王天杰
摘要:在腦科學領(lǐng)域,包含基因和多類圖像數(shù)據(jù)的多模態(tài)數(shù)據(jù)的結(jié)合分析在揭示大腦的功能和機理的過程中越來越發(fā)揮著重要的作用。本文通過運用統(tǒng)計學中的偏最小二乘回歸方法,結(jié)合基因數(shù)據(jù)和兩類圖像數(shù)據(jù),對大腦的功能發(fā)育進行了相關(guān)分析,并查找文獻進行了結(jié)果的比較,分析了與大腦功能發(fā)育相關(guān)的基因,并對功能網(wǎng)絡(luò)進行了相關(guān)分析,得到了可靠的結(jié)果。
關(guān)鍵詞:偏最小二乘回歸(PLS) 腦圖像 基因 網(wǎng)絡(luò)
中圖分類號:TP391 文獻標識碼:A 文章編號:1009-3044(2018)28-0200-06
1 緒論
人體各個器官中都有人體全部的基因,但是不同器官中基因的表達不同,而且不同的表達與器官的不同功能有關(guān),基因突變會導致基因表達的變化,進而導致相關(guān)器官的功能異常。本研究的目的是研究人的不同年齡階段以及不同腦區(qū)的大腦發(fā)育與人的全基因表達之間的關(guān)系,揭示顯著表達的基因在該年齡段或該腦區(qū)大腦發(fā)育中的作用,即找到與大腦發(fā)育顯著相關(guān)的基因,并認為這些基因的突變更有可能在疾病中扮演重要角色,進而發(fā)現(xiàn)如阿茲海默癥,精神分裂癥,多動癥等大腦相關(guān)疾病的致病基因與這些基因的高度相關(guān)性,為致病基因的發(fā)現(xiàn)和疾病的治療提供參考。為了達到這一目的,本研究需要的數(shù)據(jù)有涵蓋多個年齡段的大腦的結(jié)構(gòu)數(shù)據(jù)以及人體所有基因在相應(yīng)年齡段大腦中的表達數(shù)據(jù),結(jié)構(gòu)數(shù)據(jù)主要是大腦皮層的生物數(shù)據(jù),如皮層厚度,腦區(qū)體積等。
fMRI 基于血氧水平依賴(Blood Oxygen Level Dependent, BOLD)效應(yīng),通過測量局部腦區(qū)中脫氧血紅蛋白濃度的改變來間接表明大腦神經(jīng)元的功能活動,主要分為任務(wù)態(tài)(Task-related)和靜息態(tài)(Resting-state)[1]。任務(wù)態(tài)fMRI通過事先設(shè)定好的特定任務(wù)刺激被試然后檢測大腦的反應(yīng),但對于一些認知受損或認知尚未發(fā)育完成的被試來說完成任務(wù)有一定困難。而rs-fMRI 不需要執(zhí)行特殊的任務(wù),只需被試閉上眼睛,大腦清醒但不刻意做任何系統(tǒng)思考,克服了上述缺點[11]。
1.1 布羅德曼分區(qū)系統(tǒng)
布羅德曼分區(qū)最早由德國神經(jīng)科醫(yī)生科比尼安·布洛德曼(Korbinian Brodmann)提出。他的分區(qū)系統(tǒng)包括每個半球的52個區(qū)域。其中一些區(qū)域今天已經(jīng)被細分,例如23區(qū)被分為23a和23b區(qū)等。
1.2 Destrieux分區(qū)系統(tǒng)
Destrieux分區(qū)系統(tǒng)是基于腦溝深度的在freesurfer中廣泛應(yīng)用的分割方案。這種劃分方案能夠自動而精確的定義腦溝和腦回。這種劃分方案把大腦的每個半球劃分為74個腦區(qū),即共148個腦區(qū)。
圖1 結(jié)構(gòu)分區(qū)模板Destrieux
2 方法
2.1 腦圖像數(shù)據(jù)
本研究所使用的腦圖像數(shù)據(jù)是人腦連接組計劃(HCP)的WU-Minn HCP Lifespan Pilot Data數(shù)據(jù)集中的從不同年齡段的人采集的結(jié)構(gòu)磁共振數(shù)據(jù)(structure MRI)和靜息態(tài)功能核磁共振影像數(shù)據(jù)(rfMRI)[10]。探索人腦是21世紀偉大的科學挑戰(zhàn)之一。 人類連接體項目(HCP)正在通過闡明腦功能和行為的神經(jīng)通路來解決這一挑戰(zhàn)的一個關(guān)鍵方面。 解密這個令人驚訝的復雜接線圖將揭示什么使我們成為獨特的人類,什么使每個人與所有其他人不同。HCP項目由華盛頓大學,明尼蘇達大學和牛津大學(WU-Minn HCP聯(lián)盟)領(lǐng)導,聯(lián)盟全面使用最先進的無創(chuàng)神經(jīng)影像學方法,將目標總數(shù)1200名健康成年人的人腦電路進行全面繪制。 它將產(chǎn)生并貢獻關(guān)于腦連通性,大腦連通性與行為的關(guān)系,以及遺傳和環(huán)境因素對腦電路和行為的影響的寶貴信息[2]。該項目對于其數(shù)據(jù)有專門的處理流程,經(jīng)數(shù)據(jù)預處理后用于分析。本數(shù)據(jù)處理的先決條件是:1,64位Linux操作系統(tǒng);2)安裝FSL (FMRIB Software Library)v5.0.6;3)安裝FreeSurfer version 5.3.0-HCP;4)安裝Connectome Workbench version 1.0;5)安裝HCP version of gradunwarp version 1.0.2。6)安裝HCP-pipelines。安裝完成后,設(shè)置好工作路徑和環(huán)境變量,然后開始處理數(shù)據(jù)。
結(jié)構(gòu)預處理:Prefreesurfer:為每個人生成自己的未失真的本地結(jié)構(gòu)體積空間,對齊T1w和T2w圖像,進行偏置場矯正,把每個人自己的本地結(jié)構(gòu)體積空間融合到標準體積空間中。本地結(jié)構(gòu)體積空間有每個人大腦各個結(jié)構(gòu)的體積和面積等數(shù)據(jù),是對每個人的大腦最逼真的體現(xiàn),而標準體積空間是為了同時研究不同人的大腦,使他們具有可比性,把他們都對齊到標準體積空間中。該部分的第一步是MR梯度非線性引起的畸變的校正。在結(jié)構(gòu)處理中使用的所有圖像(T1w,T2w和場圖幅度和相位)必須校正梯度非線性失真。為了校正失真,由每個梯度線圈產(chǎn)生的磁場由球面諧波膨脹(特定于3T Connectome掃描儀中的SC72梯度特性)建模[8]。 然后,使用FreeSurfer(Jovicich等人,2006)中提供的gradient_nonlin_unwarp軟件包的定制版本完成校正。Freesurfer:這一部分基于FreeSurfer version 5.2,且有許多改進之處。這一部分的目標是把整個大腦劃分為已知的結(jié)構(gòu),重建大腦白質(zhì)/灰質(zhì)分界面以及軟膜表面(隔離大腦灰質(zhì)與腦脊液的膜),并進行freesurfer的折疊式表面配準。Postfreesurfer:生成所有的體積和表面文件,以便在connectome workbench中可視化觀察。下采樣融合后的表面以進行連接分析。HCP的數(shù)據(jù)中有三種表面,每個人的本地表面(~136k個頂點),高分辨率的Conte69標準表面(~164k個頂點),以及低分辨率的Conte69標準表面(~32k個頂點,適用于低分辨率數(shù)據(jù)如fMRI或彌散張量數(shù)據(jù)的跨目標分析)。
在結(jié)構(gòu)預處理后,得到了每個人全腦的結(jié)構(gòu)數(shù)據(jù),為了本研究的目的,從中選出四項,即每個腦區(qū)的厚度,表面積,體積,曲度,進行后續(xù)的分析?;驍?shù)據(jù)只有16個腦區(qū),每個腦區(qū)的左右半球的基因表達值取均值,為了保持圖像數(shù)據(jù)與基因數(shù)據(jù)的一致,在進行腦區(qū)匹配后,對于一個腦區(qū)的基因表達值,在圖像數(shù)據(jù)中,左右腦同一腦區(qū)的體積相加,表面積相加,厚度和曲度取均值。
功能預處理: 功能預處理在結(jié)構(gòu)預處理后進行[13]。
fMRIVolume:去除空間失真,重新調(diào)整體積以彌補頭部動作帶來的誤差,將fMRI數(shù)據(jù)與結(jié)構(gòu)數(shù)據(jù)融合,減少偏置場誤差,將4D圖像歸一化為全局平均值,并用最終的腦表面來掩蓋數(shù)據(jù)。這一部分的結(jié)果輸出可以用來進行基于整個大腦的fMRI數(shù)據(jù)分析。fMRIVolume預處理部分在很多方面像PreFreeSurfer預處理部分,它們解決類似的問題[6]。 需要在完成HCP結(jié)構(gòu)預處理(PreFreeSurfer,F(xiàn)reeSurfer和PostFreeSurfer)的基礎(chǔ)上進行。與PreFreeSurfer預處理部分一樣,第一步是使用與PreFreeSurfer部分相同的方法校正梯度非線性引起的失真。接下來是重新對準時間序列,糾正接受掃描的人的頭部動作引起的誤差。fMRIVolume預處理部分的最后一步是把所有的融合變換和失真矯正步驟聯(lián)系起來,形成單一的非線性變換,以應(yīng)用在單個的重采樣步驟中。
fMRISurface:這部分在fMRIVolume的基礎(chǔ)上進行,其任務(wù)是把每個人的時間序列數(shù)據(jù)從各自的大腦轉(zhuǎn)換到標準空間中。這部分的輸出結(jié)果可以用來進行靜息態(tài)或任務(wù)態(tài)的fMRI分析。第一步是一種新穎的部分體積加權(quán)帶狀約束體積對表面映射算法,其中白質(zhì)/灰質(zhì)交界面和軟膜表面用于定義哪些fMRI體素在灰質(zhì)帶內(nèi)。為了獲得最大的準確性,在本步驟中使用本地網(wǎng)格表面(在MNI體積空間中),因為它們沒有被重新采樣,因此能夠最精確地重現(xiàn)這個大腦中的組織輪廓。一些體素將部分在灰質(zhì)色帶內(nèi),部分在其外部。分配給每個表面頂點的強度值是完全或部分在灰質(zhì)帶內(nèi)的體素的加權(quán)平均值,部分體素根據(jù)其在色帶內(nèi)的部分體積進行加權(quán)[9]。在每個頂點,算法找到包含白質(zhì)/灰質(zhì)分界面和軟膜表面包含該頂點的三角形(兩個表面的頂點必須具有對應(yīng)關(guān)系),并將這些三角形與通過連接兩個表面對應(yīng)三角形的邊形成的四邊形相連接,構(gòu)建多面體。然后,它在每個體素中創(chuàng)建點的網(wǎng)格,并測試每一個點,看它是否在多面體內(nèi)。如果多面體是扭曲的而導致測試結(jié)果模糊,算法判定該點是半在內(nèi)的。用于體素的權(quán)重是內(nèi)部網(wǎng)格點的數(shù)量,加上半在多面體內(nèi)網(wǎng)格點數(shù)量的一半。每個個體受試者的時間序列被采樣到一組左右半球表面頂點的標準集,以及皮質(zhì)下灰質(zhì)體素的標準集中,形成標準的CIFTI灰度空間。兩個半球表面的時間序列以及每個皮質(zhì)下結(jié)構(gòu)的時間序列被組合在尺度為灰度×時間的單個數(shù)據(jù)矩陣中。CIFTI密度時間序列是fMRI預處理部分的最終輸出,代表著灰質(zhì)部分時間序列數(shù)據(jù)最簡潔而仍然完整的表示[12]。
在具體的研究過程中需要根據(jù)真實數(shù)據(jù)的產(chǎn)生方式,調(diào)節(jié)處理過程中的相關(guān)參數(shù),以得到正確的結(jié)果。
2.2 腦基因數(shù)據(jù)
該數(shù)據(jù)集從收集自57個死后人腦的一個或兩個半球的1,340個組織樣本產(chǎn)生,從胚胎發(fā)育到成年后期,代表多種族的男性和女性[7]。該數(shù)據(jù)發(fā)現(xiàn)大約86%的蛋白質(zhì)編碼基因使用嚴格標準進行表達,其中超過90%的蛋白質(zhì)編碼基因在整個轉(zhuǎn)錄本或外顯子水平跨區(qū)域和/或時間差異調(diào)控。 這些時空差異中的大多數(shù)發(fā)生在出生前,隨后在出生后壽命期間區(qū)域轉(zhuǎn)錄組之間的相似性增加。這是一個一個關(guān)于不同時空人腦轉(zhuǎn)錄組的全面,公開的數(shù)據(jù)集。從57個人的1340個樣本中提取的基因數(shù)據(jù),涉及16個腦區(qū),包括小腦皮層,丘腦,紋狀體,扁桃體,海馬和11個新皮層區(qū)域。每個樣本是16個腦區(qū)之一的表達數(shù)據(jù)。這57個人分為15個年齡段,為了與圖像數(shù)據(jù)一致,取最后五個年齡段,6歲~12歲,12歲~20歲,20歲~40歲,40歲~60歲,60歲以上,分別對應(yīng)圖像數(shù)據(jù)的8歲~9歲,14歲~15歲,25歲~35歲,,45歲~55歲,65歲~75歲。先按照年齡段劃分基因數(shù)據(jù)樣本,得到5個年齡段的樣本數(shù)分別是42,87,220,91,93。每個年齡段所有同一腦區(qū)的左右腦基因表達數(shù)據(jù)取平均值,作為該年齡段該腦區(qū)的基因表達值。最后得到每個年齡段所有腦區(qū)的基因表達值。
2.3 腦圖像數(shù)據(jù)與腦基因數(shù)據(jù)的匹配
腦圖像數(shù)據(jù)是整個大腦的完整圖像數(shù)據(jù),按照腦圖像數(shù)據(jù)使用的大腦模板,左右大腦半球各被劃分為74個腦區(qū),圖像數(shù)據(jù)包括每個腦區(qū)的結(jié)構(gòu)信息,如腦區(qū)的體積,平均厚度,表面積,曲度[5]。由于腦圖像數(shù)據(jù)與腦基因數(shù)據(jù)劃分大腦的模板不同,需要找到他們之間的等價關(guān)系,再把基因數(shù)據(jù)和圖像數(shù)據(jù)匹配起來。以布羅德曼分區(qū)系統(tǒng)作為中介,分別找到圖像數(shù)據(jù)和基因數(shù)據(jù)中腦區(qū)和布羅德曼腦區(qū)的對應(yīng)關(guān)系,即可實現(xiàn)二者之間的匹配。從而得到一個腦區(qū)的基因數(shù)據(jù)和其結(jié)構(gòu)數(shù)據(jù)。最后找到9個腦區(qū)的對應(yīng)。
3分析
3.1 偏最小二乘回歸(partial least square regression)[4]
偏最小二乘回歸(又名潛在結(jié)構(gòu)投影),結(jié)合并擴展了主成分分析(PCA)和多元線性回歸的特點,它的目標是從一組自變量預測一組因變量。這種預測從自變量中抽取一組稱為潛在變量的正交因子,而且這些潛在變量的預測能力最強。
在本研究中,定義PLS組分為基因表達權(quán)重的線性組合,該組合與MRI數(shù)據(jù)高度相關(guān)。具體的,在本研究中,自變量為基因,因變量為MRI數(shù)據(jù),PLS的目的是抽取每個時間段與大腦結(jié)構(gòu)數(shù)據(jù)高度相關(guān)的基因的權(quán)重組合即每個時間段的特定基因,以及每個腦區(qū)與此腦區(qū)結(jié)構(gòu)數(shù)據(jù)高度相關(guān)的基因的權(quán)重組合,即該腦區(qū)發(fā)育過程中不同于其他腦區(qū)的特定基因。
3.2 靜息態(tài)fMRI數(shù)據(jù)處理與功能腦網(wǎng)絡(luò)的構(gòu)建
在結(jié)構(gòu)預處理的基礎(chǔ)上進行rfMRI數(shù)據(jù)的預處理[3],即功能預處理。經(jīng)過兩步功能預處理的步驟后,用最后得到的數(shù)據(jù)進行分析。得到標準空間中27個人的91292個位置點的時間序列數(shù)據(jù),時間點之間的間隔為0.72秒,共采集了420個時間點。然后獲取每個腦區(qū)的時間序列,具體做法是,采用HCP提供的多模態(tài)腦區(qū)劃分模板(這個模板把每個半球劃分為180個腦區(qū),共360個腦區(qū)),抽取每個腦區(qū)的時間序列,以每個腦區(qū)作為網(wǎng)絡(luò)的節(jié)點,然后求每兩個腦區(qū)之間的時間序列相關(guān)系數(shù),得到功能網(wǎng)絡(luò)的連接矩陣。
圖2為HCP的多模態(tài)分區(qū)模板,理解復雜的人類大腦皮層需要一個它的主要子區(qū)域(即腦區(qū))的地圖(或分割)。 制作準確的地圖已經(jīng)是神經(jīng)科學的一個世紀以來的目標。HCP使用自己產(chǎn)生的高精度的多模態(tài)磁共振圖像和客觀的半自動神經(jīng)解剖學方法,把每個腦區(qū)劃分為180個區(qū)域,區(qū)域之間的分解線上有著皮質(zhì)結(jié)構(gòu),功能,連接,拓撲上的急劇變化。除了之前用解剖顯微技術(shù)和其他專業(yè)性的具體方法得到的83個腦區(qū),還發(fā)現(xiàn)了97個新腦區(qū)。
4 結(jié)果
PLS回歸的結(jié)果中,有每個基因的與大腦結(jié)構(gòu)相關(guān)的權(quán)重,依據(jù)權(quán)重系數(shù)對基因排序后,再運用超幾何分布檢測致病基因的顯著性。在超幾何分布中,N=16938,是總的基因個數(shù),M是致病基因的總個數(shù),n是排序靠前的若干個基因,k是這n個基因中包含致病基因的個數(shù)。P值的閾值設(shè)為0.05,小于0.05即表現(xiàn)出顯著性。
在對阿茲海默癥的研究過程中,取前100個基因,發(fā)現(xiàn)了致病基因在VFC,M1C兩個腦區(qū)的顯著性,取前200個基因,沒有發(fā)現(xiàn)新的腦區(qū),前300個基因,又發(fā)現(xiàn)了致病基因在A1C,MFC,ITC三個腦區(qū)的顯著性,取前400、500個基因,這幾個腦區(qū)仍然具有顯著性,在查閱文獻后,這幾個腦區(qū)都得到了驗證,是受阿茲海默癥影響的腦區(qū)。證明了本研究所用方法的有效性,為致病基因的發(fā)現(xiàn)提供了一定程度的參考。在對精神分裂癥的研究過程中,發(fā)現(xiàn)了其致病基因在8歲~9歲,65歲~75歲兩個年齡段的顯著性,查閱文獻后得到了確認。在對帕金森癥的研究過程中,發(fā)現(xiàn)了其致病基因在A1C,M1C,IPC,V1C 4個腦區(qū)的顯著性,查閱文獻后得到了確認。
功能腦網(wǎng)絡(luò):
功能性連接描述節(jié)點( 可表示神經(jīng)元、神經(jīng)集群、功能腦區(qū)等不同尺度上的腦功能單元) 之間的功能性信號在某一時段內(nèi)統(tǒng)計意義上的關(guān)系,但不反映節(jié)點之間的因果關(guān)系。功能性腦網(wǎng)絡(luò)是基于腦/神經(jīng)的功能性信號( 電信號、磁信號、反映血液動力學或代謝的信號等) 構(gòu)建而成,在微觀尺度上可由單個神經(jīng)元之間的電位發(fā)放關(guān)系構(gòu)建,在中尺度( meso-scale) 上可由反映神經(jīng)元集群活動的局部場電位來構(gòu)建,在宏觀尺度上,可由特定功能腦區(qū)之間的EEG/MEG/fMRI 等來構(gòu)建。
圖4是通過R-fMRI構(gòu)建人腦功能性腦網(wǎng)絡(luò)的流程圖。(1)提取時間序列數(shù)據(jù)C. 提取的是rfMRI數(shù)據(jù),B.每個解剖單元(即網(wǎng)絡(luò)節(jié)點的數(shù)據(jù)都要提取)B.每個解剖單元來自自現(xiàn)有的腦區(qū)劃分模板 A. 每個解剖單元也可以是體素。(2)計算功能連接相關(guān)系數(shù)矩陣(即網(wǎng)絡(luò)的邊)D. 計算任意兩個節(jié)點時間序列數(shù)據(jù)的相關(guān)系數(shù)。(3)將相關(guān)矩陣閾值化為二元連接矩陣(即關(guān)聯(lián)矩陣E)。(4)將關(guān)聯(lián)矩陣可視化為圖(F)。
GRETNA是一個運用圖論的網(wǎng)絡(luò)分析工具箱,它整合了目前神經(jīng)科學領(lǐng)域研究的大多數(shù)網(wǎng)絡(luò)指標,使研究人員能夠?qū)δX連接體的拓撲結(jié)構(gòu)進行綜合分析。本研究運用該工具計算了每個人腦功能網(wǎng)絡(luò)的各項指標,包括對相關(guān)系數(shù)取絕對值后二值化網(wǎng)絡(luò),二值化的方法是采用稀疏閾值的方式,即以網(wǎng)絡(luò)的實際邊數(shù)與該網(wǎng)絡(luò)理論上能有的最大邊數(shù)的比值作為閾值,這種方法能夠保證,對節(jié)點數(shù)相同的網(wǎng)絡(luò)取閾值后,有相同個數(shù)的邊被保留下來,以便進行同一閾值下不同網(wǎng)絡(luò)間的比較。由于對閾值的定義沒有明確的標準,閾值從相關(guān)系數(shù)0.05到0.4,等間隔取36個閾值,得到不同的網(wǎng)絡(luò)。生成100個有相同節(jié)點數(shù),邊數(shù)以及度分布的隨機網(wǎng)絡(luò),在GRETNA中,隨機網(wǎng)絡(luò)用馬爾科夫鏈算法生成。腦網(wǎng)絡(luò)和隨機網(wǎng)絡(luò)進行比較是為了檢驗其特征與隨機網(wǎng)絡(luò)是否有顯著不同。計算的全局特征包括:小世界(small world),全局效率(Global Efficiency),局部效率(Local Efficiency),富人俱樂部系數(shù)(Rich Club),模塊(Modularity),生成模塊的算法為貪婪優(yōu)化算法,層次性(hierarchy),同步性(synchronization)。節(jié)點的局部特征包括:度,節(jié)點效率,近中心性(betweenness)。
小世界(small world):小世界系數(shù)定義為給定網(wǎng)絡(luò)的聚類系數(shù)或特征路徑長度與有相同度分布的隨機網(wǎng)絡(luò)的聚類系數(shù)和特征路徑長度的比值。與此隨機網(wǎng)絡(luò)相比,小世界網(wǎng)絡(luò)有大的聚類系數(shù),小的路徑長度。
效率(Efficiency):指通過網(wǎng)絡(luò)交換信息的效率。小世界網(wǎng)絡(luò)是全局和局部都高效的網(wǎng)絡(luò)。
全局效率(global efficiency):網(wǎng)絡(luò)所有節(jié)點之間最短路徑的倒數(shù)之和除以N*(N-1),N是網(wǎng)絡(luò)的節(jié)點個數(shù)。
局部效率(local efficiency):是子網(wǎng)絡(luò)全局效率的平均值。
富人俱樂部系數(shù)(Rich Club):網(wǎng)絡(luò)中的富人俱樂部現(xiàn)象是指,網(wǎng)絡(luò)的主要節(jié)點(hub)之間的聯(lián)系比其他節(jié)點之間的聯(lián)系要密切。富人俱樂部現(xiàn)象的存在能提供一個網(wǎng)絡(luò)高級結(jié)構(gòu)的重要信息,如彈性,層次性,特異性。
模塊(Modularity):即網(wǎng)絡(luò)中的社區(qū)結(jié)構(gòu),是網(wǎng)絡(luò)的頂點被分成組的趨勢,組內(nèi)的連接密集而組間的連接稀疏。
層次性(hierarchy):真實網(wǎng)絡(luò)是無標度網(wǎng)絡(luò),即節(jié)點的度分布是冪律分布。同時又有高的聚類度。小的模塊之間以層次結(jié)構(gòu)彼此組合,從而產(chǎn)生了網(wǎng)絡(luò)的層次性。
度:與每個節(jié)點相連的邊數(shù)。
中介中心性(betweenness):中介中心性指的是一個結(jié)點擔任其他兩個結(jié)點之間最短路的橋梁的次數(shù)。一個結(jié)點充當“中介”的次數(shù)越高,它的中介中心度就越大。中介中心性主要是由美國社會學家林頓·弗里曼(Freeman,1979)教授提出來的一個概念,它測量的是一個點在多大程度上位于圖中其他“點對”的“中間”。他認為,如果一個行動者處于多對行動者之間,那么他的度數(shù)一般較低,這個相對來說度數(shù)比較低的點可能起到重要的“中介”作用,因而處于網(wǎng)絡(luò)的中心。中介中心性的另一個重要作用就是它能夠分辨出誰是“跨界者”(boundary spanners)——那些在兩個或多個團體中扮演著不可或缺的橋梁作用的個體。
人類大腦功能網(wǎng)絡(luò)展示了高效的小世界,分類,分層和模塊化組織特性,并擁有高度關(guān)聯(lián)的中心節(jié)點,并且這些發(fā)現(xiàn)對不同的分析策略是有魯棒性的。
在構(gòu)建的靜息態(tài)功能網(wǎng)絡(luò)中,發(fā)現(xiàn)了腦功能網(wǎng)絡(luò)的模塊化結(jié)構(gòu),長尾度分布,以及富人俱樂部系數(shù)曲線。與有相同度分布的隨機網(wǎng)絡(luò)相比,功能網(wǎng)絡(luò)的全局特征都表現(xiàn)出了非平凡性,如同配性,聚類系數(shù),全局效率,最短路徑長度,小世界特性以及模塊化程度。隨著年齡增長,這些特性在減弱,趨向于隨機網(wǎng)絡(luò),如分別取兩個閾值時,模塊數(shù)由第一個年齡段的7個變?yōu)榈谖鍌€年齡段的6個,及由第一個年齡段的3個變?yōu)榈谖鍌€年齡段的2個。這是有序到無序的過程,表現(xiàn)了生物體衰老過程中的熵增。
參考文獻:
[1] Glasser M F, Coalson T S, Robinson E C, et al. A multi-modal parcellation of human cerebral cortex[J]. Nature, 2016.
[2] Bellivier F, Golmard J L, Rietschel M, et al. Age at onset in bipolar I affective disorder: further evidence for three subgroups[J]. American Journal of Psychiatry, 2003, 160(5): 999-1001.
[3] Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. Neuroimage, 2002, 15(1): 273-289.
[4] Salimi-Khorshidi G, Douaud G, Beckmann C F, et al. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers[J]. Neuroimage, 2014, 90: 449-468.
[5] Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems[J]. Nature Reviews Neuroscience, 2009, 10(3): 186-198.
[6] Cohen J D, Daw N, Engelhardt B, et al. Computational approaches to fMRI analysis[J]. Nature Neuroscience, 2017, 20(3): 304-313.
[7] Destrieux C, Fischl B, Dale A, et al. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature[J]. Neuroimage, 2010, 53(1): 1-15.
[8] Burgess G C, Kandala S, Nolan D, et al. Evaluation of denoising strategies to address motion-correlated artifacts in resting-state functional magnetic resonance imaging data from the Human Connectome Project[J]. Brain Connectivity, 2016, 6(9): 669-680.
[9] Gordon E M, Laumann T O, Adeyemo B, et al. Generation and evaluation of a cortical area parcellation from resting-state correlations[J]. Cerebral cortex, 2014: bhu239.
[10] Wang J, Zuo X, He Y. Graph-based network analysis of resting-state functional MRI[J]. Frontiers in systems neuroscience, 2010, 4: 16.
[11] Wang J, Wang X, Xia M, et al. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics[J]. Frontiers in human neuroscience, 2015, 9: 386.
[12] Satterthwaite T D, Baker J T. How can studies of resting-state functional connectivity help us understand psychosis as a disorder of brain development?[J]. Current opinion in neurobiology, 2015, 30: 85-91.
[13] McKeown M J, Hansen L K, Sejnowsk T J. Independent component analysis of functional MRI: what is signal and what is noise?[J]. Current opinion in neurobiology, 2003, 13(5): 620-629.
[14] Smith S M, Miller K L, Salimi-Khorshidi G, et al. Network modelling methods for FMRI[J]. Neuroimage, 2011, 54(2): 875-891.
[15] Marrelec G, Krainik A, Duffau H, et al. Partial correlation for functional brain interactivity investigation in functional MRI[J]. Neuroimage, 2006, 32(1): 228-237.
[16] Abdi H. Partial least squares regression and projection on latent structure regression (PLS Regression)[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(1): 97-106.
[17] Whitaker K J, Vértes P E, Romero-Garcia R, et al. Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome[J]. Proceedings of the National Academy of Sciences, 2016, 113(32): 9105-9110.
[18] Guerra-Carrillo B, Mackey A P, Bunge S A. Resting-state fMRI: a window into human brain plasticity[J]. The Neuroscientist, 2014, 20(5): 522-533.
[19] Short-term test–retest reliability of resting state fMRI metrics inchildren with and without attention-deficit/hyperactivity disorder
[20] Kang H J, Kawasawa Y I, Cheng F, et al. Spatio-temporal transcriptome of the human brain[J]. Nature, 2011, 478(7370): 483-489.
[21] Yi L, Wang J, Jia L, et al. Structural and functional changes in subcortical vascular mild cognitive impairment: a combined voxel-based morphometry and resting-state fMRI study[J]. PloS one, 2012, 7(9): e44758.
[22] Yao Y, Lu W L, Xu B, et al. The increase of the functional entropy of the human brain with age[J]. Scientific reports, 2013, 3: 2853.
[23] Glasser M F, Sotiropoulos S N, Wilson J A, et al. The minimal preprocessing pipelines for the Human Connectome Project[J]. Neuroimage, 2013, 80: 105-124.
[24] Lindquist M A. The statistical analysis of fMRI data[J]. Statistical Science, 2008: 439-464.
[25] Cao M, Wang J H, Dai Z J, et al. Topological organization of the human brain functional connectome across the lifespan[J]. Developmental cognitive neuroscience, 2014, 7: 76-93.
[26] Murphy K, Fox M D. Towards a consensus regarding global signal regression for resting state functional connectivity MRI[J]. NeuroImage, 2016.
[27] Beckmann C F, Smith S M. Probabilistic independent component analysis for functional magnetic resonance imaging[J]. IEEE transactions on medical imaging, 2004, 23(2): 137-152.
[28] Beckmann C F, DeLuca M, Devlin J T, et al. Investigations into resting-state connectivity using independent component analysis[J]. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2005, 360(1457): 1001-1013.
【通聯(lián)編輯:唐一東】