陳志友,石 晴,馮其明
中南大學(xué)資源加工與生物工程學(xué)院,湖南 長(zhǎng)沙 410083
周期式高梯度磁選機(jī)磁系磁場(chǎng)的分析與應(yīng)用
陳志友,石 晴,馮其明*
中南大學(xué)資源加工與生物工程學(xué)院,湖南 長(zhǎng)沙 410083
當(dāng)勵(lì)磁電流為200 A時(shí),計(jì)算了周期式高梯度磁選機(jī)線圈軸線軸向和距軸線0.15 m處徑向的磁感應(yīng)強(qiáng)度,并運(yùn)用ANSYS有限元分析軟件分析了屏蔽鐵鎧和磁極對(duì)線圈磁場(chǎng)特性的影響,同時(shí)采用該設(shè)備進(jìn)行了高嶺土磁分離除鐵實(shí)驗(yàn).結(jié)果表明,距線圈中心0.1 m軸線軸向?yàn)?.326 T的均勻磁場(chǎng),隨著與中心距離的增加磁感應(yīng)強(qiáng)度大幅下降;距軸線0.15 m徑向的磁感應(yīng)強(qiáng)度很小,在端面效應(yīng)的作用下達(dá)到最大值0.064 T;安裝屏蔽鐵鎧和磁極,線圈中心均勻磁場(chǎng)的磁感應(yīng)強(qiáng)度提高至0.95 T.在礦漿流速為0.7 cm/s,背景磁感應(yīng)強(qiáng)度為1.1 T下,一次磁選將高嶺土的Fe2O3的質(zhì)量分?jǐn)?shù)由1.35%降至0.63%,白度由68%提高至89%.
磁選機(jī);螺線管線圈;磁場(chǎng)特性;仿真;磁分離
為降低高嶺土、鉀鈉長(zhǎng)石等非金屬礦中的鐵含量,磁選[1]相對(duì)浮選[2]、還原酸浸[3-4]和氯化焙燒[5]等有無(wú)污染、成本低的特點(diǎn).立環(huán)高梯度磁選機(jī)由于工作方式和磁介質(zhì)等因素[6],對(duì)微細(xì)非金屬礦的除鐵效率較低,針對(duì)微細(xì)非金屬礦除鐵研制的周期式高梯度磁選機(jī),多為除鐵應(yīng)用效果的報(bào)道[7-8],磁場(chǎng)特性的研究很少.磁系是磁選設(shè)備的核心[9],通過(guò)對(duì)磁系結(jié)構(gòu)的磁場(chǎng)特性研究,完成設(shè)備磁場(chǎng)特性的研究.
采用ANSYS電磁仿真對(duì)磁系進(jìn)行建模分析,清晰得到磁力線分布和磁場(chǎng)強(qiáng)度云圖[10].盧東方等[11]仿真分析了履帶式永磁磁選機(jī)磁系的磁場(chǎng)特征,比較了2種磁結(jié)構(gòu)單元的仿真誤差.張榮嶺等[12]對(duì)條形永磁開(kāi)路漏磁導(dǎo)磁場(chǎng)進(jìn)行仿真計(jì)算.鄭霞裕等[13]模擬了磁介質(zhì)排列組合方式和充填率對(duì)磁場(chǎng)特性的影響.盧東方等[14]對(duì)旋流高梯度磁選機(jī)的磁力場(chǎng)進(jìn)行仿真,計(jì)算了磁性和非磁顆粒的受力.目前,對(duì)周期式高梯度磁選機(jī)磁場(chǎng)的研究,為安裝磁極鎧裝螺線管線圈磁場(chǎng)的仿真,但未研究鐵鎧和磁極對(duì)線圈磁場(chǎng)的影響.本文以周期式高梯度磁選機(jī)的磁系為研究對(duì)象,采用ANSYS軟件對(duì)線圈及增加鐵鎧和磁極的磁場(chǎng)進(jìn)行仿真,得到磁力線分布、磁場(chǎng)分布云圖和磁感應(yīng)強(qiáng)度值,理論計(jì)算螺線管線圈軸向和徑向的磁場(chǎng)特性,清晰了解鐵鎧和磁極對(duì)線圈磁場(chǎng)的影響,并利用設(shè)備對(duì)微細(xì)高嶺土進(jìn)行除鐵試驗(yàn).
多層密繞螺線管的內(nèi)半徑為R1,外半徑為R2,線圈長(zhǎng)2L,總匝數(shù)為N,導(dǎo)線中通過(guò)的電流為I,多層密匝螺線管磁場(chǎng)模型見(jiàn)圖1.
圖1 多層密匝螺線管磁場(chǎng)模型Fig.1 Magnetic field model of close layers solenoid
則多層密匝螺線管近軸沿中心軸線x軸軸向的磁感應(yīng)強(qiáng)度[15]為:
同理可求出沿中心軸線向線圈y軸的徑向磁感應(yīng)強(qiáng)度:
線圈參數(shù):R1=0.22 m,R2=0.5 m,L=0.25 m,y=0.15m,N=2124匝,I=200A,μ0=4π×10-7N/A2,利用式(1)和式(2),計(jì)算線圈軸線軸向的磁感應(yīng)強(qiáng)度Bx和距軸線0.15 m徑向的磁感應(yīng)強(qiáng)度By,結(jié)果見(jiàn)圖2.
圖2 磁感應(yīng)強(qiáng)度與線圈中心距離的關(guān)系Fig.2 Relationship between magnetic induction intensity and center distance of coil
由圖2可知,在線圈中心至0.1 m的區(qū)域內(nèi),軸線軸向磁感應(yīng)強(qiáng)度變化很小,近似為均勻磁場(chǎng);當(dāng)與線圈中心的距離繼續(xù)增加,磁感應(yīng)強(qiáng)度大幅下降,當(dāng)與線圈中心距離由0.1 m增加至0.25 m時(shí),軸線軸向的磁感應(yīng)強(qiáng)度由0.326 T下降至0.26 T;徑向磁感應(yīng)強(qiáng)度比軸向磁感應(yīng)強(qiáng)度小得多,并在端面(x為0.25 m)附近出現(xiàn)最大值為0.064 T.
基于有限元軟件ANSYS的磁場(chǎng)仿真,研究了屏蔽鐵鎧和磁極對(duì)螺線管線圈磁場(chǎng)的影響,線圈的仿真參數(shù)與計(jì)算參數(shù)相同,線圈中心軸線為y軸,徑向?yàn)閤軸.
勵(lì)磁電流為200 A時(shí),螺線管線圈的磁力線分布見(jiàn)圖3,磁感應(yīng)強(qiáng)度分布云圖見(jiàn)圖4,軸線軸向的磁感應(yīng)強(qiáng)度與距離的關(guān)系見(jiàn)圖5.
由圖3可知,線圈內(nèi)部磁力線向下,外部向上,形成回路,在端面和周?chē)┐艊?yán)重;由圖4和圖5可知,線圈內(nèi)部中心位置磁感應(yīng)強(qiáng)度最高,沿四周下降;在線圈軸線中心一定距離內(nèi),為磁感應(yīng)強(qiáng)度0.325 T的均勻磁場(chǎng),與計(jì)算結(jié)果0.326 T基本一致,當(dāng)與線圈中心距離增大,磁感應(yīng)強(qiáng)度急劇下降.
圖3 線圈的磁力線分布Fig.3 Magnetic field distribution of solenoid coil
圖4 線圈內(nèi)部磁感應(yīng)強(qiáng)度分布云圖:(a)剖視圖;(b)俯視圖Fig.4 Distribution of magnetic strength of inside solenoid coil:(a)Sectional view;(b)Top view
圖5 磁感應(yīng)強(qiáng)度與線圈中心距離的關(guān)系Fig.5 Relationship between magnetic induction intensity and center distance of coil
螺線管線圈為開(kāi)放磁場(chǎng),為提高線圈內(nèi)部的場(chǎng)強(qiáng),一是增加線圈匝數(shù)或提高勵(lì)磁電流,但材耗、能耗過(guò)高;或在線圈外部和兩端安裝屏蔽鐵鎧和磁極.鐵鎧和磁極被外磁場(chǎng)磁化,使得任意點(diǎn)的磁感應(yīng)強(qiáng)度為傳導(dǎo)電流和被磁化鐵磁質(zhì)分別作用時(shí)產(chǎn)生的磁場(chǎng)之和[16-17].
因此,考查螺線管線圈外部安裝屏蔽鐵鎧對(duì)線圈磁場(chǎng)的影響.屏蔽鐵鎧厚度為20 mm,勵(lì)磁電流為200 A,線圈磁力線分布見(jiàn)圖6,磁感應(yīng)強(qiáng)度分布云圖見(jiàn)圖7,軸線軸向磁感應(yīng)強(qiáng)度與距離的關(guān)系見(jiàn)圖8.
由圖6可知,磁力線沿上端面向中心聚集,內(nèi)部向下至下端面指向鐵鎧,沿鐵鎧向上形成回路,在屏蔽鐵鎧的作用下,線圈周?chē)鸁o(wú)磁力線分布,上下端面有漏磁.由圖7和圖8可知,在屏蔽鐵鎧的聚磁作用下,內(nèi)部磁場(chǎng)得到提高,線圈中心的均勻磁場(chǎng)磁感應(yīng)強(qiáng)度由0.326 T提高至0.37 T,當(dāng)與線圈中心距離增大,磁感應(yīng)強(qiáng)度急劇下降.
圖6 鎧裝線圈的磁力線分布Fig.6 Magnetic field distribution of armored solenoid coil
圖7 鎧裝線圈內(nèi)部磁感應(yīng)強(qiáng)度分布云圖:(a)剖視圖;(b)俯視圖Fig.7 Distribution magnetic strength of inside armored solenoid coil:(a)Sectional view;(b)Top view
圖8 鎧裝線圈磁感應(yīng)強(qiáng)度與線圈中心距離的關(guān)系Fig.8 Relationship between magnetic induction strength and center distance of armored coil
在鎧裝螺線管線圈端面安裝磁極,進(jìn)一步避免漏磁.磁極厚度為30 cm,孔隙率為25%,則磁力線分布見(jiàn)圖9,磁感應(yīng)強(qiáng)度分布云圖見(jiàn)圖10,中心軸線磁感應(yīng)強(qiáng)度與距離見(jiàn)圖11.
由圖9可知,磁力線沿上磁極向中心聚集,內(nèi)部向下至下磁極指向鐵鎧,沿鐵鎧向上,形成閉合回路,在屏蔽鐵鎧和磁極的聚磁作用下,線圈外部和端面無(wú)漏磁,由圖10和圖11可知,磁極被磁化,磁極的磁感應(yīng)強(qiáng)度最高為1.39 T,同時(shí)線圈內(nèi)部均勻磁場(chǎng)得到大幅提高,磁感應(yīng)強(qiáng)度由0.38 T提高至0.96 T.
圖9 安裝磁極的鎧裝線圈磁力線分布Fig.9 Magnetic field distribution of armored solenoid coil with magnetic pole
圖10 安裝磁極的鎧裝線圈內(nèi)部磁感應(yīng)強(qiáng)度分布云圖:(a)剖視圖;(b)俯視圖Fig.10 Distributions of magnetic strength of armored solenoid coil with magnetic pole:(a)Sectional view;(b)Top view
圖11 安裝磁極的鎧裝線圈磁感應(yīng)強(qiáng)度與線圈中心距離的關(guān)系Fig.11 Relationship between magnetic induction and center distance of armored coil with magnetic pole
對(duì)某高嶺土經(jīng)制漿、分級(jí),-43 μm粒級(jí)進(jìn)行除鐵實(shí)驗(yàn).其主要雜質(zhì)礦物為鐵礦物、少量鈦礦物,其中鐵礦物主要為褐鐵礦和少量磁鐵礦.原料白度為64.4%,多元素分析見(jiàn)表1.
表1 礦樣多元素分析結(jié)果Tab.1 Chemical analysis results of composition of sample %
將高嶺土配制為質(zhì)量分?jǐn)?shù)為20%的礦漿,加入質(zhì)量分?jǐn)?shù)為0.2%的六偏磷酸鈉,攪拌10 min,取10 L礦漿進(jìn)行磁分離試驗(yàn),磁介質(zhì)不銹鋼毛寬約0.1 mm,厚約0.07 mm,分析磁性和非磁性產(chǎn)品的Fe2O3的質(zhì)量分?jǐn)?shù)和非磁性產(chǎn)品的白度,研究礦漿流速和背景磁感應(yīng)強(qiáng)度對(duì)高嶺土除鐵效果的影響.
磁感應(yīng)強(qiáng)度為1.0 T時(shí),研究礦漿流速對(duì)高嶺土除鐵效果的影響,結(jié)果見(jiàn)表2.
表2 礦漿流速對(duì)除鐵效果的影響Tab.2 Effect of pulp flow rate on iron removal
由表2可知,隨著礦漿流速增大,非磁性產(chǎn)品產(chǎn)率隨之增高,含鐵量亦增高,而白度隨之下降;流速超過(guò)0.7 cm·s-1,對(duì)非磁性產(chǎn)品的質(zhì)量影響較大,礦漿流速應(yīng)選擇0.7 cm·s-1.
礦漿流速為0.7 cm·s-1,背景磁感應(yīng)強(qiáng)度對(duì)高嶺土除鐵效果的影響,結(jié)果見(jiàn)表3.
由表3可知,隨著背景磁感應(yīng)強(qiáng)度增大,非磁性產(chǎn)品產(chǎn)率隨之增高,含鐵量隨之降低,白度隨之提高,因此提高磁感應(yīng)強(qiáng)度有利于提高非磁性產(chǎn)品的質(zhì)量.
表3 磁感應(yīng)強(qiáng)度對(duì)除鐵效果的影響Tab.3 Effect of magnetic induction on iron removal
本文通過(guò)理論計(jì)算和ANSYS仿真,分析了屏蔽鐵鎧和磁極對(duì)周期式高梯度磁選機(jī)勵(lì)磁線圈內(nèi)部磁場(chǎng)特性的影響,并驗(yàn)證了設(shè)備對(duì)高嶺土的除鐵效果.
1)由理論計(jì)算和仿真結(jié)果可知,距螺線管線圈中心100 mm區(qū)域內(nèi)約為0.326 T的均勻磁場(chǎng),當(dāng)距離繼續(xù)增加,磁感應(yīng)強(qiáng)度大幅下降.
2)由ANSYS仿真結(jié)果可知,屏蔽鐵鎧和磁極避免了螺線管線圈的漏磁,大幅提高了線圈內(nèi)部均勻磁場(chǎng)的磁感應(yīng)強(qiáng)度.當(dāng)勵(lì)磁電流為200 A時(shí),螺線管線圈中心均勻磁場(chǎng)的磁感應(yīng)強(qiáng)度為0.325 T,安裝屏蔽鐵鎧后提高至0.38 T,安裝屏蔽鐵鎧和磁極后提高至0.95 T.
3)在背景磁感應(yīng)強(qiáng)度1.1 T,礦漿流速0.7 cm·s-1時(shí),對(duì)Fe2O3質(zhì)量分?jǐn)?shù)為1.35%、白度為68%的高嶺土進(jìn)行磁分離除鐵實(shí)驗(yàn),可將Fe2O3質(zhì)量分?jǐn)?shù)降至0.63%,白度提高至89%.說(shuō)明周期式高梯度磁選機(jī)對(duì)微細(xì)粒高嶺土除鐵有一定的效果,能適應(yīng)微細(xì)粒非金屬礦的除鐵要求.
[1] 陳麗昆,李亦然,王軍,等.超導(dǎo)磁分離工藝替代化學(xué)漂白用于高嶺土除雜增白的可行性研究[J].非金屬礦,2014,37(3):57-59.CHEN L K,LI Y R,WANG J,et al.Research on using superconducting magnetic separation as a substitute for chemical bleaching in kaolin treatment [J].Non-Metallic Mines,2014,37(3):57-59.
[2] 夏光華,李曉鳴,蘇小麗.混合捕收劑去除高嶺土中含鐵礦物試驗(yàn)研究[J].地質(zhì)找礦論叢,2012,27(1):121-124.XIA G H,LI X M,SU X L.The experiment research on iron removal from kaolin by using mixed collecting agent[J].Contributions to Geology and Mineral Resources Research,2012,27(1):121-124.
[3] TUNCUK A, CIFTLIK S, AKCIL A.Factorial experiments for iron removal from kaolin by using single and two-step leaching with sulfuric acid [J].Hydrometallurgy,2013,134/135(3):80-86.
[4] CAO W,XIA G H,LU M,et al.Iron removal from kaolin using binuclear rare earth complex activated thiourea dioxide[J].Applied Clay Science,2016,126:63-67
[5] 鄭水林,杜玉成,毛鉅凡,等.煤系高嶺土氯化焙燒除鐵增白工藝及機(jī)理研究[J].礦冶,1997,6(3):66-69.ZHENG S L,DU Y C,MAO J F,et al.Study on chloridizing roasting process and mechanism of kaolin containing coal[J].Mining and Metallurgy,1997,6(3):66-69.
[6] 陳俊明,鐘森林,謝寶華,等.ZQS周期式高梯度磁選機(jī)的研制和應(yīng)用[J].現(xiàn)代礦業(yè),2016(7):235-236.CHEN J M,ZHONG S L,XIE B H,et al.Development and application of ZQS periodic high gradient magnetic separator[J].Modern Mining,2016(7):235-236.
[7] 王龍.電磁漿料高梯度磁選機(jī)的優(yōu)化改進(jìn)及在非金屬礦磁選中的應(yīng)用[J].陶瓷,2016(1):31-34.WANG L.Optimizationandimprovementofhigh gradient magnetic separator for electromagnetic slurry and its application in non-metallic magnetic separation[J].Ceramics,2016(1):31-34.
[8] 李小靜,徐星佩,周岳遠(yuǎn),等.CRIMM型高梯度磁選機(jī)在高嶺土精制中的應(yīng)用[J].礦產(chǎn)保護(hù)與利用,2005(6):25-27.LI X J,XU X P,ZHOU Y Y,et al.Application of the CRIMM cyclic high gradientmagnetic separators(HGMS) to kaolin cleaning[J].Conservation and Utilization of Mineral Resources,2005(6):25-27.
[9] 袁致濤,高太,郭小飛,等.永磁強(qiáng)磁預(yù)選設(shè)備的研制與應(yīng)用[J].東北大學(xué)學(xué)報(bào)(自然科學(xué)版),2010,31(8):1188-1191.YUAN Z T,GAO T,GUO X F,et al.Development and application of high-intensity permanent magnetic separator for pre-concentration[J].Journal of Northeastern University(Natural Science),2010,31(8):1188-1191.
[10] TAKAYAMA T, KAMITANIA, TANAKA A.Numerical simulation of permanent magnet method:influence of experimental conditions on accuracy of jC-distribution[J].Physic C:Superconductivity and its Applications,2010,470(20):1354-1357.
[11] 盧東方,王毓華,何平波,等.基于ANSYS的履帶式永磁磁選機(jī)磁場(chǎng)模擬[J].中國(guó)有色金屬學(xué)報(bào),2014,24(8):2188-2195.LU D F,WANG Y H,HE P B,et al.Simulation of magnetic field on tracked permanent magnetic separator based on ANSYS[J].The Chinese Journal of Nonferrous Metals,2014,24(8):2188-2195.
[12] 張榮嶺,鄭艷明,崔浩,等.條形永磁開(kāi)路漏磁導(dǎo)磁場(chǎng)仿真計(jì)算方法[J].機(jī)電元件,2008,28(4):24-27.ZHANG R L,ZHENG Y M,CUI H,et al.Magnetic field simulation method for calculating leakage permeance of bar permanent magnet in open magnetic circuit[J].Electromechanical Components,2008,28(4):24-27.
[13] 鄭霞裕,李茂林,崔瑞,等.基于ANSYS的高梯度磁選機(jī)磁場(chǎng)特性影響因素分析[J].金屬礦山,2013,42(7):139-143.ZHENG X Y,LI M L,CUI R,et al.Analysis of factors influencing magnetic field's characteristics in HGMS based on ANSYS[J].Metal Mine,2013,42(7):139-143.
[14] 盧東方,王毓華,何平波,等.旋流高梯度磁選機(jī)的原理及分選性能預(yù)測(cè)[J].中南大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,45(1):1-8.LU D F,WANG Y H,H P B,et al.High-gradient magnetic separatorwith rotationalflow field and predictions of its separation performance[J].Journal of Central South University(Science and Technology),2014,45(1):1-8.
[15] 魏群.螺線管磁場(chǎng)分布特征[J].長(zhǎng)春工業(yè)大學(xué)學(xué)報(bào),2003,24(3):68-70.WEI Q.A study on the magnetic field distribution characteristics of coils[J].Journal of Changchun University of Technology,2003,24(3):68-70.
[16] 何桂春,黃開(kāi)國(guó),何平波.高梯度磁選機(jī)鎧裝圓柱形螺線管磁系磁場(chǎng)分布的間接邊界單元法(IBEM)研究[J].有色礦冶,2002,18(1):16-19.HE G C,HUANG K G,HE P B.Study on the distribution of the magnetic flux density of magnetic system of HGMS by indirect BEM[J].Non-Ferrous Mining and Metallurgy,2002,18(1):16-19.
[17] 何健全,許麗敏.高梯度磁選機(jī)磁系結(jié)構(gòu)設(shè)計(jì)校核及優(yōu)化[J].機(jī)電工程技術(shù),2009,38(11):72-73.HE J Q,XU L M.Magnet system design,checking and optimizing of high gradient magnetic separator[J].Mechanical and Electrical Engineering Technology,2009,38(11):72-73.
Research and Application of Magnetic Field for Periodic High Gradient Magnetic Separator
CHEN Zhiyou,SHI Qing,F(xiàn)ENG Qiming*
School of Resources Processing and Bioengineering,Central South University,Changsha 410083,China
Magnetic induction intensity of the radial axis and 0.15 m from the axis of the coil in periodic high gradient magnetic separator were calculated at an excitation current of 200 A.The influences of shielded iron armor on magnetic field characteristics of the coil were analyzed by ANSYS finite element analysis software as well.Simultaneously,kaolin magnetic separation and iron removal experiment were carried out.The results showed that axial magnetic induction intensity around 0.1 m of the coil center was in a uniform magnetic field of 0.326 T,and the magnetic induction decreased significantly with the distance from center increasing.The magnetic induction of the site of 0.15 m around the axis was very small in the radial direction,and the maximum value of that was 0.064 T by the end effect.The magnetic induction of the uniform magnetic field in the coil center might increase to 0.95 T after an armored iron and a magnetic pole in the solenoid coil were installed.When the background magnetic induction intensity was 1.1 T at pulp flow rate of 0.7 cm/s,the mass fraction of Fe2O3in kaolin reduced from 1.35%to 0.63%,and the whiteness of it increased from 68%to 89%by one magnetic separation only.
magnetic separator;solenoid coil;magnetic field characteristic;simulation;magnetic separation
2017-05-26
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃“973”項(xiàng)目(2014cb643400)
陳志友,博士研究生.E-mail:496916449@qq.com
*通訊作者:馮其明,博士,教授.E-mail:qmfeng@126.com
陳志友,石睛,馮其明.周期式高梯度磁選機(jī)磁系磁場(chǎng)的分析與應(yīng)用[J].武漢工程大學(xué)學(xué)報(bào),2017,39(5):482-487.
CHEN Z Y,SHI Q,F(xiàn)ENG Q M.Research and application of magnetic field for periodic high gradient magnetic separator[J].Journal of Wuhan Institute of Technology,2017,39(5):482-487.
TD97
A
10.3969/j.issn.1674-2869.2017.05.014
1674-2869(2017)05-0482-06
苗 變