• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水淹對(duì)秋華柳根莖細(xì)胞壁組分鎘含量的影響

    2018-01-08 10:32:22陳錦平陳紅純馬文超
    關(guān)鍵詞:水淹細(xì)胞壁果膠

    周 翠,陳錦平,2,王 婷 ,陳紅純 ,李 瑞,馬文超 ,魏 虹*

    水淹對(duì)秋華柳根莖細(xì)胞壁組分鎘含量的影響

    周 翠1,陳錦平1,2,王 婷1,陳紅純1,李 瑞1,馬文超1,魏 虹1*

    (1.西南大學(xué)生命科學(xué)學(xué)院,三峽庫(kù)區(qū)生態(tài)環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室,重慶市三峽庫(kù)區(qū)植物生態(tài)與資源重點(diǎn)實(shí)驗(yàn)室,重慶 400715;2.廣西農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所,南寧 530007)

    為了解水淹脅迫對(duì)細(xì)胞壁鎘富集能力的影響,以秋華柳(Salix variegata Franch)扦插苗為研究對(duì)象,設(shè)置鎘脅迫和水淹脅迫試驗(yàn),測(cè)定了不同處理組下秋華柳根、莖細(xì)胞壁不同組分的鎘積累特征。結(jié)果表明:所有處理組秋華柳存活良好,表現(xiàn)出水淹和鎘的雙重耐受性;所有鎘濃度處理下,秋華柳根、莖細(xì)胞壁果膠和半纖維素均具有良好的鎘離子結(jié)合能力,其中果膠的鎘離子結(jié)合能力最大;水淹、鎘脅迫及兩者的交互效應(yīng)均對(duì)秋華柳根、莖細(xì)胞壁組分鎘含量造成了不同程度的影響。水淹顯著降低了莖細(xì)胞壁組分鎘含量,但對(duì)根組分中鎘含量無(wú)顯著影響;水淹條件下,秋華柳根、莖細(xì)胞壁果膠和半纖維素鎘含量有所降低,但果膠和半纖維素仍為細(xì)胞壁鎘積累富集的主要組分。上述結(jié)果表明,水淹對(duì)秋華柳根、莖細(xì)胞壁組分中鎘的分配策略沒(méi)有明顯改變,鎘仍被固定于細(xì)胞壁中以減少重金屬對(duì)植物細(xì)胞的傷害,因此秋華柳可以作為三峽庫(kù)區(qū)消落帶鎘污染土壤修復(fù)的備選物種。

    秋華柳;鎘脅迫;水淹;細(xì)胞壁;果膠;半纖維素

    三峽水庫(kù)運(yùn)行后,采用“蓄清排渾”的運(yùn)作模式,從而形成了最高30 m(水位145~175 m)落差的消落帶。消落帶是一種水陸生態(tài)交錯(cuò)帶,水位漲落幅度及面積變化較大,水位漲落逆反自然洪枯規(guī)律,冬蓄夏排[1]。這種特殊的水庫(kù)調(diào)水節(jié)律改變了原有的生態(tài)系統(tǒng)結(jié)構(gòu),部分原生植被物種因不能適應(yīng)消落帶特殊生境而消亡,生態(tài)環(huán)境問(wèn)題日益嚴(yán)重[2]。另一方面,三峽成庫(kù)后,懸浮物、水系沉積物在庫(kù)區(qū)消落帶及庫(kù)底沉積,造成大量的重金屬積累[3]。已有研究表明,三峽庫(kù)區(qū)消落帶重金屬污染已達(dá)警戒狀態(tài),主要污染物為鎘[4],部分地區(qū)已達(dá)到中度污染(0.6~1 mg·kg-1)[5],高鎘異常地區(qū)土壤鎘含量達(dá)到8.5 mg·kg-1[4]。鎘離子的高活性特征使其更易進(jìn)入食物鏈,被人體攝取而危害健康[6]。利用植物修復(fù)的方法治理土壤重金屬污染是近年來(lái)重金屬污染治理領(lǐng)域研究的熱點(diǎn)[7-8]。在對(duì)三峽庫(kù)區(qū)消落帶進(jìn)行植被重建的同時(shí),聯(lián)合重金屬植物修復(fù)將是庫(kù)區(qū)消落帶生態(tài)治理的有效途徑。

    植物遭受重金屬脅迫時(shí),最主要的應(yīng)對(duì)機(jī)制之一為區(qū)室化解毒,即將重金屬離子從細(xì)胞質(zhì)轉(zhuǎn)移至質(zhì)外體(細(xì)胞壁、液泡)儲(chǔ)存,以減少對(duì)植物體的直接毒害[9]。細(xì)胞壁對(duì)重金屬的富集能力與細(xì)胞壁的多糖物質(zhì)密切相關(guān)[10-12]。因此對(duì)重金屬脅迫下植物細(xì)胞壁不同組分鎘含量的研究,有助于進(jìn)一步闡釋植物對(duì)重金屬的耐受解毒及積累機(jī)制。

    秋華柳(Salix variegata Franch.)為楊柳科柳屬多年生灌木,葉寬卵狀披針形或矩圓形,生長(zhǎng)迅速,具有較高的生物量[13]。作為三峽庫(kù)區(qū)消落帶的鄉(xiāng)土物種,其分布廣泛,對(duì)河流自然汛期有較好的適應(yīng)能力,可用于三峽庫(kù)區(qū)消落帶的植被修復(fù)[14]。以往研究表明,秋華柳可耐受鎘污染并有良好的鎘富集和轉(zhuǎn)移能力,具備修復(fù)鎘污染土壤的潛力[15-17]。曾成城等[18]的研究表明在水淹生境下,秋華柳對(duì)鎘污染土壤仍具有較好的修復(fù)能力。張?chǎng)19]在秋華柳的鎘解毒機(jī)制一文中認(rèn)為,細(xì)胞壁的鎘積累在秋華柳的鎘耐性解毒中起著重要作用,但水淹脅迫是否會(huì)改變秋華柳細(xì)胞壁中不同組分對(duì)鎘的結(jié)合能力和結(jié)合特征,從而影響到細(xì)胞壁的鎘富集能力還有待進(jìn)一步研究。根據(jù)已有研究結(jié)果,秋華柳從土壤中吸收的鎘主要富集于根和莖中,故本研究以秋華柳扦插苗為材料,通過(guò)盆栽試驗(yàn),測(cè)定不同處理組下不同組分鎘的含量以分析水淹脅迫下秋華柳根、莖細(xì)胞壁不同組分的鎘積累特征,從而揭示秋華柳細(xì)胞壁的鎘富集特征和解毒機(jī)制,同時(shí)闡明水淹對(duì)秋華柳細(xì)胞壁不同組分鎘積累的影響,為秋華柳在消落帶的植被構(gòu)建與鎘污染土壤修復(fù)工作提供理論依據(jù)。

    1 材料與方法

    1.1 試驗(yàn)材料及采樣地概況

    試驗(yàn)所需秋華柳采集于嘉陵江同興鎮(zhèn)河岸(29°41′2″N,106°26′56″E)。受三峽水庫(kù)的影響,嘉陵江水文規(guī)律相應(yīng)出現(xiàn)3個(gè)階段。第一階段為水淹期(5月底—9月),屬于河流型生態(tài)系統(tǒng);第二階段為蓄水期(10月—次年2月),屬于湖泊型生態(tài)系統(tǒng)。在一、二階段水位最高均可達(dá)到175 m。最后一個(gè)時(shí)期是泄洪期(2月底—5月初),水位降至145~165 m,屬于過(guò)渡型生態(tài)系統(tǒng)[20]。

    2015年10月于采樣地173 m海拔位處,剪取長(zhǎng)15~20 cm,莖徑0.8~1 cm的秋華柳扦插條,于實(shí)驗(yàn)室先后用自來(lái)水、超純水沖洗干凈,扦插于花盆(上徑22 cm×下徑15 cm×高18 cm)中培養(yǎng)。每盆1株,均裝入自然風(fēng)干過(guò)1 mm篩的2 kg紫色土壤(采自三峽庫(kù)區(qū)消落帶)。土壤基本理化性質(zhì)見(jiàn)表1。

    1.2 試驗(yàn)設(shè)計(jì)

    2016年4月27日,挑選長(zhǎng)勢(shì)基本一致且狀態(tài)良好無(wú)病蟲(chóng)害的秋華柳扦插苗(初始株高約35 cm,基徑約0.7 cm,分枝數(shù)約12個(gè))進(jìn)行隨機(jī)分組。試驗(yàn)以鎘脅迫和水淹作為脅迫因子,采用雙因素完全隨機(jī)試驗(yàn)設(shè)計(jì),設(shè)置8組處理。根據(jù)三峽庫(kù)區(qū)消落帶土壤鎘污染現(xiàn)狀[3-4],共設(shè)置0、0.5、2、10 mg·kg-1(Cd2+/土壤)4個(gè)鎘濃度處理水平,涉及消落帶土壤輕度、中度、重度鎘污染等級(jí),分別定義為T0、T1、T2、T3。于苗木扦插前,將CdCl2·2.5H2O按濃度梯度配成水溶液后一次性澆灌于盆土中,并充分混勻土壤,保持潮濕平衡1個(gè)月。水分共設(shè)置兩個(gè)處理組:對(duì)照組進(jìn)行常規(guī)供水管理,水淹組將盆栽苗放入塑料盆(上徑27 cm×下徑20 cm×高18 cm)中實(shí)施水淹處理,試驗(yàn)期間水位始終維持在土壤表面以上5 cm處。

    全部的盆栽苗均放置于西南大學(xué)生態(tài)園遮雨棚(四面敞開(kāi),棚頂透明)下培養(yǎng),隨機(jī)擺放花盆并按期交換花盆位置,花盆間保持一定的間距,避免植株間的相互干擾。試驗(yàn)過(guò)程中除進(jìn)行常規(guī)的田間管理外,每日按時(shí)檢查水淹組的水位情況并適時(shí)補(bǔ)充水分。培養(yǎng)60 d后,所有處理組秋華柳存活率為100%,葉片無(wú)明顯的致病現(xiàn)象,苗木整體生長(zhǎng)狀況良好。取樣測(cè)試時(shí)從每個(gè)處理的15株中隨機(jī)抽取5株,測(cè)定的指標(biāo)平均值作為1個(gè)重復(fù),共設(shè)置3個(gè)重復(fù)。

    1.3 細(xì)胞壁不同組分的提取與鎘含量測(cè)定

    采用分級(jí)梯度離心法提取細(xì)胞壁,分離細(xì)胞壁不同組分[21]。分別取根、莖鮮樣各0.5 g,進(jìn)行液氮研磨,將所得粉末置于50 mL離心管中,經(jīng)75%冰乙醇沖洗 15 min 后離心 15 min(10 000 r·min-1),依次用冰丙酮、冰甲醇/氯仿混合物(1∶1,V/V)及冰甲醇沖洗后離心 15 min(10 000 r·min-1),所得沉淀即為細(xì)胞壁;向沉淀中加入0.5%的草酸銨緩沖液15 mL,在80℃水浴中振蕩 30 min 后離心 15 min(10 000 r·min-1),上清液即為果膠;用去離子水沖洗沉淀,然后加入4%的NaOH溶液10 mL,在室溫下振蕩30 min后離心15 min(10 000 r·min-1),上清液即為半纖維素。

    所有組分經(jīng)微波消解儀(Leeman SW-4,Ger many)消解后用電感耦合等離子體發(fā)射光譜儀(ICPOES,Thermo Fisher Icap 6300,UK)測(cè)定不同處理下細(xì)胞壁不同組分中的鎘含量。

    1.4 數(shù)據(jù)分析

    利用SPSS 22.0統(tǒng)計(jì)分析軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,采用雙因素方差分析(Two-way ANOVA)分析水淹和不同鎘濃度對(duì)秋華柳根、莖細(xì)胞壁不同組分鎘含量的影響。用Duncan多重比較(Duncan’s multiple range test)檢驗(yàn)相同細(xì)胞壁組分在不同鎘濃度下鎘含量的差異顯著性,以及不同細(xì)胞壁組分在相同鎘濃度下鎘含量的差異顯著性。利用獨(dú)立樣本t檢驗(yàn)分析相同鎘濃度下不同水分處理間細(xì)胞壁組分鎘含量的差異顯著性。采用Origin 8.5軟件作圖。

    2 結(jié)果與分析

    2.1 水淹和不同鎘濃度處理對(duì)秋華柳根、莖細(xì)胞壁不同組分鎘含量的影響

    所有處理組秋華柳存活良好,表現(xiàn)出水淹和鎘的雙重耐受性。雙因素方差分析結(jié)果表明,秋華柳根、莖細(xì)胞壁不同組分鎘含量均受到水分處理、鎘濃度及其交互效應(yīng)的影響(表2),而且對(duì)根、莖完整細(xì)胞壁(CW)鎘含量的影響相對(duì)于去果膠細(xì)胞壁(CWP)和去果膠去半纖維素細(xì)胞壁(CW-P-HC)鎘含量的影響更大,各因素均表現(xiàn)出對(duì)CW鎘含量有極顯著性影響(P<0.01)。除水分處理對(duì)根CW-P及CWP-HC 鎘含量無(wú)顯著性影響外(P>0.05),其他根、莖CW-P及CW-P-HC鎘含量均受到水分處理和鎘濃度的單因素及兩者交互效應(yīng)的極顯著性影響(P<0.01)。

    2.2 正常供水下根、莖細(xì)胞壁不同組分鎘含量的變化

    從圖1可以看出,隨著鎘濃度的增大,秋華柳根、莖CW、CW-P和CW-P-HC的鎘含量均隨之升高。在相同鎘濃度下,秋華柳根、莖細(xì)胞壁鎘含量均隨著細(xì)胞壁組分的減少而逐漸減少,表明果膠和半纖維素在秋華柳細(xì)胞壁中均具有與鎘離子結(jié)合的能力。根、莖細(xì)胞壁的鎘含量在去除果膠后的下降幅度大于進(jìn)一步去除半纖維素的降幅,可見(jiàn)果膠的鎘離子結(jié)合能力大于半纖維素。

    表1 土壤基本理化性質(zhì)Table 1 The basic physico-chemical characteristics of soils

    表2 水淹和不同鎘濃度對(duì)秋華柳根、莖細(xì)胞壁不同組分鎘含量的影響Table 2 Effects of flooding and different Cd concentrations on Cd contents in different cell wall components of the root and stem of S.variegata

    由圖1a可知,處理60 d后與CW鎘含量相比,根CW-P鎘含量在T2和T3鎘濃度下顯著下降(P<0.05),分別下降了59.23%和37.05%;T0和T1鎘濃度下無(wú)顯著性差異(P>0.05)。CW-P-HC鎘含量與CWP相比,雖鎘含量有所下降但無(wú)顯著性差異(P>0.05)。圖1b結(jié)果顯示,秋華柳莖CW-P鎘含量在T3鎘濃度下相比CW顯著下降(P<0.05),降幅為26.6%,與CW-P-HC鎘含量間無(wú)顯著性差異(P>0.05)。而T1和T2鎘處理組的CW-P和CW-P-HC鎘含量與CW相比均無(wú)顯著性差異(P>0.05)。

    2.3 水淹對(duì)秋華柳根、莖細(xì)胞壁不同組分鎘含量的影響

    與正常供水(圖1)相比,水淹脅迫下不同鎘處理組的根莖CW、CW-P和CW-P-HC鎘含量都有不同程度的降低(圖2),但各組分鎘含量的變化趨勢(shì)與正常供水下相同。隨著處理鎘濃度的增大,秋華柳根莖CW、CW-P和CW-P-HC的鎘含量均隨之升高。在相同鎘濃度下,秋華柳根、莖細(xì)胞壁鎘含量均隨著細(xì)胞壁組分的減少而逐漸減少。根細(xì)胞壁中,除T3處理組CW和CW-P-HC間的鎘含量有顯著性差異(P<0.05)外,在其他相同鎘處理組中CW-P-HC、CW-P及CW的鎘含量間均無(wú)顯著性差異(P>0.05)。莖細(xì)胞壁組分中,除T0、T1處理組中CW-P和CW-P-HC鎘含量間存在顯著性差異(P<0.05)外,在其他相同鎘處理組中CW-P-HC、CW-P及CW的鎘含量間也無(wú)顯著性差異(P>0.05)。

    圖1 正常供水條件下秋華柳不同細(xì)胞壁組分的鎘含量Figure 1 Cd contents in different cell wall components of S.Variegata under normal water condition

    2.4 不同水分處理下細(xì)胞壁不同組分鎘含量間的對(duì)比

    與正常供水(圖1)相比,水淹條件下CW、CW-P和CW-P-HC的鎘含量都有不同程度的降低(圖2),莖器官相應(yīng)組分的下降趨勢(shì)更為明顯,最高降幅高達(dá)74.49%(T3處理組 CW-P-HC,圖 3b)。處理 60 d后,根細(xì)胞壁CW鎘含量在T2、T3鎘濃度組下存在正常供水和水淹間的差異顯著性(P<0.05),而CW-P和CW-P-HC 的鎘含量?jī)H在鎘高濃度組 T3(10 mg·kg-1Cd2+)下存在正常供水和水淹間的差異顯著性(P<0.05),其他鎘處理組下的細(xì)胞壁不同組分在正常供水和水淹間均無(wú)顯著性差異(P>0.05,圖3a)。而莖細(xì)胞壁不同組分除T1濃度下CW-P鎘含量在不同水分處理間無(wú)顯著性差異外(P>0.05),其他鎘處理組下細(xì)胞壁不同組分在不同水分處理下均存在顯著性差異(P<0.05,圖 3b)。

    3 討論

    細(xì)胞壁作為重金屬離子跨膜進(jìn)入細(xì)胞原生質(zhì)體的第一道屏障,在重金屬離子的吸收、固定和轉(zhuǎn)運(yùn)中起著重要作用。同時(shí),細(xì)胞壁也是植物響應(yīng)重金屬脅迫的功能信號(hào)分子和代謝所在位點(diǎn),細(xì)胞壁與植物重金屬耐性間具有重要的關(guān)聯(lián)性[22-23]。植物細(xì)胞壁是由果膠、纖維素、半纖維素、木質(zhì)素、蛋白質(zhì)等多種組分構(gòu)成的一種復(fù)雜結(jié)構(gòu)[24]。已有研究表明,在結(jié)合重金屬離子時(shí),細(xì)胞壁多糖物質(zhì)起到主要作用,同時(shí)細(xì)胞壁結(jié)構(gòu)蛋白、木質(zhì)素等酚類物質(zhì)也參與其中共同完成細(xì)胞壁對(duì)重金屬的吸收和富集[25-27]。本試驗(yàn)結(jié)果表明,在正常供水和水淹脅迫下,秋華柳根、莖細(xì)胞壁鎘含量去除果膠后均有所下降;去除半纖維素后,鎘含量進(jìn)一步降低。由此可見(jiàn),秋華柳根、莖細(xì)胞壁果膠和半纖維素均具有一定的鎘離子結(jié)合能力。

    圖2 水淹條件下秋華柳不同細(xì)胞壁組分的鎘含量Figure 2 Cd contents in different cell wall components of S.variegata under flooding

    圖3 不同水分處理下秋華柳不同細(xì)胞壁組分的鎘含量Figure 3 Cd contents in different cell wall components of S.variegata in different water treatment

    細(xì)胞壁結(jié)合重金屬離子能力的大小主要取決于細(xì)胞壁中不同組分提供的負(fù)電配位基團(tuán),如-COOH、-OH、-CHO、-NH2、-CHO、-SH 等的多少[28-29]。這些負(fù)電配位基團(tuán)通過(guò)與重金屬陽(yáng)離子發(fā)生反應(yīng)而將其固定于細(xì)胞壁中,完成區(qū)室化,阻止重金屬離子進(jìn)入細(xì)胞原生質(zhì)體對(duì)植物造成毒害[30],其中多糖中-COOH的多寡將直接決定細(xì)胞壁結(jié)合重金屬離子能力的大小,而果膠是-COOH的主要來(lái)源[31]。有些植物在重金屬脅迫下可通過(guò)增加細(xì)胞壁中的果膠含量,提供眾多的重金屬離子結(jié)合位點(diǎn),以富集更多的金屬離子[32]。此外,有研究發(fā)現(xiàn)果膠在普通條件下便能與Ca2+形成一種“egg-box”結(jié)構(gòu)(俗稱蛋盒結(jié)構(gòu)),當(dāng)植物生長(zhǎng)在重金屬污染區(qū)域時(shí),Ca2+便可與 Cd、Cu、Al、Zn、Pb 等金屬陽(yáng)離子進(jìn)行置換,從而在重金屬區(qū)室化上扮演著重要角色[10,33]。本試驗(yàn)結(jié)果也發(fā)現(xiàn),果膠在秋華柳根、莖細(xì)胞壁鎘積累上同樣起到重要作用。處理60 d后,T2(2 mg·kg-1Cd2+)和 T3(10 mg·kg-1Cd2+)處理組中,去除果膠后的根細(xì)胞壁鎘含量顯著下降,降幅分別達(dá)到了59.23%和37.05%,莖細(xì)胞壁中,去除果膠后的細(xì)胞壁鎘含量在T3處理組中也顯著下降。由此可見(jiàn),秋華柳根、莖細(xì)胞壁果膠結(jié)合了大量的鎘離子且在中、高鎘濃度(2 mg·kg-1,10 mg·kg-1Cd2+)下發(fā)揮的作用更大,可能因?yàn)楦邼舛鹊逆k離子可誘導(dǎo)細(xì)胞壁中果膠的合成,從而提供更多的負(fù)電配位基團(tuán)。與莖相比,果膠在根細(xì)胞壁的鎘富集中作用更顯著,可能由于根部鎘離子濃度較大,更容易被根吸收進(jìn)入細(xì)胞,同時(shí)與根際酸堿度的變化及根部分泌的有機(jī)酸等因素有關(guān)[34-35],使根成為鎘富集的最主要器官。除果膠外,組成細(xì)胞壁的另一主要多糖物質(zhì)為半纖維素,因含有大量的-OH,在細(xì)胞壁的重金屬富集中也發(fā)揮著一定的作用。陳世寶等[36]研究發(fā)現(xiàn)芥菜、生菜、小白菜等多種植物根系在進(jìn)一步去除半纖維素后,細(xì)胞壁中鋅的含量顯著下降。本研究得到了相似的結(jié)果,與只去除果膠組分的細(xì)胞壁鎘含量相比,秋華柳根、莖細(xì)胞壁在去除果膠及半纖維后鎘含量有所下降,但兩者間無(wú)顯著差異,由此可見(jiàn)秋華柳根、莖細(xì)胞壁半纖維素同樣具有鎘離子結(jié)合能力,但結(jié)合能力遠(yuǎn)小于果膠。這一結(jié)果證實(shí)了多糖中-COOH的多寡可直接決定細(xì)胞壁結(jié)合重金屬離子能力大小的說(shuō)法。

    根、莖細(xì)胞壁在去除果膠及半纖維素后鎘含量仍很高,說(shuō)明一部分鎘離子被細(xì)胞壁的殘余組分固定,即纖維素、木質(zhì)素和結(jié)構(gòu)蛋白。纖維素主要存在于細(xì)胞壁的初生壁和次生壁中,構(gòu)成細(xì)胞壁的骨架[22]。木質(zhì)素則存在于次生壁中,主要在礦物質(zhì)的運(yùn)輸中起作用[37]。已有研究表明,植物面臨重金屬脅迫時(shí),體內(nèi)木質(zhì)素相關(guān)合成酶活性提高,組織中的木質(zhì)素含量明顯增加[38]。細(xì)胞壁蛋白基因也會(huì)發(fā)生高表達(dá),產(chǎn)生相關(guān)細(xì)胞壁蛋白,在重金屬離子的固定中發(fā)揮重要作用[39]。因此,秋華柳莖細(xì)胞壁纖維素、木質(zhì)素、結(jié)構(gòu)蛋白可能是結(jié)合鎘離子的另一主要組分,有待進(jìn)一步驗(yàn)證。

    有研究表明,細(xì)胞壁對(duì)重金屬的富集特征不是一成不變的,外源因素可通過(guò)影響細(xì)胞壁多糖的合成,從而改變細(xì)胞壁的鎘富集能力[40]以及重金屬在細(xì)胞壁不同組分中的分布,甚至改變植物對(duì)重金屬的耐受和富集能力。周麗珍等[41]發(fā)現(xiàn),外源添加NaCl造成莧菜根、莖、葉細(xì)胞壁中的鎘含量總體顯著下降。然而,也有相關(guān)研究表明其他外源因素可促進(jìn)細(xì)胞壁對(duì)重金屬的富集。高超等[42]、Qiu等[43]的研究發(fā)現(xiàn),磷的添加提高了細(xì)胞壁對(duì)鎘的富集能力,顯著增加了水稻、卷心菜細(xì)胞壁中的鎘含量。本試驗(yàn)中,水淹及水淹與鎘處理間的交互效應(yīng)對(duì)秋華柳根、莖細(xì)胞壁果膠和半纖維素的鎘富集能力均造成了一定程度的影響。從獨(dú)立樣本t檢驗(yàn)的結(jié)果來(lái)看,與正常供水相比,水淹條件下的秋華柳根莖完整細(xì)胞壁、去果膠細(xì)胞壁和去果膠去半纖維素細(xì)胞壁的鎘含量都有不同程度的降低??赡苁怯捎谒透淖兞送寥乐兄亟饘俚幕瘜W(xué)形態(tài),生物有效性降低[18,44-45],細(xì)胞壁中固定的重金屬離子量減少,果膠對(duì)重金屬的結(jié)合也相應(yīng)減少,也有可能是水淹影響了細(xì)胞壁果膠和半纖維素等多糖組分的合成,從而減少了細(xì)胞壁對(duì)鎘的固定能力。與根相比,水淹條件下莖細(xì)胞壁相應(yīng)組分的鎘含量下降趨勢(shì)更為明顯。這可能是因?yàn)樗蜅l件下秋華柳的形態(tài)和代謝途徑都發(fā)生了變化[14],從而影響了植株地上部的鎘含量以及根-枝鎘轉(zhuǎn)移能力,最終降低了莖細(xì)胞壁中的鎘含量。本試驗(yàn)的處理時(shí)間處于植物春夏季生長(zhǎng)旺季,研究結(jié)果證明秋華柳根、莖細(xì)胞壁組分在生長(zhǎng)季水淹期間,表現(xiàn)出了良好的鎘積累能力,水淹脅迫未對(duì)其造成明顯的影響。但面對(duì)三峽庫(kù)區(qū)消落帶冬季植物非生長(zhǎng)季水淹,秋華柳是否會(huì)表現(xiàn)出相同的鎘積累特征?不同季節(jié)的水淹是否會(huì)影響秋華柳細(xì)胞壁的鎘積累特征?這將是后續(xù)研究需要關(guān)注的問(wèn)題,以期通過(guò)更全面的研究為秋華柳在消落帶的植被構(gòu)建與鎘污染土壤修復(fù)工作提供更充足的理論依據(jù)。

    4 結(jié)論

    (1)果膠和半纖維素在秋華柳根、莖細(xì)胞壁中均具有一定的鎘離子結(jié)合能力,果膠對(duì)鎘的結(jié)合能力大于半纖維素。

    (2)水淹條件下,秋華柳根、莖細(xì)胞壁果膠和半纖維素中的鎘含量雖有一定程度的降低,但仍為細(xì)胞壁鎘離子的主要結(jié)合組分。

    (3)水淹未對(duì)秋華柳根、莖細(xì)胞壁組分中鎘的分配策略造成明顯影響,秋華柳可作為三峽庫(kù)區(qū)消落帶鎘污染土壤修復(fù)的一個(gè)備選物種。

    [1]譚淑端,王 勇,張全發(fā).三峽水庫(kù)消落帶生態(tài)環(huán)境問(wèn)題及綜合防治[J].長(zhǎng)江流域資源與環(huán)境,2008,17(增刊1):101-105.

    TAN Shu-duan,WANG Yong,ZHANG Quan-fa.Environment challenges and countermeasures of the water-lever-fluctuation zone(WLFZ)of the Three Gorges Reservoir[J].Resources and Environment in the Yangtze Basin,2008,17(Suppl1):101-105.

    [2]Zhang Q,Lou Z.The environmental changes and mitigation actions in the Three Gorges Reservoir region,China[J].Environmental Science&Policy,2011,14(8):1132-1138.

    [3]Singh S,Eapen S,D’Souza S F.Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant,Bacopa monnieri L.[J].Chemosphere,2006,62(2):233-246.

    [4]劉意章,肖唐付,寧增平,等.三峽庫(kù)區(qū)巫山建坪地區(qū)土壤鎘等重金屬分布特征及來(lái)源研究[J].環(huán)境科學(xué),2013,34(6):2390-2398.

    LIU Yi-Zhang,XIAO Tang-fu,NING Zeng-ping,et al.Cadmium and selected heavy metals in soils of Jianping area in Wushan county,the Three Gorges region:Distribution and source recognition[J].Environmental Science,2013,34(6):2390-2398.

    [5]唐 將.三峽庫(kù)區(qū)鎘等重金屬元素遷移富集及轉(zhuǎn)化規(guī)律[D].成都:成都理工大學(xué),2005.

    TANG Jiang.Study on the regularity of move,enrichment,and translation of cadmium and other heavy metals in the district of the Three Gorges Reservoir[D].Chengdu:Chengdu University of Technology,2005.

    [6]孫惠莉,呂金印,賈少磊.硫?qū)︽k脅迫下小白菜葉片AsA—GSH循環(huán)和植物絡(luò)合素含量的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2013,32(7):1294-1301.

    SUN Hui-li,Lü Jin-yin,JIA Shao-lei.Effects of sulfur on ascorbateglutathione cycle and the content of phytochelatins in the leaves of pakchoi(Brassica chinensis L.)under cadmium stress[J].Journal of Agro-Environment Science,2013,32(7):1294-1301.

    [7]Zhang X,Lin L,Chen M,et al.A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metal by the hyperaccumulator Sedum alfredii Hance[J].Journal of Hazardous Materials,2012,229/230(3):361-370.

    [8]曾 鵬,曹 霞,郭朝暉,等.Cd污染土壤景觀修復(fù)植物篩選研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(4):691-698.

    ZENG Peng,CAO Xia,GUO Zhao-hui,et al.Potential of ornamental plants for remediating soil polluted with cadmium[J].Journal of Agro-Environment Science,2016,35(4):691-698.

    [9]Vollenweider P,Cosio C,Günthardt-Goerg M S,et al.Localization and effects of cadmium in leaves of a cadmium-tolerant willow(Salix viminalis L.)PartⅡ:Microlocalization and cellular effects of cadmium[J].Environmental and Experimental Botany,2006,58(1-3):25-40.

    [10]Krzes?owska M.The cell wall in plant cell response to trace metals:Polysaccharide remodeling and its role in defense strategy[J].Acta-Physiologiae Plantarum,2011,33(1):35-51.

    [11]Bouazizi H,Jouili H,Geitmann A,et al.Structural changes of cell wall and lignifying enzymes modulations in bean roots in response to copper stress[J].Biological Trace Element Research,2010,136(2):232-240.

    [12]Zhang X H,Lin A J,Gao Y L,et al.Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L.and reduces copper uptake[J].Soil Biology&Biochemistry,2009,41(5):930-935.

    [13]李 婭,曾 波,葉小齊,等.水淹對(duì)三峽庫(kù)區(qū)岸生植物秋華柳(Salix variegata Franch.)存活和恢復(fù)生長(zhǎng)的影響[J].生態(tài)學(xué)報(bào),2008,28(5):1923-1930.

    LI Ya,ZENG Bo,YE Xiao-qi,et al.The effect of flooding on survival and recovery growth of the riparian plant Salix variegate Franch.in Three Gorges Reservoir region[J].Acta Ecologica Sinica,2008,28(5):1923-1930.

    [14]張艷紅,曾 波,付天飛,等.長(zhǎng)期水淹對(duì)秋華柳根部非結(jié)構(gòu)性碳水化合物含量的影響[J].西南師范大學(xué)學(xué)報(bào):自然科學(xué)版,2006,31(3):153-156.

    ZHANG Yan-hong,ZENG Bo,FU Tian-fei,et al.Effects of long-term flooding on non-structural carbohydrates content in roots of Salix variegata Franch[J].Journal of Southwest China Normal University(Natural Science),2006,31(3):153-156.

    [15]孫曉燦,魏 虹,謝小紅,等.水培條件下秋華柳對(duì)重金屬Cd的富集特性及光合響應(yīng)[J].環(huán)境科學(xué)研究,2012,25(2):220-225.

    SUN Xiao-can,WEI Hong,XIE Xiao-hong,et al.Bioaccumulation and photosynthesis response of Salix variegate to cadmium under hydroponic culture[J].Research of Environmental Sciences,2012,25(2):220-225.

    [16]賈中民,魏 虹,孫曉燦,等.秋華柳和楓楊幼苗對(duì)鎘的積累和耐受性[J].生態(tài)學(xué)報(bào),2011,31(1):107-114.

    JIA Zhong-min,WEI Hong,SUN Xiao-can,et al.Accumulation and tolerance of Salix variegate and Pterocarya stenoptera seedlings to cadmium[J].Acta Ecologica Sinica,2011,31(1):107-114.

    [17]劉 媛,馬文超,張 雯,等.鎘脅迫對(duì)秋華柳根系活力及其Ca、Mg、Mn、Zn、Fe 積累的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2016,27(4):1109-1115.

    LIU Yuan,MA Wen-chao,ZHANG Wen,et al.Effect of cadmium stress on root vigor and accumulation of elements Ca,Mg,Mn,Zn,Fe in Salix variegate[J].Chinese Journal of Applied Ecology,2016,27(4):1109-1115.

    [18]曾成城,陳錦平,馬文超,等.水淹生境下秋華柳對(duì)鎘污染土壤研究修復(fù)能力[J].生態(tài)學(xué)報(bào),2016,36(13):3978-3986.

    ZENG Cheng-cheng,CHEN Jin-ping,MA Wen-chao,et al.The remedial capability of Salix variegate for Cd-contaminated soil under flooding environments[J].Acta Ecologica Sinica,2016,36(13):3978-3986.

    [19]張 雯.秋華柳(Salix variegata Franch)的Cd富集特性及解毒機(jī)制研究[D].重慶:西南大學(xué),2014.

    ZHANG Wen.Research on accumulation characteristics and tolerance mechanismstocadmiumofSalixvariegataFranch[D].Chongqing:Southwest University,2014.

    [20]Nie Y,Zhang Z,Wang M,et al.Seasonal variations of carbonic anhydrase activity in Chongqing urban section of Jialing River and its influencing factors[J].Chemosphere,2017,179:202-212.

    [21]Zhong H L,Lauchli A.Changes of cell wall composition and polymer size in primary roots of cotton seedlings under high salinity[J].Journal of Experimental Botany,1993,44(261):773-778.

    [22]Chen G,Liu Y,Wang R,et al.Cadmium adsorption by willow root:The role of cell walls and their subfractions[J].Environmental Science&Pollution Research International,2013,20(8):5665-5672.

    [23]劉清泉,陳亞華,沈振國(guó),等.細(xì)胞壁在植物重金屬耐性中的作用[J].植物生理學(xué)報(bào),2014,50(5):605-611.

    LIU Qing-quan,CHEN Ya-fei,SHEN Zhen-guo,et al.Roles of cell wall in plant heavy metal tolerance[J].Plant Physiology Journal,2014,50(5):605-611.

    [24]Carpita N C,Defernez M,Findlay K,et al.Cell wall architecture of the elongating maize coleoptile[J].Plant Physiology,2001,127(2):551-565.

    [25]Davis T A,Llanes F,Volesky B,et al.Metal selectivity of Sargassum spp.and their alginates in relation to their α-l-guluronic acid content and conformation[J].Environmental Science&Technology,2003,37(2):261-267.

    [26]Konno H,Nakato T,Nakashima S,et al.Lygodium japonicum fern accumulates copper in the cell wall pectin[J].Journal of Experimental Botany,2005,56(417):1923-1931.

    [27]Konno H,Nakashima S,Katoh K.Metal-tolerant moss Scopelophila cataractae accumulates copper in the cell wall pectin of the protonema[J].Journal of Plant Physiology,2010,167(5):358-364.

    [28]Pelloux J,Rusterucci C,Mellerowicz E J.New insights into pectin methylesterase structure and function[J].Trends in Plant Science,2007,12(6):267-277.

    [29]Davis T A,Volesky B,Mucci A.A review of the biochemistry of heavy metal biosorption by brown algae[J].Water Research,2003,37(18):4311-4330.

    [30]張旭紅,高艷玲,林愛(ài)軍,等.植物根系細(xì)胞壁在提高植物抵抗金屬離子毒性中的作用[J].生態(tài)毒理學(xué)報(bào),2008,3(1):9-14.

    ZHANG Xu-hong,GAO Yan-ling,LIN Ai-jun,et al.A review on the effects of cell wall on the resistance of plants to metal stress[J].Asian Journal of Ecotoxicology,2008,3(1):9-14.

    [31]Dronnet V M,Renard C,Axelos M A V,et al.Heavy metals binding by pectins:Selectivity,quantification and characterisation[J].Progress in Biotechnology,1996,14(96):535-540.

    [32]Astier C,Gloaguen V,Faugeron C.Phytoremediation of cadmium-contaminated soils by young Douglas fir trees:Effects of cadmium exposure on cell wall composition[J].International Journal of Phytoremediation,2014,16(7/8):790-803.

    [33]Caffall K H,Mohnen D.The structure,function,and biosynthesis of plant cell wall pectic polysaccharides[J].Carbohydrate Research,2009,344(14):1879-1900.

    [34]Stoltz E,Greger M.Accumulation properties of As,Cd,Cu,Pb and Zn by four wetland plant species growing on submerged mine tailings[J].Environmental&Experimental Botany,2002,47(3):271-280.

    [35]Dahmani-Muller H,Oort F V,Gélie B,et al.Strategies of heavy metal uptake by three plant species growing near a metal smelter[J].Environmental Pollution,2000,109(2):231-238.

    [36]陳世寶,孫 聰,魏 威,等.根細(xì)胞壁及其組分差異對(duì)植物吸附、轉(zhuǎn)運(yùn)Zn的影響[J].中國(guó)環(huán)境科學(xué),2012(9):1670-1676.

    CHEN Shi-bao,SUN Cong,WEI Wei,et al.Difference in cell wall components of roots and its effect on the transfer factor of Zn by plant species[J].China Environmental Science,2012(9):1670-1676.

    [37]Ithal N,Recknor J,Nettleton D,et al.Developmental transcript profiling of cyst nematode feeding cells in soybean roots[J].Molecular Plant-Microbe Interactions,2007,20(5):510-525.

    [38]Yang Y J,Cheng L M,Liu Z H.Rapid effect of cadmium on lignin biosynthesis in soybean roots[J].Plant Science,2007,172(3):632-639.

    [39]Pan W H,Shou J X,Zhou X R,et al.Al-induced cell wall hydroxyproline-rich glycoprotein accumulation is involved in alleviating Al toxicity in rice[J].Acta Physiologiae Plantarum,2011,33(2):601-608.

    [40]Zhu X F,Wang Z W,Dong F,et al.Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls[J].Journal of Hazardous Materials,2013,263(2):398-403.

    [41]周麗珍,羅 璇,何寶燕,等.NaCl脅迫下莧菜中鎘的亞細(xì)胞分布及轉(zhuǎn)運(yùn)研究[J].生態(tài)環(huán)境學(xué)報(bào),2015,24(1):139-145.

    ZHOU Li-Zhen,LUO Xuan,HE Bao-yan,et al.Subcellular distribution and translocation of Cd in amaranth under salinity stress[J].Ecology and Environmental Sciences,2015,24(1):139-145.

    [42]高 超,聶洪光,聶 帥.磷對(duì)鎘脅迫下水稻亞細(xì)胞分布的影響[J].農(nóng)業(yè)科技與裝備,2014(8):5-6.

    GAO Chao,NIE Hong-guang,NIE Shuai.Effects of different phosphorus on subcellular distribution under Cd stress[J].Agricultural Science&Technology and Equipment,2014(8):5-6.

    [43]Qiu Q,Wang Y T,Yang Z Y,et al.Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage(Brassica parachinensis L.)cultivars differing in cadmium accumulation[J].Food and Chemical Toxicology,2011,49(9):2260-2267.

    [44]Vodyanitskii Y N,Plekhanova I O.Biogeochemistry of heavy metals in contaminated excessively moistened soils:Analytical review[J].Eurasian Soil Science,2014,47(3):153-161.

    [45]甲卡拉鐵,喻 華,馮文強(qiáng),等.淹水條件下不同氮磷鉀肥對(duì)土壤pH和鎘有效性的影響研究[J].環(huán)境科學(xué),2009,30(11):3414-3421.

    JIA Ka-la-tie,YU Hua,FENG Wen-qiang,et al.Effect of different N,P and K fertilizers on soil pH and available Cd under waterlogged conditions[J].Environmental Science,2009,30(11):3414-3421.

    Effect of flooding on cadmium content in different cell wall components of the root and stem of Salix variegata Franch

    ZHOU Cui1,CHEN Jin-ping1,2,WANG Ting1,CHEN Hong-chun1,LI Rui1,MA Wen-chao1,WEI Hong1*
    (1.Key Laboratory of Eco-environments in Three Gorges Reservoir Region(Ministry of Education),Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region,School of Life Sciences,Southwest University,Chongqing 400715,China;2.Agricultural Resources and Environment Research Institute,Guangxi Academy of Agricultural Sciences,Nanning 530007,China)

    The altered water regime in the Three Gorges Reservoir in the Yangtze River,China,has induced the formation of a hydro-fluctuation zone that has caused many serious environmental problems.Among them,the two main problems are high cadmium concentration in the sediment and anti-seasonal,long-term flooding.Revegetation has become one of the most important means of ecological restoration in the hydro-fluctuation zone of the Three Gorges Reservoir.Previous research has shown that Salix variegata,a native species in the Three Gorges Reservoir,can tolerate both flooding and cadmium stress,and thus is a promising candidate species for revegetation in the hydrofluctuation zone of the Three Gorges Reservoir.However,the ability of S.variegata to tolerate and accumulate cadmium under flooding is still unclear.In order to investigate the effect of flooding on cadmium content in different cell wall components of the root and stem of S.var-iegata,cutting seedlings under two water regimes as control group(CK)and flooding group(FL)and four cadmium concentrations(0,0.5,2,and 10 mg·kg-1,achieved by adding CdCl2·2.5H2O to the soil)were studied via pot experiments.Sampling was carried out after 60 d of treatment,and the cadmium accumulation characteristics of different cell wall components of the root and stem of S.variegata under different cultivation were analyzed.The results showed as the following:The survival rate of S.variegata for all treatments was high,which indicated high tolerance of this species to flooding and cadmium stresses;In all cadmium treatments,the pectin and hemicellulose of cell wall in the root and stem of S.variegata had good binding capacities to cadmium,and pectin had the highest binding capacity for cadmium;Water regime,cadmium concentration,and the interactions between these two factors had different impacts on the cadmium contents in different cell wall components of the root and stem of S.variegata.Flooding significantly reduced the cadmium content in stem cell wall components,but there was no significant effect by flooding on cadmium content in the root cell wall;The contents of pectin and hemicellulose cadmium in the root and stem cell wall of S.variegata decreased under flooding conditions,but pectin and hemicellulose were still the main cell wall components enriched with cadmium.These results indicated that there was no significant change in the distribution of cadmium in the components of the root and stem cell wall of S.variegata under flooding,as cadmium could still be fixed in the cell wall,to alleviate the harmful effects of cadmium stress on plants.Hence,S.variegata should be considered for phytoremediation of cadmium in the hydro-fluctuation zone of the Three Gorges Reservoir.

    Salix variegata;cadmium stress;flooding;cell wall;pectin;hemicellulose

    X503.23

    A

    1672-2043(2017)12-2421-08

    10.11654/jaes.2017-0655

    周 翠,陳錦平,王 婷,等.水淹對(duì)秋華柳根莖細(xì)胞壁組分鎘含量的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(12):2421-2428.

    ZHOU Cui,CHEN Jin-ping,WANG Ting,et al.Effect of flooding on cadmium content in different cell wall components of the root and stem of Salix variegata Franch[J].Journal of Agro-Environment Science,2017,36(12):2421-2428.

    2017-05-05 錄用日期:2017-07-07

    周 翠(1992—),女,安徽宿州人,碩士研究生,主要從事應(yīng)用生態(tài)學(xué)研究。E-mail:1320801522@qq.com

    *通信作者:魏 虹 E-mail:weihong@swu.edu.cn

    國(guó)家國(guó)際科技合作專項(xiàng)(2015DFA90900);中央財(cái)政林業(yè)科技推廣示范資金項(xiàng)目(20170183);中央財(cái)政林業(yè)科技推廣示范資金項(xiàng)目(渝林科研2016-8);三峽后續(xù)工作庫(kù)區(qū)生態(tài)與生物多樣性保護(hù)專項(xiàng)項(xiàng)目(5000002013BB5200002);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助(XDJK2017D104)

    Project supported:The International Sci-Tech Cooperation Project of Ministry of Science and Technology(2015DFA90900);The Forestry Extension Project of China Central Finance(20170183);The Forestry Extension Project of China Central Finance(Yulinkeyan 2016-8);Follow-up Work of Ecological Biodiversity Conservation Project in the Three Gorges Reservoir Area(5000002013BB5200002);Fundamental Research Funds for the Central Universities(XDJK2017D104)

    猜你喜歡
    水淹細(xì)胞壁果膠
    淺析消費(fèi)者在水淹車下的權(quán)益保護(hù)
    從五種天然色素提取廢渣中分離果膠的初步研究
    卵磷脂/果膠鋅凝膠球在3種緩沖液中的釋放行為
    中成藥(2018年6期)2018-07-11 03:01:12
    水淹呂布
    紅花醇提物特異性抑制釀酒酵母細(xì)胞壁合成研究
    茄科尖孢鐮刀菌3 個(gè)?;图?xì)胞壁降解酶的比較
    提取劑對(duì)大豆果膠類多糖的提取率及性質(zhì)影響
    石南21井區(qū)水淹解釋方法對(duì)比及應(yīng)用
    河南科技(2015年3期)2015-02-27 14:20:52
    北五味子果實(shí)中果膠的超聲提取工藝研究
    酶法破碎乳酸菌細(xì)胞壁提取菌體蛋白的研究
    安徽省| 广西| 南靖县| 南丹县| 隆子县| 台前县| 巴林左旗| 卢湾区| 绿春县| 南汇区| 建始县| 延长县| 竹北市| 南澳县| 依安县| 察隅县| 棋牌| 台山市| 田阳县| 腾冲县| 尉氏县| 定陶县| 当阳市| 普陀区| 房山区| 永清县| 敦煌市| 寻乌县| 夏津县| 苍山县| 波密县| 永兴县| 介休市| 天等县| 红桥区| 古蔺县| 肥东县| 克拉玛依市| 磐安县| 永新县| 怀来县|