the solution of the inverse dynamic problem by evaluating GFs and GFDs of each link. The efficient algorithm for the evaluation of GFs, especial GFDs is proposed in the following subsections, while its high-order kinematic and dynamic equations are deduced in Section 4.

    3.1 Forward recursion

    The following recursive algorithm evaluates the generalized velocities, accelerations and jerks of each link (i=1,2,…,n):

    (20)

    (21)

    (22)

    where,Jithe six-dimensional generalized jerk of framei.

    3.2 Backward recursion

    With the serial manipulator kinematics and corresponding derivatives in (20)-(22), it’s possible to evaluate joint GFs and GFDs from the knowledge of the external forces acting on each link. And the recursive formulation is proposed as follows (i=n,n-1…1):

    (23)

    (24)

    (25)

    (26)

    Fig.1 shows that, with the given trajectory, GFs and GFDs can be evaluated efficiently in a programmable way. Actually, the accuracy of the evaluation for the GFs and GFDs can be improved by considering the friction and motor inertial. The influence of these two factors on the joint torque can be derived according to [23]. Just as the study of Guarino, it’s possible to get the more accurate evaluation by adding the derivatives of GF components corresponding to friction and motor inertial. In this study, both influences of these two factors are neglected for the sake of simplicity.

    Fig.1 The flowchart of the proposed method for the evaluation of GFs and GFDs.

    4 Synthesis of Recursive Equations

    The efficient approach for the evaluation of the GFs and GFDs based on the Lie group is given in equations (20)-(26). And detail formulations of these equations are deduced in this section.

    4.1 Recursive formulation of high-order kinematics

    (27)

    Substituting (27) and (20) into (15), the final generalized acceleration can be rewritten as

    (28)

    (29)

    (30)

    By taking into account (8) and (27), the derivative ofξcican be obtained by

    (31)

    Thus, the second-order derivative of the generalized velocity (the generalized jerk) is written as

    (32)

    4.2 Recursive formulation of high-order dynamics

    (33)

    (34)

    Substituting (34) into (33), we can get

    (35)

    Therefore, the derivative of generalized forces is written as

    (36)

    5 Simulation and Discussion

    In order to validate the effectiveness of the proposed method for the evaluation of GFDs, a simulation is conducted on an industrial robot HH-150 (self-developed by Huaheng Weld Co., Ltd), whose kinematic and dynamic parameters are shown in Table 1 and 2, respectively. And the trajectory of each joint for the simulation is given in Table 3.

    Fig.2 The joint coordinate system of HH-150 robot.

    Table 2 Dynamic parameters of HH-150 robot.

    Table 3 The trajectory of each joint.

    Firstly, we compare the proposed method with the commercial dynamic software (Adams) for the evaluation of GFs. As shown in Fig.3, GFs obtained from the proposed method match well with those calculated by the classical dynamic software Adams. Subsequently, GFDs are evaluated according to the proposed method (20)-(26). To further validate the correctness of the proposed method, the evaluation of GFDs is also derived by the existed Guarino method[14]. Fig.4 shows the comparison between the proposed method and Guarino method. It can be observed that these two methods have well in agreement with each other for the evaluation of GFDs. In this way, the proposed method based on the Lie group is shown to be able to evaluate the GFs and GFDs accurately in a closed-form.

    Fig.3 Comparisons of the GFs between the proposed method and Adams (a) GFs of the first three joint and (b) GFs of the last three joint.

    Fig. 4 Comparisons of the GFDs between the proposed method and Guarino method (a) GFDs of the first three joint and (b) GFDs of the last three joint.

    Likewise, the computational time for GFDs evaluation is also obtained by the Guarino’s method under the same simulation environment. And the comparison about the efficiency is described in Table 4. It’s noteworthy that the proposed method based on the Lie group is more efficient than the existed method using the DH technique. Especially for the evaluation of GFDs, the efficiency has been largely improved largely by the Lie group technique. This can be explained in the following reasons: (1) due to characteristics of the exponential operation, it’s easier to get the derivatives based on the Lie group than the classical DH method; (2) the Lie group technique uses the twist to describe the generalized velocity and force, making the formulation more concisely: the proposed method only needs 4 expressions (14)-(17) to describe the recursive dynamic model, compared to 9 expressions in the classical Newton-Euler method[24]. Then, the difference of the corresponding derivatives between two methods becomes larger with the increase of the manipulator’s freedom. As a result, the computational burden for the evaluation of GFDs is bigger in the Guarino method, compared to the proposed method based on the Lie group.

    Table 4 The computational time for the evaluation of GFS and GFDS.

    Therefore, with the comparison of these two methods, the proposed method is able to evaluate the GFs and GFDs. What’s more, the proposed evaluation method has largely improved the efficiency for the evaluation of GFs and GFDs, and it’s more suitable for the online applications.

    6 Conclusion

    To fully utilize the joint actuators in the trajectory planning, a more efficient and accurate method is proposed to evaluate GFs and GFDs in this paper. Compared to the existed DH method, the proposed method based on the Lie group is more efficient and concise, especially when the freedom of the manipulator becomes larger. The exponential operation makes the Lie group easier to compute derivatives of manipulator’s kinematics and dynamics. Thus, the accuracy and computational burden can be largely improved by using iterative closed-form expressions instead of approximated numerical differentiation methods. One important application of this approach is that the proposed method for the evaluation of GFs and GFDs can be used as online trajectory planning for the complex manipulator. Further, the high-order kinematics and dynamics based on the Lie group can be used to analysis the dynamics of the manipulator with elastic joints.

    Acknowledgement

    This work is supported by the Major State Basic Research Development Program of China (973 Program, Grant No. 2014CB046704), National Science and Technology Support Plan (Grant No. 2014BAB13B01).

    [1]A.Piazzi and A.Visioli, Global minimum-jerk trajectory planning of robot manipulators,IEEETrans.Ind.Electron., vol.47, no.1, pp.140-149, 2000.

    [2]C.Lin, P.Chang and J.Luh, Formulation and optimization of cubic polynomial joint trajectories for industrial robots,IEEETrans.Autom.Control., vol.AC-28, no.12, pp.1066-1074, 1983.

    [3]H.H.Tan and R.B.Potts, Minimum time trajectory planner for the discrete dynamic robot model with dynamic constraints,IEEEJ.Robot.Autom., vol.4, no.2, pp.174-185, 1983.

    [4]L.Zlajpah, On time optimal path control of manipulators with bounded joint velocities and torques, inProc.Int.Conf.Robot.Autom., Minneapolis, Minnesota, 1996, pp.1572-1577.

    [5]O.Dahl and L.Nielsen, Torque-limited path following by online trajectory time scaling,IEEETrans.Robot.Autom., vol.6, no.5, pp.554-561, 1990.

    [6]W.S.Owen, E.A.Croft and B.Benhabib, Real-time trajectory resolution for a two-manipulator machining system,J.Robot.Syst., vol.22, no.S1, pp.S51-S63, 2006.

    [7]J.Moreno-Valenzuela and E.Orozco-Manríquez, A new approach to motion control of torque-constrained manipulators by using time-scaling of reference trajectories,J.Mech.Sci.Technol., vol.23, no.12, pp.3221-3231, 2009.

    [8]O.Gerelli and C.G.L.Bianco, Nonlinear variable structure filter for the online trajectory scaling,IEEETrans.Ind.Electron., vol.56, no.10, pp.3921-3930, 2009.

    [9]F.Debrouwere, W.V.Loock, G.Pipeleers, Q.T.Dinh, M.Diehl, J.D.Schutter, and J.Swevers, Time-Optimal Path Following for Robots With Convex-Concave Constraints Using Sequential Convex Programming,IEEETrans.Robot., vol.29, no.6, pp.1485-1495, 2009.

    [10] K.Shin and N.McKay, A dynamic programming approach to trajectory planning of robotic manipulators,IEEETrans.Autom.Control, vol.AC-31, no.6, pp.491-500, 1986.

    [11] D.Costantinescu and E.A.Croft, Smooth and time-optimal trajectory planning for industrial manipulators along specified paths,J.Robot.Syst., vol.17, no.5, pp.233-249, 2000.

    [12] S.Macfarlane and E.A.Croft, Jerk-bounded manipulator trajectory planning: design for real-time applications,IEEETrans.Robot.Autom., vol.19, no.1, pp.42-52, 2003.

    [13] S.Perri, C.G.L.Bianco and M.Locatelli, Jerk bounded velocity planner for the online management of autonomous vehicles,IEEEInt.Conf.Autom., Gothenburg, Sweden, 2015, pp.24-28.

    [14] C.G.L.Bianco, Evaluation of generalized force derivatives by means of a recursive Newton-Euler approach,IEEETrans.Robot., vol.25, no.4, pp.954-959, 2009.

    [15] C.G.L.Bianco and O.Gerelli, Online Trajectory Scaling for Manipulators Subject to High-Order Kinematic and Dynamic Constraints,IEEETrans.Robot., vol.27, no.6, pp.1144-1152, 2011.

    [16] G.Buondonno and A.De Luca, A recursive Newton-Euler algorithm for robots with elastic joints and its application to control,IEEEInt.Conf.Robot.Sys., 2015, pp.5526-5532.

    [17] G.Buondonno and A.De Luca, Efficient Computation of Inverse Dynamics and Feedback Linearization for VSA-Based Robots,IEEERobot.Autom., vol.12, no.1, pp.908-915, 2016.

    [18] F.C.Park, J.E.Bobrow and S.R.Ploen, A Lie group formulation of robot dynamics,Int.J.Robot.Res., vol.14, no.6, pp.609-618, 1995.

    [19] C.Li, POE-Based Robot Kinematic Calibration Using Axis Configuration Space and the Adjoint Error Model,IEEETrans.Robot., vol.26, no.5, pp.1264-1279, 2016.

    [20] A.Müller, Screw and Lie group theory in multibody kinematics,MultibodySystDyn, 2017.

    [21] J.Selig,GeometricFundamentalsofRobotics.New York: Springer-Verlag, 2005.

    [22] X.Yang, A minimal kinematic model for serial robot calibration using POE formula,Robot.Comput.Integr.Manuf., vol.30, no.3, pp.326-334, 2014.

    [23] L.Sciavicco and B.Siciliano,ModelingandControlofRobotManipulators. New York: Springer-Verlag, 2012.

    [24] J.J.Craig,Introductiontorobotics:mechanicsandcontrol(Vol.3). Upper Saddle River: Pearson Prentice Hall, 2005.

    Appendix

    We derive here the formulation of the recursive dynamics presented in Section 2. Firstly, the forward iteration of generalized velocities and accelerations are deduced. Let the transformation from frameito framei-1 be given by

    (1)

    It’s trivial to get the relationship between the transformation matrix and corresponding derivative.

    (2)

    Meanwhile, the six-dimensional generalized velocityVi(expressed in linkiframe coordinates) of the linkiframe can be expressed by the transformation matrixgi(the linkireference frame relative to the inertial frame).

    (3)

    Thus, the six-dimensional generalized velocityVican be expressed as

    (4)

    (5)

    Then, the six-dimensional generalized accelerationAiis expressed as

    (6)

    Secondly, the forward iteration of generalized forces is deduced as follows. According to the standard equations of motion for the rigid body, the resultant force and moment applied on each linkiare

    (7)

    where

    (8)

    Note that the above three-dimensional vectors are all expressed in terms of local frame coordinates:vi= velocity of linkiframe,ωi= angular velocity of linkiframe,aci= acceleration of linkicenter of mass,Ti= resultant moment about the origin of the linkiframe,fi= resultant force applied to linki.

    Then, combining with equation (8), the resultant force and moment applied to linkican be rewritten as

    (9)

    In addition, the six-dimensional generalized velocity and acceleration are equivalent to

    (10)

    Considering characteristics of the cross-product and adjoint mapping, the three-dimensional force and moment applied to linkiare

    (11)

    (12)

    Namely,

    (13)

    国产在线男女| 亚洲婷婷狠狠爱综合网| 日韩欧美精品v在线| 十八禁网站网址无遮挡 | 又黄又爽又刺激的免费视频.| 在线观看国产h片| 亚洲精品视频女| 国产精品不卡视频一区二区| 丝瓜视频免费看黄片| 最近手机中文字幕大全| 中文精品一卡2卡3卡4更新| 1000部很黄的大片| 免费av不卡在线播放| 亚洲在久久综合| 久久精品国产亚洲av涩爱| 欧美高清性xxxxhd video| 99久久精品一区二区三区| 女的被弄到高潮叫床怎么办| 简卡轻食公司| 色哟哟·www| 日本午夜av视频| 亚洲国产精品999| 一区二区三区乱码不卡18| 菩萨蛮人人尽说江南好唐韦庄| 黄色一级大片看看| 精品亚洲乱码少妇综合久久| 国产亚洲av嫩草精品影院| 国产黄a三级三级三级人| 亚洲av中文av极速乱| 麻豆成人av视频| 国产精品蜜桃在线观看| 在线观看免费高清a一片| 亚州av有码| 久久久午夜欧美精品| 国产精品一区二区在线观看99| 九九爱精品视频在线观看| 国产69精品久久久久777片| 国语对白做爰xxxⅹ性视频网站| 国产高清国产精品国产三级 | 你懂的网址亚洲精品在线观看| 日韩视频在线欧美| 国产v大片淫在线免费观看| 国产精品嫩草影院av在线观看| 久久精品久久精品一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 成人黄色视频免费在线看| 中文字幕av成人在线电影| 精品国产一区二区三区久久久樱花 | 久久久久久久久久人人人人人人| 美女被艹到高潮喷水动态| 一级爰片在线观看| 亚洲成人一二三区av| 亚洲图色成人| 天堂俺去俺来也www色官网| 在线观看免费高清a一片| 国产亚洲午夜精品一区二区久久 | 亚洲欧美中文字幕日韩二区| 女人十人毛片免费观看3o分钟| 亚洲欧洲日产国产| 国产成人免费观看mmmm| 国产精品偷伦视频观看了| 熟女电影av网| 搞女人的毛片| 成人欧美大片| 亚洲国产精品国产精品| 国产69精品久久久久777片| 色婷婷久久久亚洲欧美| 91在线精品国自产拍蜜月| 欧美少妇被猛烈插入视频| 久久99热这里只有精品18| 黄片无遮挡物在线观看| 麻豆久久精品国产亚洲av| 五月开心婷婷网| 伊人久久精品亚洲午夜| 联通29元200g的流量卡| 成年免费大片在线观看| 午夜福利视频1000在线观看| 亚洲国产精品成人综合色| 国产黄a三级三级三级人| 亚洲av.av天堂| 成人黄色视频免费在线看| 午夜福利网站1000一区二区三区| 夜夜看夜夜爽夜夜摸| 成人午夜精彩视频在线观看| 内地一区二区视频在线| 亚洲成人一二三区av| 国产精品蜜桃在线观看| 国产乱来视频区| 国产在视频线精品| 视频中文字幕在线观看| 午夜激情久久久久久久| 亚洲国产欧美人成| 91久久精品国产一区二区三区| 欧美性猛交╳xxx乱大交人| 久久人人爽人人爽人人片va| 大码成人一级视频| 成人漫画全彩无遮挡| 久久影院123| 国产视频首页在线观看| 成人特级av手机在线观看| 男女边吃奶边做爰视频| a级毛片免费高清观看在线播放| 18禁动态无遮挡网站| 亚洲欧美清纯卡通| videossex国产| 99九九线精品视频在线观看视频| 一边亲一边摸免费视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产黄色免费在线视频| 插逼视频在线观看| 色综合色国产| 九草在线视频观看| 色综合色国产| 亚洲av二区三区四区| 国产老妇女一区| 欧美最新免费一区二区三区| 日韩国内少妇激情av| 在线精品无人区一区二区三 | 中文字幕制服av| 亚洲不卡免费看| 日本三级黄在线观看| 欧美成人精品欧美一级黄| 热re99久久精品国产66热6| 国产在视频线精品| 亚洲综合精品二区| 国产av国产精品国产| 丝袜美腿在线中文| 卡戴珊不雅视频在线播放| 午夜爱爱视频在线播放| 下体分泌物呈黄色| 欧美极品一区二区三区四区| 女的被弄到高潮叫床怎么办| 久久精品国产鲁丝片午夜精品| 中文字幕制服av| 麻豆乱淫一区二区| 国产精品久久久久久精品古装| 国产亚洲一区二区精品| 秋霞在线观看毛片| 国产淫片久久久久久久久| 久久久色成人| 性色avwww在线观看| 丝袜美腿在线中文| 麻豆国产97在线/欧美| 高清日韩中文字幕在线| 五月伊人婷婷丁香| 黄片无遮挡物在线观看| 亚洲一级一片aⅴ在线观看| 男女国产视频网站| 亚洲国产精品成人综合色| 乱系列少妇在线播放| 国产日韩欧美亚洲二区| 免费av观看视频| 联通29元200g的流量卡| 观看免费一级毛片| 久久久a久久爽久久v久久| 国产欧美日韩精品一区二区| 成人欧美大片| 赤兔流量卡办理| 五月开心婷婷网| 成人高潮视频无遮挡免费网站| 久久久久久久久久人人人人人人| av在线蜜桃| 看非洲黑人一级黄片| 七月丁香在线播放| 国产精品三级大全| 亚洲av一区综合| 午夜老司机福利剧场| 国产亚洲av嫩草精品影院| 国产 精品1| 色视频www国产| 久久人人爽人人片av| 久久久色成人| 美女高潮的动态| 狂野欧美白嫩少妇大欣赏| 韩国高清视频一区二区三区| 国产乱来视频区| 男人爽女人下面视频在线观看| 在现免费观看毛片| 亚洲最大成人手机在线| 国产老妇伦熟女老妇高清| 简卡轻食公司| 亚洲精品日本国产第一区| 久久国内精品自在自线图片| 婷婷色综合www| 国内精品宾馆在线| 97精品久久久久久久久久精品| 亚洲欧美一区二区三区国产| 韩国高清视频一区二区三区| 日本一本二区三区精品| 日韩成人伦理影院| 成人亚洲欧美一区二区av| 午夜日本视频在线| 国产欧美另类精品又又久久亚洲欧美| 五月玫瑰六月丁香| 国产男女内射视频| 亚洲av一区综合| 国模一区二区三区四区视频| 男人和女人高潮做爰伦理| 久久久久性生活片| 欧美高清性xxxxhd video| 真实男女啪啪啪动态图| 美女被艹到高潮喷水动态| 亚洲精华国产精华液的使用体验| 伊人久久国产一区二区| 亚洲精品456在线播放app| 中文字幕免费在线视频6| 高清毛片免费看| 亚洲av在线观看美女高潮| 99热这里只有是精品50| 欧美变态另类bdsm刘玥| 国产探花极品一区二区| 在线a可以看的网站| 午夜福利网站1000一区二区三区| 午夜福利在线在线| 亚洲精品成人久久久久久| 高清日韩中文字幕在线| 久久人人爽av亚洲精品天堂 | 少妇人妻久久综合中文| 久久ye,这里只有精品| 美女内射精品一级片tv| 麻豆乱淫一区二区| 精品久久久噜噜| 女人久久www免费人成看片| 边亲边吃奶的免费视频| 国产精品偷伦视频观看了| 99久久精品热视频| 精品久久久久久久久av| 午夜福利视频精品| 一本一本综合久久| 午夜爱爱视频在线播放| 九九爱精品视频在线观看| 久久精品熟女亚洲av麻豆精品| 国产伦理片在线播放av一区| 少妇高潮的动态图| 欧美激情国产日韩精品一区| 午夜日本视频在线| 男人舔奶头视频| 久久99精品国语久久久| 97人妻精品一区二区三区麻豆| 精品人妻视频免费看| 久久久午夜欧美精品| 亚洲精品成人久久久久久| av播播在线观看一区| 中文字幕av成人在线电影| 亚洲一区二区三区欧美精品 | 少妇裸体淫交视频免费看高清| 91精品伊人久久大香线蕉| 丰满少妇做爰视频| 国产亚洲一区二区精品| 在线亚洲精品国产二区图片欧美 | 又爽又黄无遮挡网站| 国产久久久一区二区三区| 人人妻人人爽人人添夜夜欢视频 | 免费av毛片视频| 精品一区在线观看国产| 亚洲综合精品二区| 中文字幕亚洲精品专区| 日韩国内少妇激情av| 蜜臀久久99精品久久宅男| xxx大片免费视频| 18禁在线无遮挡免费观看视频| 好男人在线观看高清免费视频| 性色av一级| av专区在线播放| 亚洲色图av天堂| 亚洲精品久久久久久婷婷小说| 日韩三级伦理在线观看| 偷拍熟女少妇极品色| 老司机影院成人| 99热这里只有精品一区| 久久久久国产网址| 深夜a级毛片| 久久99热这里只有精品18| 一二三四中文在线观看免费高清| 亚洲国产色片| 午夜精品一区二区三区免费看| 国产精品久久久久久久电影| 欧美日韩精品成人综合77777| 欧美另类一区| 一区二区三区乱码不卡18| 成人二区视频| 日韩成人伦理影院| 交换朋友夫妻互换小说| 欧美日韩在线观看h| 国产男人的电影天堂91| 欧美zozozo另类| 日韩成人av中文字幕在线观看| 久久国内精品自在自线图片| 性色av一级| 国产日韩欧美在线精品| 不卡视频在线观看欧美| 边亲边吃奶的免费视频| 亚洲怡红院男人天堂| 青春草亚洲视频在线观看| 亚洲精品国产av成人精品| av线在线观看网站| av福利片在线观看| 亚洲怡红院男人天堂| 国产成人免费无遮挡视频| a级毛色黄片| 大又大粗又爽又黄少妇毛片口| 免费大片黄手机在线观看| av在线观看视频网站免费| 国产一区二区亚洲精品在线观看| 日韩亚洲欧美综合| 国产大屁股一区二区在线视频| 欧美日韩一区二区视频在线观看视频在线 | 91精品国产九色| 日韩 亚洲 欧美在线| 一级黄片播放器| 久热久热在线精品观看| 成人欧美大片| av.在线天堂| 最新中文字幕久久久久| 日本av手机在线免费观看| 成人无遮挡网站| 禁无遮挡网站| 九九爱精品视频在线观看| 久久久欧美国产精品| 在线天堂最新版资源| 欧美日韩在线观看h| 丰满乱子伦码专区| 少妇熟女欧美另类| 久久精品熟女亚洲av麻豆精品| 国产亚洲5aaaaa淫片| a级毛片免费高清观看在线播放| 久久精品夜色国产| 国产伦理片在线播放av一区| 97超视频在线观看视频| 欧美zozozo另类| 下体分泌物呈黄色| av在线app专区| 亚洲性久久影院| 22中文网久久字幕| 亚洲综合色惰| 日本爱情动作片www.在线观看| 亚洲va在线va天堂va国产| 三级国产精品片| 老女人水多毛片| 麻豆成人av视频| 九九在线视频观看精品| 精品久久久久久久久亚洲| 国产成人福利小说| 毛片一级片免费看久久久久| 热re99久久精品国产66热6| 久久亚洲国产成人精品v| 我的老师免费观看完整版| 又大又黄又爽视频免费| 一区二区三区四区激情视频| 一级av片app| 成人一区二区视频在线观看| 精品熟女少妇av免费看| 中文精品一卡2卡3卡4更新| 亚洲四区av| 日韩欧美一区视频在线观看 | 偷拍熟女少妇极品色| 国产精品99久久99久久久不卡 | 亚洲成人中文字幕在线播放| 91久久精品国产一区二区三区| 国产人妻一区二区三区在| 免费黄网站久久成人精品| 免费看不卡的av| 制服丝袜香蕉在线| 国产精品久久久久久精品电影| 久久久久久久精品精品| 禁无遮挡网站| 在线亚洲精品国产二区图片欧美 | 乱码一卡2卡4卡精品| 岛国毛片在线播放| av在线观看视频网站免费| 久久ye,这里只有精品| 一级黄片播放器| 亚洲性久久影院| 精华霜和精华液先用哪个| 久久99热这里只频精品6学生| 又爽又黄无遮挡网站| 日本熟妇午夜| 免费观看a级毛片全部| 狂野欧美激情性xxxx在线观看| 国产精品熟女久久久久浪| 国产大屁股一区二区在线视频| 精品酒店卫生间| 亚洲欧洲国产日韩| 精品久久久久久久末码| 夜夜爽夜夜爽视频| 亚洲精品视频女| 国产亚洲午夜精品一区二区久久 | 成年版毛片免费区| 少妇人妻一区二区三区视频| 久久久精品欧美日韩精品| 在线观看免费高清a一片| 在线免费十八禁| 国产精品久久久久久久久免| 人人妻人人看人人澡| 国内精品美女久久久久久| 免费电影在线观看免费观看| 亚洲国产最新在线播放| 欧美极品一区二区三区四区| 91精品一卡2卡3卡4卡| 只有这里有精品99| 欧美少妇被猛烈插入视频| 亚洲欧美中文字幕日韩二区| av在线app专区| 大陆偷拍与自拍| 成人国产麻豆网| 大片免费播放器 马上看| av线在线观看网站| 亚洲,欧美,日韩| 亚洲成人精品中文字幕电影| 国产亚洲午夜精品一区二区久久 | 成人欧美大片| 欧美日韩综合久久久久久| 五月伊人婷婷丁香| 亚洲精品久久午夜乱码| 欧美丝袜亚洲另类| 色5月婷婷丁香| 黄片无遮挡物在线观看| 18禁在线播放成人免费| 成年免费大片在线观看| 欧美高清成人免费视频www| 男的添女的下面高潮视频| 国产男女内射视频| 人妻系列 视频| av在线app专区| 国产午夜福利久久久久久| 日韩三级伦理在线观看| 亚洲精品国产av成人精品| 日本一本二区三区精品| 成人毛片60女人毛片免费| 国产精品人妻久久久影院| 国产淫片久久久久久久久| 国产探花在线观看一区二区| 免费高清在线观看视频在线观看| a级毛片免费高清观看在线播放| 最近的中文字幕免费完整| 亚洲av中文字字幕乱码综合| 国产高潮美女av| 日本猛色少妇xxxxx猛交久久| 亚洲精品日本国产第一区| 精品久久久噜噜| 国产高潮美女av| 日本猛色少妇xxxxx猛交久久| 久久久久精品性色| 日韩视频在线欧美| 午夜福利网站1000一区二区三区| 国产黄a三级三级三级人| 亚洲成人久久爱视频| 国产精品国产av在线观看| 日产精品乱码卡一卡2卡三| 欧美日韩视频高清一区二区三区二| 香蕉精品网在线| 看免费成人av毛片| 草草在线视频免费看| 亚洲va在线va天堂va国产| 日韩电影二区| 亚洲av国产av综合av卡| 亚洲av一区综合| 乱码一卡2卡4卡精品| 黄片无遮挡物在线观看| 一区二区三区四区激情视频| 精品久久久噜噜| 自拍偷自拍亚洲精品老妇| 亚洲综合色惰| 成人漫画全彩无遮挡| 亚洲国产精品国产精品| 中文欧美无线码| 国产老妇伦熟女老妇高清| 黄色配什么色好看| 九色成人免费人妻av| 在线亚洲精品国产二区图片欧美 | 亚洲最大成人中文| 国产亚洲91精品色在线| 天堂俺去俺来也www色官网| h日本视频在线播放| 久久精品综合一区二区三区| 嘟嘟电影网在线观看| 九九在线视频观看精品| 18禁在线播放成人免费| av黄色大香蕉| 日产精品乱码卡一卡2卡三| 好男人视频免费观看在线| 18+在线观看网站| 久久99热这里只有精品18| 亚洲精品第二区| 欧美激情久久久久久爽电影| 色吧在线观看| 一级黄片播放器| 亚洲经典国产精华液单| 久久久久久国产a免费观看| 晚上一个人看的免费电影| 日本-黄色视频高清免费观看| 少妇裸体淫交视频免费看高清| 观看免费一级毛片| 国产精品成人在线| 大香蕉97超碰在线| 免费看光身美女| av免费在线看不卡| 性色av一级| 亚洲av日韩在线播放| 日本爱情动作片www.在线观看| 亚洲在线观看片| 日韩精品有码人妻一区| 国产精品久久久久久精品电影小说 | 欧美精品国产亚洲| 欧美 日韩 精品 国产| 在线观看av片永久免费下载| 国产高清三级在线| 永久免费av网站大全| 日日摸夜夜添夜夜爱| 精品视频人人做人人爽| 26uuu在线亚洲综合色| 下体分泌物呈黄色| 亚洲国产日韩一区二区| 免费大片18禁| 中国美白少妇内射xxxbb| 激情 狠狠 欧美| 免费av观看视频| 国产亚洲最大av| 久久精品国产鲁丝片午夜精品| 国产 一区精品| 麻豆成人午夜福利视频| 国产老妇女一区| 亚洲aⅴ乱码一区二区在线播放| 国产成人精品福利久久| 中国国产av一级| 午夜视频国产福利| 久久精品综合一区二区三区| 亚洲av成人精品一区久久| 国产精品一及| 老女人水多毛片| 少妇人妻 视频| 免费看日本二区| 亚洲欧美日韩无卡精品| 日本黄色片子视频| 91午夜精品亚洲一区二区三区| 大香蕉97超碰在线| 在线天堂最新版资源| 亚洲国产精品成人综合色| 中国美白少妇内射xxxbb| 国产 一区精品| 天堂俺去俺来也www色官网| av在线蜜桃| 国产高清有码在线观看视频| 成人一区二区视频在线观看| 亚洲国产av新网站| 秋霞在线观看毛片| 在线看a的网站| av在线天堂中文字幕| 亚洲三级黄色毛片| 3wmmmm亚洲av在线观看| 国产69精品久久久久777片| 国产精品一区二区性色av| 男男h啪啪无遮挡| 午夜视频国产福利| 国产av码专区亚洲av| 我要看日韩黄色一级片| 一级爰片在线观看| 亚洲欧美成人综合另类久久久| 最近的中文字幕免费完整| 美女脱内裤让男人舔精品视频| 精品少妇久久久久久888优播| 亚洲丝袜综合中文字幕| 精品国产三级普通话版| 免费在线观看成人毛片| 高清午夜精品一区二区三区| 亚洲精品久久午夜乱码| 亚洲精品一二三| 青春草亚洲视频在线观看| 日韩成人伦理影院| 97在线视频观看| 午夜免费观看性视频| 国产精品久久久久久精品电影| 中文字幕免费在线视频6| 汤姆久久久久久久影院中文字幕| 国产精品嫩草影院av在线观看| 三级男女做爰猛烈吃奶摸视频| 卡戴珊不雅视频在线播放| 国产精品99久久久久久久久| 国产精品精品国产色婷婷| 亚洲欧美成人精品一区二区| 欧美国产精品一级二级三级 | 国产精品久久久久久精品电影| 久久久久久久大尺度免费视频| av在线观看视频网站免费| 亚洲欧美一区二区三区国产| 国内精品美女久久久久久| 免费观看的影片在线观看| 我的老师免费观看完整版| 国语对白做爰xxxⅹ性视频网站| www.av在线官网国产| 亚洲精品久久午夜乱码| 日韩,欧美,国产一区二区三区| 国产黄片视频在线免费观看| 亚洲在久久综合| 日本爱情动作片www.在线观看| 伦精品一区二区三区| 欧美性感艳星| 在线精品无人区一区二区三 | 国产男人的电影天堂91| 在线观看一区二区三区激情| 久久99热这里只有精品18| 中文字幕免费在线视频6| 亚洲熟女精品中文字幕| 又爽又黄无遮挡网站| 街头女战士在线观看网站| 国产亚洲一区二区精品| 蜜臀久久99精品久久宅男| 欧美丝袜亚洲另类| 91午夜精品亚洲一区二区三区| 亚洲四区av| 大话2 男鬼变身卡| 99热6这里只有精品| 97人妻精品一区二区三区麻豆| 欧美丝袜亚洲另类| 蜜臀久久99精品久久宅男|