• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability Analysis for Memristive Recurrent Neural Network and Its Application to Associative Memory

    2018-01-08 03:00:12GangBaoYuanyuanChenSiyuWenZhicenLai
    自動(dòng)化學(xué)報(bào) 2017年12期
    關(guān)鍵詞:徒手同質(zhì)化定期

    Gang Bao Yuanyuan Chen Siyu Wen Zhicen Lai

    Stability Analysis for Memristive Recurrent Neural Network and Its Application to Associative Memory

    Gang Bao1Yuanyuan Chen1Siyu Wen1Zhicen Lai1

    Memristor is a nonlinear resistor with variable resistance.This paper discusses dynamic properties of memristor and recurrent neural network(RNN)with memristors as connection weights.Firstly,it establishes that there exists a threshold voltage for memristor.Secondly,it presents a model for memristive recurrent neural network(MRNN)which has variable and bounded coeきcients,and analyzes stability of memristive neural network by some maths tools.Thirdly,it gives a synthesis algorithm for associative memory based on memristive recurrent neural network.At last,three examples verify our results.

    Associative memory,memristor,memristive recurrent neural network(MRNN),stability

    1 Introduction

    Arti fi cial neural networks are developed for solving some complex problems in control,optimal computation,pattern recognition,information processing,and associative memory[1]?[13].American scientist Hop fi eld makes a great contribution for the development of neural network.That is the implementation of neural network by simple circuit devices,resistors,capacitors and ampli fi ers[14].Hop fi eld neural network(HNN)can mimic the human’s associative memory function and accomplish optimization.The key point is the weights of HNN which are implemented by resistors for simulating neuron synapse.While the bottleneck is that linear resistors cannot re fl ect variability of synapse for resistance of linear resistor being invariable.

    Memristor[15],[16],the arising fourth circuit device,makes it better to simulate the variability of neuron synapse.Pershin and Ventra[17]gives their experimental research results that neurons with memristors as synapses can simulate the associative memory function of a dog.Hence,memristor is the advancing spot in the present physics research.Several models of memristor have been set up and its properties have been analyzed in[18]?[21].Based on these analyses,memristor can be used to mimic synapse in neural computing architecture[22],construct memristor bridge synapse[23]and brain combined with the conventional complementary metal oxide semiconductor(CMOS)technology[24],set memristive neural network[25],[26]and implement memristor array for image processing[27]etc.

    Some researchers derive mathematical model of memristive recurrent neural network(MRNN)by replacing resistors with memristors in Hop fi eld and cellular neural network circuit[28]?[30].MRNN is modeled by statedependent switched systems by simplifying the memristance as two-valued device with diあerent terminal voltage.With diあerential inclusion theory,Lyapunov-Krasovskii function and some other math tools,some suきcient conditions are derived for dynamics of MRNN,such as,convergence and attractivity[31]?[33],periodicity and dissipativity[34],dissipativity for stochastic and discrete case,global exponential almost periodicity,and complete stability[35],multi-stability[36],etc.Considering the trouble from the switching property of memristor,researchers derive some interesting results about exponential stabilization,reliable stabilization,and fi nite-time stabilization of MRNN by designing diあerent state feedback controllers[37],[38]and sampled-data controller[39]. All of these results make a solid foundation for MRNN’s application to associative memory.

    Associative memory is a distinguished function of human brain which can be simulated by recurrent neural network(RNN).The design problem is that some given prototype patterns are to be stored by RNN,and then the stored patterns can be recalled by some prompt information.In the existing literatures[40]?[46],there are two design methods for associative memory.One is that prototype patterns are designed as multiple locally asymptotically stable equilibria and initial values are the recalling probes.Another is that a prototype pattern is designed as the unique globally asymptotically stable equilibrium point with one external input as the recalling probe.Diあerent external inputs mean different equilibrium points,i.e.,diあerent prototype patterns.

    To the best of our knowledge,the bottleneck of associative memory based on RNN is that capacity of RNN is limited and diあerent storage task needs diあerent RNN because resistance can not be changed.Furthermore,there are few works about associative memory based on MRNN.Hence,the contribution of this paper is obtaining a threshold voltage for memristor by simulation,presenting a novel type of MRNN with in fi nite number of sub neural networks,and design a program for associative memory based on MRNN.Compared with MRNN models in the existing literatures,the diあerence is that every coeきcient of MRNN has in finite number of values,not two values.Furthermore,every coeきcient can be changed by the external input.So the associative memory based on MRNN seems to solve the problem of storage capacity.

    The rest of this paper is organized as the following sections.Memristor property analysis and some preliminaries are stated in Section 2.Then,some suきcient conditions are given to ensure global stability and multi-stability of MRNN by some maths tools in Section 3,respectively.Next,design procedure for associative memory based on MRNN is given in Section 4.To elucidate our results,three simulation examples are presented in Section 5.At last,conclusion is drawn in Section 6.

    2 Memristor Recurrent Neural Network Model

    2.1 Memristor and Its Property

    The de fi nition of memristor[15]is a functional relation between chargeqand magnetic fl uxφ,i.e.,g(φ,q)=0.Memristance of memristor is de fi ned as the following formula with the assumption of linear dopant drift as follows wherew(t),D,i(t),v(t),μVare the length of dopant region,the length of memristor,the current,voltage across the device and the average ion mobility,respectively.

    Thev-isimulation curve of memristor(1)with MATLAB is shown in Fig.1.

    Fig.1.The curve of(v(t),i(t))under voltage sources with diあerent amplitudes.The applied voltage source is v(t)=v0sin(ωt),v0=1.5,1,0.15,0.01V,ω=2π rad/s and the other parameters ares(t0)=0.1,t0=0 s,Ron=100?,r=160,D=10?6cm,μV=10?10cm2/sV.From four subplots,there is a threshold voltage existing for one memristor.

    From Fig.1,it shows that a memristor will not change its resistance unless the terminal voltage exceeds a certain threshold valueVTas described in[20],[27].It can be expressed by the following formula

    whereRwis a constant betweenRonandRoあ;R(w,u)can be calculated by the following formula[10]

    where ΦD=(rD)2/[2μv(r?1)];VA,Tw,andR(w0),R(w)are voltage amplitude,time width,resistances of the device at the statesw0,w,respectively.

    Remark 1:Simulation shows that there exists a threshold voltage for the memristor,i.e.,memristance can be changed by terminal voltage with amplitude value being greater than threshold value.The result is consistent with the theoretical analysis in[20].This property of memristor can re fl ect variability of neuron synapses.Furthermore,it makes memristor being suitable for constructing neural network with coeきcients which can be changed according to our needs.

    2.2 Model

    In this section,we will fi rstly present the mathematical model for MRNN,and then give some concepts and lemmas in order to obtain our main results.MRNN is modelled by the following diあerential equation systems:

    where i=1,2,...,n,x(t)=(x1(t),...,xn(t))T∈Rnis the state vector;A(ui)=(aij(ui)),B(ui)=(bij(ui))and C=diag{c1,c2,...,cn}are connection weight matrices;aij,bijare related to external inputs u=(u1,...,un)T∈Rn;ci>0,i=1,2,...,n,?t≥t0,?i,j∈{1,2,...,n},0< τ(t)≤ τ is the time-varying delay;f is a bounded activation function satisfying the following condition

    wherer1,r2,μ∈R andμ>0.

    According to circuit theory and the property of memristor,it results that there exist some constantssuch that

    Remark 2:Compared with these models in[31]?[38],the diあerence of MRNN(5)is that coeきcientsaij(ui)andbij(ui),i,j=1,2,...,nare continuous variable functions with respect to external inputsui.Memristor has multi resistances as demonstrated by real device experiments and circuit simulation in[47].Hence,MRNN can be seen as a neural network with an in fi nite number of modes becauseaij(ui),bij(ui)belong to intervalsandrespectively.While the existing results are 2n2+1sub modes in[31],[32].So MRNN(5)seems to model human neurons network more better.

    2.3 Preliminaries

    Letu=(u1,u2,...,un)be the external input and denotex(t;t0,φ,u)as the state of MRNN(5)with someuand initial value,

    whereφ(?)∈C([t0?τ,t0],D),D∈Rn.Then,x(t;t0,φ,u)is continuous and satis fi es MRNN(5)andx(s;t0,φ,u)=φ(s),fors∈[t0?τ,t0].For simplicity,letx(t)be the state of MRNN(5).

    De fi nition 1[48]:The equilibrium pointx?of MRNN(5)is said to be locally exponentially stable in regionD,if there exist constantsα>0,β>0 such that?t≥t0

    wherex(t;t0,φ,u)is the solution of MRNN(5)with any external inputuand initial conditionφ(?)∈C([t0?τ,t0],D).Dis said to be a locally exponentially attractive set of the equilibrium pointx?.WhenD=Rn,x?is said to be globally exponentially stable.

    Lemma 1[49]:LetDbe a bounded and closed set in Rn,andHbe a mapping on complete metric space(D,||·||),where?x,y∈D,||x?y||=max1≤i≤n{|xi?yi|}is measurement inD.IfH(D)?Dand there exists a constantα<1 such that?x,y∈D,||H(x)?H(y)||≤α||x?y||,then there exists a uniquex?∈Dsuch thatH(x?)=x?.

    3 Stability Analysis for MRNN

    Stability of MRNN is the foundation for its application to associative memory.So we discuss global stability and multi-stability of MRNN in the following subsections.Firstly,we analyze the diあerences between MRNN and traditional RNN.Traditional RNN is described by,fori,j=1,2,...,n,

    whereci,aij,bij,uihave the same means as those in(5).

    Discussion:According to above analysis,coeきcientsaij(ui),bij(ui)of MRNN(5)can take any values inWhile the corresponding coeきcients of RNN cannot be changed.So MRNN(5)is a family of neural networks with in fi nitely many modes or sub neural networks.Hence MRNN may have in fi nite number of globally or locally stable equilibrium points.Coeきciens of the interval RNN[50]may be constants in diあerent intervals because coeきcients increments△aij,△bijare caused by noises and implementation errors.This is diあerent from MRNN but the systematic analysis method[50]can be as a reference for stability analysis of MRNN.

    3.1 Global Stability Analysis

    This subsection discusses global stability of MRNN(5).By using comparative principle and the existing stability criteria,it derives some suきcient conditions for global stability of(5).The following activation function will be adopted in the rest of the paper

    Obviously,|f(r1)?f(r2)|≤|r1?r2|,r1,r2∈R.In order to derive our result,the following lemma is needed.

    Lemma 2:If the following three diあerential systems

    have one common equilibrium pointy?=0,g1(0)=g2(0)=g3(0)=0 and satisfyingg1(y)≤g2(y)≤g3(y),then system(11)is globally exponentially stable if systems(10)and(12)are globally exponentially stable.

    Proof:Take the same initial valuey(t0)=0 for three systems,lety?1,y?2denote equilibrium points of(10)and(12),respectively.Then

    Hence,|y1(t)|≤|y2(t)|≤|y3(t)|or|y3(t)|≤|y2(t)|≤|y3(t)|.And(10)and(11)are globally exponentially stable,there existα1,α3,β1,β3,initial valuesφ1,φ3satisfying

    So there must existα2,β2and an initial valueφ2,and the following inequality

    is valid,i.e.,(11)is globally exponentially stable. ■

    Because the external inputsui,i=1,2,...,nare just used to change the memristance,we assume that all of sub neural networks have the same external inputsui,i=1,2,...,nin the following discussion.

    Lemma 3[48]:If forci,aijandbij,?i,j∈{1,2,...,n},C?|A|?|B|is a nonsingularMmatrix with|A|=(|μjaij|)n×nand|B|=(|ωjbij|)n×n,μj,ωjare positive constants forj=1,2,...,n,then the corresponding equilibrium point of(14)is globally exponentially stable.

    By(5)and(7),we haveNN1

    andNN2

    fori=1,2,...,n.

    Theorem 1:If coeきcients of neural networks(14)and(15)satisfy thatC?|A|?|B|is a nonsingularMmatrix with|A|=(|aij|)n×nand|B|=(|bij|)n×n,then(5)is globally exponentially stable forand bounded external inputsui,i,j=1,2,...,n.

    Proof:Because the activationf(r)satisfy the Lipschitz condition andui,i=1,2,...,nare bounded,there must exist one equilibrium for(5)at least by the Schauder fi xed point theorem forand bounded external inputsui,i,j=1,2,...,n.Denoteequilibrium points of(5),(14),(15),respectively.

    Let

    Let

    Since

    then

    or

    So

    or

    According to the condition of Theorem 1,(17),(19),(20)and Lemma 3,there must exist positive constantsαandβsatisfying|Vi(t)|≤αexp{?βt}.Hence the conclusion of this theorem is valid. ■

    Remark 3:Whenfori,j=1,2,...,n,the result in[48]can be obtained from Theorem 1.So we generalize the result of[47]to discuss global stability of MRNN(5)with in fi nite number of sub neural networks.Compared with the existing literatures,its main merit is that MRNN(5)has many globally exponentially stable equilibrium points.The systematic method in[43]can be used to derive suきcient conditions for global stability of(5)by virtue of many global stability criteria in the existing literatures.

    醫(yī)院進(jìn)一步科普規(guī)范化,對(duì)隊(duì)員進(jìn)行徒手心肺復(fù)蘇術(shù),創(chuàng)傷、突發(fā)事件、突發(fā)疾病時(shí)的緊急救護(hù)技術(shù)等統(tǒng)一培訓(xùn),定期考核,確保培訓(xùn)水平同質(zhì)化。

    3.2 Multi-stability of MRNN

    Multi-stability of RNN means that RNN has coexisting multi attractors.Memory patterns can be stored by these attractors.Memory capacity of RNN is up to the number of attractors.Another factor aあecting memory is the activation functionf(r).Zenget al.has derived some suffi cient conditions for multi-stability ofndimensional RNN with the activation functionf(r)=(|r+1|?|r?1|)/2 which has 3nequilibrium points and 2nequilibrium points of them are locally exponentially stable.And then Zenget al.[49]generalize their work tondimensional RNN with the activation function(9).They derive that RNN with the activnation function(9)has(4k?1)nequilibrium points and(2k)equilibrium points of them are locally exponentiallystable in where

    But there are limited number of equilibrium points and output patterns for RNN with these two kinds of activation functions.Hence,we discuss multi-stability of MRNN with the activation function(9).

    Lemma 4[49]:For the given integerk≥1,if?i,j∈{1,2,...,n},the following inequalities are valid for coeき-cientsci,aij,bijand external inputsuiof RNN with the activation function(9)

    then RNN with the activation function(9)has(4k?1)nequilibrium points and(2k)nof them are locally exponentially stable.

    Theorem 2:If the following inequalities are valid

    then forci,aijandbij?i,j∈{1,2,...,n},the corresponding MRNN(5)has(4k?1)nequilibria located in ?k,(2k)nof them are locally exponentially stable.

    Proof:In order to prove multi-stability of(5),it is suffi cient to verify whether conditions(22)and(23)are valid or not.Forwe have

    And then

    Hence,(22)and(23)are valid forci,aij(ui),bij(ui),i,j=1,2,...,n.By Lemma 4,the conclusion of Theorem 2 is valid. ■

    Remark 4:In fact,(24)and(25)are minimum value and maximum value of(22)and(23),respectively.Hence,we generalize the systematic method[50],[51]to analyzing multi-stability of MRNN.Compared with results in[49],the conditions are more conservative.But MRNN has in finite number of sub neural networks,i.e,globally exponentially stable equilibrium points of MRNN(5)are in fi nite times(2k)n.By virtue of the existing results for multistability of RNN,we can obtain many suきcient conditions for multi-stability of MRNN(5).

    4 Associative Memory Synthesis

    Based on the above analysis,we discuss associative memory design method based on MRNN(5).Memory patterns are described by bipolar value{?1,1}.Associative memory is implemented by RNN circuit.So the activation function is taken asf(r)=(|r+1|?|r?1|)/2,r∈R and weight values are simulated by linear resistors.So associative memory can just remember bitmap,and storage capacity is limited.So our associative memory synthesis is based on MRNN with(9).It is able to memorize gray map and has in fi nite storage capacity.The key point of associative memory synthesis is the computation for weights value.So we fi rstly describe the synthesis problem,and then present our design method based on Zeng and Wang’s work[43].The activation functionF(r)=0,r<0,F(r)=f(r),r>0 wheref(r)is de fi ned as(9).The purpose is to make the designed neural network be able to memorize gray map.

    Synthesis Problem:There arepmemory patterns being denoted by vectorsα1,α2,...,αp,αi∈{0,1,3,5,...,4k?3}n,i=1,2,...,p.Compute coeきcientsci,aij,bijanduiin order thatα1,α2,...,αp,αiare stable memory vectors of MRNN(9).

    Design procedure:

    Step1:Use vectorsα1,α2,...,αp,αi∈{0,1,3,5,...,4k?3}n(n,the dimension of MRNN)presenting the desired memory pattern.Ifp≤(2k)n,then go to Step 2 computing coeきcientsci,aij,bijandui.Ifp=q(2k)n+γ,then divideα1,α2,...,αpintoq+1 groups.Go to Step 2 and compute coeきcients for each group.

    Step 2:For the desired memory vectors,do the following:

    2)Takeσi>1,i=1,2,...,nand chooseaij,bijsatisfyingaii+bii?σi=tiiandaij+bij=tij;wherel,S(l)are de fi ned in[41].

    Step 3:Ifp=(2k)n,compute memristanceMijaccording toaij,bij;ifp=q(2k)n+γ,compute memristanceMijaccording to|aij|max,|bij|maxwhere

    Remark 5:Compared with the work in[41],we do not require thatp,the number of desired memory vectors,is less than or equal to(2k)n.Hence,we generalize Zeng and Wang’s work[43].And we choose the activation function(9)in order to make the designed associative memory MRNN be able to memorize gray map not bitmap.This is one diあerence from the existing work.Another merit is that the designed MRNN has in fi nite number of equilibrium points,i.e.,MRNN can be used to implement large storage capacity associative memory.For example,RNN withf(r)=(|r+1|?|r?1|)only has 2nmemory patterns in{?1,1}nand RNN with(9)only has(4)nmemory patterns in{?5,?1,1,5}nwhenk=2.MRNN breaks this bottleneck for it has variable coeきcients and in fi nite memory patterns.

    5 Illustrative Examples

    Example 1:Consider the following MRNN with activation functionf(r),r∈R(9)withk=1,n=2.

    where

    Fig.2.Transient behaviors of x1(t)of MRNN(26).

    Fig.3.Transient behaviors of x2(t)of MRNN(26).

    According to Theorem 1,every sub neural network of MRNN(26)is globally exponentially stable.Leta11=a22=?3,a12=a21=1/2,b11=b22=1,b12=1/4,b21=1/2,and simulate with 50 initial values.The dynamic characteristics are shown in Figs.2?4.

    Fig.4.Phase plot of x1(t)and x2(t)of MRNN(26).

    Example 2:Consider a MRNN with activation functionf(r),r∈R(9)withk=2,n=2.

    where

    According to Theorem 2,every sub neural network of MRNN(26)has 72isolated equilibrium points and 42of them are locally exponentially stable.Take maximum values foraij,bij,i,j=1,2 and simulate with 50 initial values.The dynamics characteristics are shown in Fig.5.

    Example3:The same example has been introduced by Lu and Liu[52],Zeng and Wang[43]for associative memory synthesis.The desired memory patterns are three letters“I,L,U” and number“7” as plotted by gray Fig.6.

    These four desired patterns can be denoted by memory vectors

    Fig.5.Transient behaviors of x1(t)and x2(t)of MRNN(27).

    Fig.6. Three letters“I,L,U” and number“7” being presented by gray map.

    The objective is to design one 12 dimension MRNN withα1,α2,α3,α4being stable memory vectors. Obviously,the number of stable memory vectors is less than(2k)n(k=2,n=12).Forl=12,then we add eights vectorsα5,...,α8such that is an invertible matrix.Chooseui=1.825(external inputs),i=1,2,...,12,λli=1.5(i=1,2,...,12;l=1,2,3,4),l=5,6,...,12).The function ofis to make these memory vectors be in the stable region ?k.According to associative memory synthesis program,we can obtain

    whereW=(tij),tij=aij+bij.It is easy to verify thatα1,α2,α3,α4are stable memory vectors according to Theorem 2.Takeci=1,i=1,2,...,n,aij=bij,ui=0.425,then we have the MRNN with these desired patterns as stable memory vectors.

    6 Concluding Remarks

    In this paper,we have introduced MRNN which is a family of recurrent neural networks.Some suきcient conditions are derived to assure its mono-stability and multi-stability.In the existing literature on neural network,the largest number of equilibrium points is(4k?1)nand(2k)nof them are locally exponentially stable.In fact,associative memory output patterns are up to the activation function.This point aあects the storage capacity of associative memory.Our MRNN with coeきcients in intervals cannot be limited by output value of the activation.Hence MRNN can increase the storage capacity of associative memory.This is the main merit which is diあerent from traditional arti fi cial neural network.So self-adaptive and self-organization recurrent neural network can be realized with memristor[26]in the future.

    1 T.Mareda,L.Gaudard,and F.Romerio,“A parametric genetic algorithm approach to assess complementary options of large scale windsolar coupling,”IEEE/CAA J.Autom.Sinica,vol.4,no.2,pp.260?272,Apr.2017.

    2 Y.Zhao,Y.Li,F.Y.Zhou,Z.K.Zhou,and Y.Q.Chen,“An iterative learning approach to identify fractional order KiBaM model,”IEEE/CAA J.Autom.Sinica,vol.4,no.2,pp.322?331,Apr.2017.

    3 L.Li,Y.L.Lin,N.N.Zheng,and F.Y.Wang,“Parallel learning:a perspective and a framework,”IEEE/CAA J.Autom.Sinica,vol.4,no.3,pp.389?395,Jul.2017.

    4 M.Yue,L.J.Wang,and T.Ma,“Neural network based terminal sliding mode control for WMRs aあected by an augmented ground friction with slippage eあect,”IEEE/CAA J.Autom.Sinica,vol.4,no.3,pp.498?506,Jul.2017.

    5 W.Y.Zhang,H.G.Zhang,J.H.Liu,K.Li,D.S.Yang,and H.Tian,“Weather prediction with multiclass support vector machines in the fault detection of photovoltaic system,”IEEE/CAA J.Autom.Sinica,vol.4,no.3,pp.520?525,Jul.2017.

    6 D.Shen and Y.Xu,“Iterativelearning controlfor discrete-time stochastic systems with quantized information,”IEEE/CAA J.Autom.Sinica,vol.3,no.1,pp.59?67,Jan.2016.

    7 Z.Y.Guo,S.F.Yang,and J.Wang,“Global synchronization of stochastically disturbed memristive neurodynamics via discontinuous control laws,”IEEE/CAA J.Autom.Sinica,vol.3,no.2,pp.121?131,Apr.2016.

    8 X.W.Feng,X.Y.Kong,and H.G.Ma,“Coupled crosscorrelation neural network algorithm for principal singular triplet extraction of a cross-covariance matrix,”IEEE/CAA J.Autom.Sinica,vol.3,no.2,pp.147?156,Apr.2016.

    9 S.M.Chen,X.L.Chen,Z.K.Pei,X.X.Zhang,and H.J.Fang,“Distributed fi ltering algorithm based on tunable weights under untrustworthy dynamics,”IEEE/CAA J.Autom.Sinica,vol.3,no.2,pp.225?232,Apr.2016.

    10 L.Li,Y.S.Lv,and F.Y.Wang,“Traきc signal timing via deep reinforcement learning,”IEEE/CAA J.Autom.Sinica,vol.3,no.3,pp.247?254,Jul.2016.

    11 F.Y.Wang,X.Wang,L.X.Li,and L.Li,“Steps toward parallel intelligence,”IEEE/CAA J.Autom.Sinica,vol.3,no.4,pp.345?348,Oct.2016.

    12 T.Giitsidis and G.Ch.Sirakoulis,“Modeling passengers boarding in aircraft using cellular automata,”IEEE/CAA J.Autom.Sinica,vol.3,no.4,pp.365?384,Oct.2016.

    13 B.B.Alagoz,“A note on robust stability analysis of fractional order interval systems by minimum argument vertex and edge polynomials,”IEEE/CAA J.Autom.Sinica,vol.3,no.4,pp.411?421,Oct.2016.

    14 J.J.Hop fi eld,“Neural networks and physical systems with emergent collective computational abilities,”Proc.Natl.Acad.Sci.USA,vol.79,no.8,pp.2554?2558,Apr.1982.

    15 L.Chua, “Memristor-the missing circuit element,”IEEE Trans.Circuit Theory,vol.18,no.5,pp.507?519,Sep.1971.

    16 D.B.Strukov,G.S.Snider,D.R.Stewart,and R.S.Williams,“The missing memristor found,”Nature,vol.453,no.7191,pp.80?83,May 2008.

    17 Y.V.Pershin and M.Di Ventra,“Experimental demonstration of associative memory with memristive neural networks,”Neural Netw.,vol.23,no.7,pp.881?886,Sep.2010.

    18 F.Corinto,A.Ascoli,and M.Gilli,“Nonlinear dynamics of memristor oscillators,”IEEE Trans.Circuits Syst.I:Reg.Pap.,vol.58,no.6,pp.1323?1336,Jun.2011.

    19 O.Kavehei,A.Iqbal,Y.S.Kim,K.Eshraghiam,S.F.Al-Sarawi,and D.Abbott,“The fourth element:characteristics,modelling and electromagnetic theory of the memristor,”Proc.Roy.Soc.A-Math.Phy.Eng.Sci.,vol.466,no.2120,pp.2175?2202,Mar.2010.

    20 Y.Ho,G.M.Huang,and P.Li,“Dynamical properties and design analysis for nonvolatile memristor memories,”IEEE Trans.Circuits Syst.I:Reg.Pap.,vol.58,no.4,pp.724?736,Apr.2011.

    21 L.Chua, “Resistance switching memories are memristors,”Appl.Phys.A,vol.102,no.4,pp.765?783,Mar.2011.

    22 G.Snider,“Memristors as synapses in a neural computing architecture,”inMemristor and Memristor Syst.Symp.,Berkeley,CA,Nov.2008.

    23 H.Kim,M.P.Sah,C.J.Yang,T.Roska,and L.O.Chua,“Neural synaptic weighting with a pulse-based memristor circuit,”IEEE Trans.Circuits Syst.I:Reg.Pap.,vol.59,no.1,pp.148?158,Jan.2012.

    24 M.P.Sah,H.Kim,and L.O.Chua,“Brains are made of memristors,”IEEE Circuits Syst.Mag.,vol.14,no.1,pp.12?36,Feb.2014.

    25 F.Z.Wang,N.Helian,S.N.Wu,X.Yang,Y.K.Guo,G.Lim,and M.M.Rashid,“Delayed switching applied to memristor neural networks,”J.Appl.Phys.,vol.111,no.7,Article ID,07E317,Apr.2012.

    26 K.D.Cantley,A.Subramaniam,H.J.Stiegler,R.A.Chapman,and E.M.Vogel,“Neural learning circuits utilizing nano-crystalline silicon transistors and memristors,”IEEE Trans.Neural Netw.Learn.Syst.,vol.23,no.4,pp.565?573,Apr.2012.

    27 X.F.Hu,S.K.Duan,L.D.Wang,and X.F.Liao,“Memristive crossbar array with applications in image processing,”Sci.China Inform.Sci.,vol.55,no.2,pp.461?472,2012.

    28 M.Itoh and L.Chua,“Memristor cellular automata and memristor discrete-time cellular neural networks,”Int.J.Bifurcation Chaos,vol.19,no.11,pp.3605?3656,Mar.2009.

    29 S.P.Wen,Z.G.Zeng,and T.W.Huang,“Associative learning of integrate-and- fi re neurons with memristor-based synapses,”Neural Proc.Lett.,vol.38,no.1,pp.69?80,Aug.2013.

    30 A.L.Wu,S.P.Wen,and Z.G.Zeng,“Synchronization control of a class of memristor-based recurrent neural networks,”Inf.Sci.,vol.183,no.1,pp.106?116,Jan.2012.

    31 S.T.Qin,J.Wang,and X.P.Xue,“Convergence and attractivity of memristor-based cellular neural networks with time delays,”Neural Netw.,vol.63,pp.223?233,Mar.2015.

    32 Z.Y.Guo,J.Wang,and Z.Yan,“Attractivity analysis of memristor-based cellular neural networks with time-varying delays,”IEEE Trans.Neural Netw.Learn.Syst.,vol.25,no.4,pp.704?717,Apr.2014.

    33 S.P.Wen,T.W.Huang,Z.G.Zeng,Y.R.Chen,and P.Li,“Circuit design and exponential stabilization of memristive neural networks,”Neural Netw.,vol.63,pp.48?56,Mar.2015.

    34 G.D.Zhang,Y.Shen,Q.Yin,and J.W.Sun,“Global exponential periodicity and stability of a class of memristorbased recurrent neural networks with multiple delays,”Inf.Sci.,vol.232,pp.386?396,May 2013.

    35 Z.Y.Guo,J.Wang,and Z.Yan,“Global exponential dissipativity and stabilization of memristor-based recurrent neural networks with time-varying delays,”Neural Netw.,vol.48,pp.158?172,Dec.2013.

    36 X.B.Nie,W.X.Zheng,and J.D.Cao,“Coexistence and localμ-stability of multiple equilibrium points for memristive neural networks with nonmonotonic piecewise linear activation functions and unbounded time-varying delays,”Neural Netw.,vol.84,pp.172?180,Dec.2016.

    37 S.B.Ding,Z.S.Wang,and H.G.Zhang,“Dissipativity analysis for stochastic memristive neural networks with time-varying delays:a discrete-time case,”IEEE Trans.Neural Netw.Learn.Syst.,pp.(99): 1?13,2016,doi:10.1109/TNNLS.2016.2631624.

    38 A.L.Wu,Z.G.Zeng,X.S.Zhu,and J.E.Zhang,“Exponential synchronization of memristor-based recurrent neural networks with time delays,”Neurocomputing,vol.74,no.17,pp.3043?3050,2011.

    39 S.B.Ding,Z.S.Wang,N.N.Rong,and H.G.Zhang,“Exponential stabilization of memristive neural networks via saturating sampled-data control,”IEEE Trans.Cybern.,vol.47,no,10,pp.3027?3039,Jun.2017.

    40 A.N.Michel and D.L.Gray,“Analysis and synthesis of neural networks with lower block triangular interconnecting structure,”IEEE Trans.Circuits Syst.,vol.37,no.10,pp.1267?1283,Oct.1990.

    41 G.Yen and A.N.Michel,“A learning and forgetting algorithm in associative memories:the eigenstructure method,”IEEE Trans.Circuits Syst.II:Anal.Digit.Signal Proc.,vol.39,no.4,pp.212?225,Apr.1992.

    42 G.Seiler,A.J.Schuler,and J.A.Nossek,“Design of robust cellular neural networks,”IEEE Trans.Circuits Syst.I:Fundam.Theory Appl.,vol.40,no.5,pp.358?364,May 1993.

    43 Z.G.Zeng and J.Wang,“Analysis and design of associative memories based on recurrent neural networks with linear saturation activation functions and time-varying delays,”Neural Comput.,vol.19,no.8,pp.2149?2182,Aug.2007.

    44 M.Brucoli,L.Carnimeo,and G.Grassi,“Discrete-time cellular neural networks for associative memories with learning and forgetting capabilities,”IEEE Trans.Circuits Syst.I:Fundam.Theory Appl.,vol.42,no.7,pp.396?399,Jul.1995.

    45 A.C.B.Delbem,L.G.Correa,and L.Zhao,“Design of associative memories using cellular neural networks,”Neurocomputing,vol.72,no.10?12,pp.2180?2188,Jan.2009.

    46 G.Grassi,“On discrete-time cellular neural networks for associative memories,”IEEE Trans.Circuits Syst.I:Fundam.Theory Appl.,vol.48,no.1,pp.107?111,Jan.2001.

    47 A.Ascoli,R.Tetzlaあ,L.O.Chua,J.P.Strachan,and R.S.Williams,“History erase eあect in a non-volatile memristor,”IEEE Trans.Circuits Syst.I:Reg.Pap.,vol.63,no.3,pp.389?400,Mar.2016.

    48 Z.Y.Guo,J.Wang,and Z.Yan,“A systematic method for analyzing robust stability of interval neural networks with time-delays based on stability criteria,”Neural Netw.,vol.54,pp.112?122,Jun.2014.

    49 Z.G.Zeng,J.Wang,and X.X.Liao,“Global exponential stability of a general class of recurrent neural networks with time-varying delays,”IEEE Trans.Circuits Syst.I:Fundam.Theory Appl.,vol.50,no.10,pp.1353?1358,Oct.2003.

    50 Z.G.Zeng,T.W.Huang,and W.X.Zheng,“Multistability of recurrent neural networks with time-varying delays and the piecewise linear activation function,”IEEE Trans.Neural Netw.,vol.21,no.8,pp.1371?1377,Aug.2010.

    51 Z.G.Zeng,J.Wang,and X.X.Liao,“Stability analysis of delayed cellular neural networks described using cloning templates,”IEEE Trans.Circuits Syst.I:Reg.Pap.,vol.51,no.11,pp.2313?2324,Nov.2004.

    52 Z.J.Lu and D.R.Liu,“A new synthesis procedure for a class of cellular neural networks with space-invariant cloning template,”IEEE Trans.Circuits Syst.II:Anal.Digit.Signal Proc.,vol.45,no.12,pp.1601?1605,Dec.1998.

    Gang Bao,Yuanyuan Chen,Siyu Wen,Zhicen Lai.Stability analysis for memristive recurrent neural network and its application to associative memory.Acta Automatica Sinica,2017,43(12):2244?2252

    DOI10.16383/j.aas.2017.e170103

    May 24,2017;accepted October 12,2017

    This work was supported by the National Natural Science Foundation of China(61125303),the Program for Science and Technology in Wuhan,China(2014010101010004),the Program for Changjiang Scholars and Innovative Research Team in University of China(IRT1245),China Three Gorges University Science Foundation(KJ2013B020),Hubei Key Laboratory of Cascaded Hydropower Stations Operation and Control Program(2013KJX12),and Hubei Science and Technology Support Program(2015BAA106)

    Recommended by Associate Editor Zhanshan Wang

    1.Hubei Key Laboratory of Cascaded Hydropower Stations Operation and Control,School of Electrical Engineering and New Energies,China Three Gorges University,Yichang 443002,China

    Gang Bao received the B.S.degree in mathematics from Hubei Normal University,Huangshi,China,the M.S.degree in applied mathematics from Beijing University of Technology,Beijing,China,in 2000 and 2004,the Ph.D.degree from the Department of Control Science and Engineering,Huazhong University of Science and Technology,respectively.His research interests include memristor,stability analysis of nonlinear systems,and association memory.Corresponding author of this paper.E-mail:hustgangbao@ctgu.edu.cn

    Yuanyuan Chen received the B.S.degree from the College of Science and Technology,China Three Gorges University in 2016.Now she is a postgraduate student and pursuing for M.S.degree at the School of Electrical Engineering and New Energies,China Three Gorges University.Her current research interests include microgrid optimization scheduling and stability analysis.E-mail:pretty.yuanzi@qq.com

    Siyu Wen received the B.S.degree in water resources and hydropower engineering from the College of Science and Technology,China Three Gorges University in 2016.Now,she is currently working toward the M.S.degree at the School of Electrical Engineering and New Energies,China Three Gorges University.Her current research interests include hydropower dispatching and unit commitment optimization.E-mail:215341796@qq.com

    Zhicen Lai received the B.S.degree in electrical engineering and its automation(focus on transmission line),China Three Gorges University in 2016. She is currently working toward the M.S.degree at the School of Electrical Engineering and New Energies,China Three Gorges University,Yichang,China.Her current research interests include microgrid control and stability analysis.E-mail:2512991452@qq.com

    猜你喜歡
    徒手同質(zhì)化定期
    定期體檢
    品牌研究(2022年21期)2022-07-28 06:20:56
    定期體檢
    品牌研究(2022年20期)2022-07-21 01:37:32
    定期體檢
    品牌研究(2022年19期)2022-07-14 06:07:38
    徒手攀巖
    徒手抓飛彈 一點(diǎn)不奇怪
    徒手“撕開”原子彈
    徒手深蹲,練練你的臀部
    海外星云(2017年20期)2017-11-01 22:08:06
    為什么鱷魚要定期換牙
    同質(zhì)化市場(chǎng)背后致富路指何方
    時(shí)事新聞報(bào)道如何避免“同質(zhì)化”
    新聞傳播(2016年14期)2016-07-10 10:22:51
    热99国产精品久久久久久7| 汤姆久久久久久久影院中文字幕| 国模一区二区三区四区视频| 久久精品国产亚洲av涩爱| 国产高清国产精品国产三级 | 最近2019中文字幕mv第一页| 亚洲av日韩在线播放| 欧美日韩国产mv在线观看视频 | 欧美极品一区二区三区四区| 青春草视频在线免费观看| freevideosex欧美| 国产精品国产三级国产专区5o| 亚洲av国产av综合av卡| 国产精品国产三级国产专区5o| freevideosex欧美| 啦啦啦啦在线视频资源| 哪个播放器可以免费观看大片| 麻豆精品久久久久久蜜桃| 只有这里有精品99| 又爽又黄无遮挡网站| 亚洲天堂av无毛| 亚洲精品国产av蜜桃| 免费播放大片免费观看视频在线观看| 成年av动漫网址| 少妇人妻久久综合中文| av黄色大香蕉| 五月玫瑰六月丁香| 可以在线观看毛片的网站| 精品一区在线观看国产| 91狼人影院| 日日摸夜夜添夜夜爱| 午夜免费鲁丝| 国产黄a三级三级三级人| 久久国产乱子免费精品| av.在线天堂| 91狼人影院| 免费人成在线观看视频色| 欧美日韩视频高清一区二区三区二| 久久女婷五月综合色啪小说 | 建设人人有责人人尽责人人享有的 | 爱豆传媒免费全集在线观看| 99久久精品一区二区三区| 99九九线精品视频在线观看视频| 一个人看视频在线观看www免费| 在线播放无遮挡| 真实男女啪啪啪动态图| 99热6这里只有精品| 91精品伊人久久大香线蕉| 亚洲内射少妇av| 五月伊人婷婷丁香| 肉色欧美久久久久久久蜜桃 | 波野结衣二区三区在线| 国产人妻一区二区三区在| 国产精品无大码| 国产日韩欧美亚洲二区| 久久精品综合一区二区三区| 欧美激情国产日韩精品一区| 性色avwww在线观看| 久久热精品热| 中文字幕免费在线视频6| 日韩三级伦理在线观看| 欧美高清成人免费视频www| 91久久精品国产一区二区成人| 熟女电影av网| 亚洲精品成人av观看孕妇| 少妇被粗大猛烈的视频| 天堂网av新在线| 超碰av人人做人人爽久久| 欧美区成人在线视频| 国产中年淑女户外野战色| 久久久久精品久久久久真实原创| 国产色婷婷99| 麻豆成人午夜福利视频| 日本与韩国留学比较| 亚洲天堂国产精品一区在线| 91久久精品国产一区二区三区| 精品酒店卫生间| 美女cb高潮喷水在线观看| 国产精品偷伦视频观看了| 涩涩av久久男人的天堂| 听说在线观看完整版免费高清| 黄色日韩在线| 国产成人aa在线观看| 久久精品久久久久久噜噜老黄| 国产淫语在线视频| 69av精品久久久久久| 成人毛片60女人毛片免费| 国产v大片淫在线免费观看| 亚洲av福利一区| 国产一区二区三区综合在线观看 | 青春草亚洲视频在线观看| 午夜福利视频1000在线观看| 亚洲精品成人久久久久久| av在线老鸭窝| 亚洲,一卡二卡三卡| 日韩欧美 国产精品| 亚洲精品国产av蜜桃| 男女边吃奶边做爰视频| 免费大片黄手机在线观看| 免费观看的影片在线观看| 自拍偷自拍亚洲精品老妇| 国产亚洲av片在线观看秒播厂| 夫妻午夜视频| 成人免费观看视频高清| 97精品久久久久久久久久精品| 久久久久久久久大av| 国产伦在线观看视频一区| 一本一本综合久久| 日韩精品有码人妻一区| 97超碰精品成人国产| 色婷婷久久久亚洲欧美| 亚洲熟女精品中文字幕| 成年女人在线观看亚洲视频 | 日韩视频在线欧美| 性插视频无遮挡在线免费观看| 婷婷色麻豆天堂久久| 国产免费又黄又爽又色| 久久韩国三级中文字幕| freevideosex欧美| 男人添女人高潮全过程视频| av卡一久久| 亚洲欧美日韩无卡精品| 午夜视频国产福利| 婷婷色综合www| 国内揄拍国产精品人妻在线| 麻豆成人av视频| 国产美女午夜福利| 777米奇影视久久| 欧美区成人在线视频| 亚洲人成网站在线播| 99久久人妻综合| 国产久久久一区二区三区| 超碰97精品在线观看| 一级黄片播放器| 精品人妻熟女av久视频| 好男人在线观看高清免费视频| 各种免费的搞黄视频| 亚洲第一区二区三区不卡| 又爽又黄a免费视频| 一区二区三区免费毛片| 精品国产三级普通话版| 欧美激情久久久久久爽电影| 香蕉精品网在线| 久久精品久久精品一区二区三区| 国产精品国产三级专区第一集| 午夜免费观看性视频| 青春草国产在线视频| 亚洲av.av天堂| 精品国产三级普通话版| 日韩精品有码人妻一区| 少妇被粗大猛烈的视频| 日韩伦理黄色片| 亚洲怡红院男人天堂| 成年女人看的毛片在线观看| 观看免费一级毛片| 在线 av 中文字幕| 国产成人福利小说| 亚洲av国产av综合av卡| 亚洲无线观看免费| 韩国高清视频一区二区三区| 欧美一区二区亚洲| 国产精品成人在线| av在线亚洲专区| 国产亚洲一区二区精品| 欧美一区二区亚洲| 国产精品国产三级专区第一集| 亚洲国产精品999| 国产成人aa在线观看| 国产一区二区亚洲精品在线观看| 中文天堂在线官网| av国产免费在线观看| 99re6热这里在线精品视频| 国产成人aa在线观看| 久久久精品94久久精品| 久久热精品热| 免费看不卡的av| 亚洲欧美中文字幕日韩二区| 久久人人爽人人爽人人片va| 日本-黄色视频高清免费观看| 丝袜喷水一区| 在现免费观看毛片| 久久久久久久久大av| 国产熟女欧美一区二区| 乱码一卡2卡4卡精品| 亚洲精品国产av成人精品| 久久综合国产亚洲精品| 韩国高清视频一区二区三区| 春色校园在线视频观看| 少妇的逼好多水| 久久久午夜欧美精品| 人人妻人人爽人人添夜夜欢视频 | 嫩草影院入口| 免费不卡的大黄色大毛片视频在线观看| 欧美性猛交╳xxx乱大交人| 免费在线观看成人毛片| 国产欧美日韩一区二区三区在线 | 综合色丁香网| 成人二区视频| 久久精品国产亚洲av天美| 日本熟妇午夜| 精品熟女少妇av免费看| 亚洲欧美精品专区久久| 日韩成人av中文字幕在线观看| 亚洲成人一二三区av| 在线播放无遮挡| 久久精品国产亚洲av涩爱| 一本色道久久久久久精品综合| 国产成人精品福利久久| 狠狠精品人妻久久久久久综合| 一区二区三区免费毛片| 国产精品人妻久久久影院| 亚洲电影在线观看av| 国产欧美日韩精品一区二区| 麻豆精品久久久久久蜜桃| 天美传媒精品一区二区| 精品国产乱码久久久久久小说| 亚洲色图av天堂| 亚洲av成人精品一区久久| 国产人妻一区二区三区在| 久久综合国产亚洲精品| 亚洲综合色惰| 亚洲精品视频女| 天天一区二区日本电影三级| videos熟女内射| 下体分泌物呈黄色| 免费观看无遮挡的男女| 午夜激情久久久久久久| 日本与韩国留学比较| 美女脱内裤让男人舔精品视频| 国产久久久一区二区三区| 日韩免费高清中文字幕av| 99久久中文字幕三级久久日本| 欧美精品人与动牲交sv欧美| 亚洲最大成人中文| 国产探花在线观看一区二区| 亚洲成人一二三区av| 精品久久久久久久末码| 精品一区在线观看国产| 日韩制服骚丝袜av| 免费av不卡在线播放| 精品久久久久久久人妻蜜臀av| 中文字幕免费在线视频6| 亚洲国产精品成人久久小说| 亚洲av电影在线观看一区二区三区 | 日本免费在线观看一区| 在线播放无遮挡| 观看免费一级毛片| 成人二区视频| 人妻少妇偷人精品九色| 69av精品久久久久久| 国国产精品蜜臀av免费| 亚洲av成人精品一二三区| 91久久精品国产一区二区成人| 成人亚洲精品av一区二区| 可以在线观看毛片的网站| 黄色配什么色好看| 人妻夜夜爽99麻豆av| 亚洲精品日韩av片在线观看| 国产精品人妻久久久影院| 日本欧美国产在线视频| 日本爱情动作片www.在线观看| 久久精品综合一区二区三区| 丰满人妻一区二区三区视频av| 日韩伦理黄色片| 国产亚洲5aaaaa淫片| 国产免费一级a男人的天堂| 波野结衣二区三区在线| 亚洲在久久综合| 亚洲av中文字字幕乱码综合| 又爽又黄a免费视频| 香蕉精品网在线| 国产精品国产三级国产专区5o| 麻豆精品久久久久久蜜桃| 久久鲁丝午夜福利片| 国产成年人精品一区二区| 青春草国产在线视频| 最近中文字幕2019免费版| 97在线视频观看| 如何舔出高潮| 国产精品久久久久久久电影| 成人特级av手机在线观看| 91精品国产九色| 插逼视频在线观看| 精品久久国产蜜桃| 久久人人爽人人片av| 人人妻人人爽人人添夜夜欢视频 | 插阴视频在线观看视频| 日韩电影二区| 少妇人妻一区二区三区视频| 卡戴珊不雅视频在线播放| 99热这里只有是精品50| 男的添女的下面高潮视频| 综合色av麻豆| 午夜精品国产一区二区电影 | 国产真实伦视频高清在线观看| 六月丁香七月| 亚洲国产精品国产精品| 国产免费福利视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 男人爽女人下面视频在线观看| 97超碰精品成人国产| 黄片无遮挡物在线观看| 女人十人毛片免费观看3o分钟| 别揉我奶头 嗯啊视频| 99久久九九国产精品国产免费| 亚洲欧洲国产日韩| 一区二区三区免费毛片| 天堂网av新在线| 夜夜看夜夜爽夜夜摸| 精品久久国产蜜桃| 久久久久性生活片| 天堂网av新在线| 纵有疾风起免费观看全集完整版| 亚洲欧洲日产国产| a级毛色黄片| .国产精品久久| 午夜激情久久久久久久| 一本久久精品| 欧美高清成人免费视频www| 国产一区二区三区av在线| 性色avwww在线观看| 免费看不卡的av| 国产精品.久久久| 亚洲精品日韩av片在线观看| 18禁裸乳无遮挡免费网站照片| 成人综合一区亚洲| 少妇人妻 视频| 午夜爱爱视频在线播放| 看十八女毛片水多多多| 久久精品国产自在天天线| 久久国内精品自在自线图片| 久久亚洲国产成人精品v| 免费电影在线观看免费观看| 熟女人妻精品中文字幕| 97超碰精品成人国产| 美女主播在线视频| 精品一区在线观看国产| 亚洲精品国产av蜜桃| 亚洲国产高清在线一区二区三| 精品久久国产蜜桃| 免费看av在线观看网站| 成人高潮视频无遮挡免费网站| 亚洲美女视频黄频| 亚洲aⅴ乱码一区二区在线播放| 黄色欧美视频在线观看| 国产午夜精品久久久久久一区二区三区| 特级一级黄色大片| 免费看a级黄色片| 国产综合精华液| 中文字幕免费在线视频6| 天堂中文最新版在线下载 | 精品一区在线观看国产| 国产91av在线免费观看| 在线a可以看的网站| 日韩强制内射视频| 丝瓜视频免费看黄片| 在线看a的网站| 夫妻午夜视频| 啦啦啦啦在线视频资源| 亚洲色图av天堂| 又粗又硬又长又爽又黄的视频| 国产中年淑女户外野战色| 五月开心婷婷网| 国产国拍精品亚洲av在线观看| 欧美极品一区二区三区四区| 亚洲精品aⅴ在线观看| 久久97久久精品| 久热这里只有精品99| 亚洲国产av新网站| 秋霞在线观看毛片| 99视频精品全部免费 在线| 青青草视频在线视频观看| 99热这里只有是精品50| 亚洲天堂av无毛| 国产片特级美女逼逼视频| 黄色配什么色好看| 一级a做视频免费观看| 亚洲精品乱码久久久v下载方式| 日日啪夜夜撸| 春色校园在线视频观看| 看免费成人av毛片| a级毛片免费高清观看在线播放| 成人亚洲精品av一区二区| 国产黄频视频在线观看| 特大巨黑吊av在线直播| 九九久久精品国产亚洲av麻豆| 久久久久久久久久久丰满| 草草在线视频免费看| 熟妇人妻不卡中文字幕| 久久久久久伊人网av| 真实男女啪啪啪动态图| 国产成人福利小说| 国产成人午夜福利电影在线观看| 视频中文字幕在线观看| 黄色一级大片看看| 一级毛片我不卡| 国产有黄有色有爽视频| 在线 av 中文字幕| 男人舔奶头视频| 天堂俺去俺来也www色官网| 国产精品成人在线| 国产爽快片一区二区三区| 日韩制服骚丝袜av| 午夜精品一区二区三区免费看| 日韩av免费高清视频| 欧美变态另类bdsm刘玥| 国产精品女同一区二区软件| 国产成人精品福利久久| 亚洲va在线va天堂va国产| 亚洲欧美一区二区三区黑人 | 天美传媒精品一区二区| 亚洲av二区三区四区| 插阴视频在线观看视频| 91久久精品电影网| 韩国av在线不卡| 一区二区三区精品91| 国产精品伦人一区二区| 菩萨蛮人人尽说江南好唐韦庄| 又爽又黄a免费视频| 亚洲精品色激情综合| 日韩电影二区| 美女xxoo啪啪120秒动态图| 国产成人freesex在线| 午夜福利视频精品| 亚洲成色77777| 最近中文字幕高清免费大全6| 久久久精品免费免费高清| www.色视频.com| 啦啦啦啦在线视频资源| 午夜福利在线观看免费完整高清在| 日本爱情动作片www.在线观看| 国产免费又黄又爽又色| 视频区图区小说| 亚洲久久久久久中文字幕| av免费在线看不卡| 国产淫语在线视频| 一级毛片久久久久久久久女| 亚洲经典国产精华液单| 一区二区三区乱码不卡18| av在线蜜桃| 久久人人爽人人片av| 免费观看a级毛片全部| 久久精品国产a三级三级三级| 成人国产av品久久久| 美女国产视频在线观看| 成人欧美大片| 午夜亚洲福利在线播放| 成人亚洲欧美一区二区av| 免费观看的影片在线观看| 久久热精品热| 极品教师在线视频| 丰满人妻一区二区三区视频av| 一级毛片aaaaaa免费看小| av在线天堂中文字幕| 精品酒店卫生间| 婷婷色综合www| 精品人妻偷拍中文字幕| 欧美成人精品欧美一级黄| 99热网站在线观看| 国产在线男女| 免费观看无遮挡的男女| 国产免费福利视频在线观看| 韩国高清视频一区二区三区| 一个人看的www免费观看视频| 丰满少妇做爰视频| av网站免费在线观看视频| 日本黄色片子视频| 亚洲国产精品专区欧美| 日韩欧美一区视频在线观看 | 国产精品三级大全| 国产一区二区三区综合在线观看 | 高清在线视频一区二区三区| 色哟哟·www| 亚洲在久久综合| 日韩欧美精品免费久久| 国产永久视频网站| 久久久久久久大尺度免费视频| 我的女老师完整版在线观看| 赤兔流量卡办理| 久久久久久久精品精品| 你懂的网址亚洲精品在线观看| 黄色视频在线播放观看不卡| 国产一区二区三区av在线| 高清在线视频一区二区三区| 欧美另类一区| 国产精品.久久久| 久久久色成人| 蜜臀久久99精品久久宅男| 狠狠精品人妻久久久久久综合| 亚洲av免费在线观看| 人人妻人人看人人澡| 91久久精品国产一区二区成人| 制服丝袜香蕉在线| 国产精品国产三级国产专区5o| 精品国产三级普通话版| av专区在线播放| 国产黄片视频在线免费观看| 高清午夜精品一区二区三区| 人妻系列 视频| 日本wwww免费看| av专区在线播放| 啦啦啦中文免费视频观看日本| 日本免费在线观看一区| 国产亚洲一区二区精品| 99久久中文字幕三级久久日本| 午夜免费男女啪啪视频观看| 在线观看免费高清a一片| 两个人的视频大全免费| 久热久热在线精品观看| 中文精品一卡2卡3卡4更新| 中国美白少妇内射xxxbb| videossex国产| 国产爱豆传媒在线观看| 成年av动漫网址| 大片电影免费在线观看免费| 亚洲欧美日韩东京热| 热99国产精品久久久久久7| 国产亚洲5aaaaa淫片| 尤物成人国产欧美一区二区三区| 日本与韩国留学比较| av在线app专区| 综合色av麻豆| 久久久久久久久久人人人人人人| 亚洲精品第二区| 又大又黄又爽视频免费| 午夜免费观看性视频| 69av精品久久久久久| 交换朋友夫妻互换小说| 女的被弄到高潮叫床怎么办| 一边亲一边摸免费视频| 精品酒店卫生间| 简卡轻食公司| 日韩不卡一区二区三区视频在线| 午夜视频国产福利| 好男人视频免费观看在线| 午夜日本视频在线| av线在线观看网站| 激情 狠狠 欧美| www.av在线官网国产| 精品一区二区三区视频在线| eeuss影院久久| 一级毛片aaaaaa免费看小| 欧美激情在线99| 纵有疾风起免费观看全集完整版| 久久久久久久大尺度免费视频| 2018国产大陆天天弄谢| 成年版毛片免费区| 午夜激情福利司机影院| 久久久久久久久大av| 亚洲精品一二三| 成人无遮挡网站| 午夜福利在线在线| 免费黄频网站在线观看国产| 观看美女的网站| 在线看a的网站| 中文字幕亚洲精品专区| 国国产精品蜜臀av免费| 免费av不卡在线播放| 免费在线观看成人毛片| 一本色道久久久久久精品综合| 国产精品99久久久久久久久| 在线 av 中文字幕| 精品国产三级普通话版| 97超碰精品成人国产| 最近手机中文字幕大全| 国产真实伦视频高清在线观看| 黄色欧美视频在线观看| 卡戴珊不雅视频在线播放| 日韩av在线免费看完整版不卡| 高清在线视频一区二区三区| 久久人人爽av亚洲精品天堂 | 久久久国产一区二区| 国产欧美亚洲国产| 亚洲欧美一区二区三区国产| 久久久久久伊人网av| 麻豆成人av视频| 好男人在线观看高清免费视频| 最新中文字幕久久久久| 国产精品人妻久久久久久| 国语对白做爰xxxⅹ性视频网站| 黄片无遮挡物在线观看| 大又大粗又爽又黄少妇毛片口| 一个人观看的视频www高清免费观看| 亚洲精品视频女| 老师上课跳d突然被开到最大视频| 亚洲av一区综合| 麻豆久久精品国产亚洲av| 欧美成人午夜免费资源| 成人漫画全彩无遮挡| 三级国产精品欧美在线观看| 成年av动漫网址| 久久影院123| 免费观看在线日韩| 国产91av在线免费观看| 青春草亚洲视频在线观看| 国产免费福利视频在线观看| 熟妇人妻不卡中文字幕| 亚洲av电影在线观看一区二区三区 | 一边亲一边摸免费视频| 欧美最新免费一区二区三区| 超碰97精品在线观看| 国产精品三级大全| 国产av码专区亚洲av| 女的被弄到高潮叫床怎么办| 国产亚洲最大av| 国产成人精品久久久久久| 狠狠精品人妻久久久久久综合| 嫩草影院精品99| 日本黄大片高清| 国产爽快片一区二区三区| 欧美性猛交╳xxx乱大交人| 我的老师免费观看完整版| 别揉我奶头 嗯啊视频| 观看美女的网站| 日韩av在线免费看完整版不卡|