張 浩,張靜靜
(中南民族大學(xué),計(jì)算機(jī)科學(xué)學(xué)院,武漢 430074)
無線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合算法綜述
張 浩,張靜靜
(中南民族大學(xué),計(jì)算機(jī)科學(xué)學(xué)院,武漢 430074)
數(shù)據(jù)融合技術(shù)是無線傳感器網(wǎng)絡(luò)的關(guān)鍵技術(shù)之一,它通過合并相似數(shù)據(jù)、預(yù)測未來數(shù)據(jù)等方式減少節(jié)點(diǎn)間數(shù)據(jù)的傳輸量,對(duì)冗余數(shù)據(jù)進(jìn)行精簡,從而明顯提高網(wǎng)絡(luò)生命周期以及數(shù)據(jù)準(zhǔn)確性。本文對(duì)近年來數(shù)據(jù)融合算法的研究現(xiàn)狀進(jìn)行了全面深入分析,同時(shí)從融合過程中采用的融合算法與融合規(guī)則出發(fā),將現(xiàn)有的無線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合技術(shù)分為了基于統(tǒng)計(jì)學(xué)、基于人工智能、基于信息論與基于拓?fù)鋵W(xué)的四大類,對(duì)這四類技術(shù)從原理上進(jìn)行了綜述,對(duì)其中涉及到的不同融合算法從性能、時(shí)延、復(fù)雜度以及能耗方面進(jìn)行了詳細(xì)分析與比較。最后介紹了自動(dòng)融合、融合評(píng)估等未來數(shù)據(jù)融合的研究重點(diǎn)。
無線傳感器網(wǎng)絡(luò);數(shù)據(jù)融合;節(jié)能
無線傳感器網(wǎng)絡(luò)(Wireless Sensor Networks,WSNs)是由大量無線傳感器節(jié)點(diǎn)(Sensor Nodes, SNs)組成,通過無線通信方式形成的多跳自組織網(wǎng)絡(luò)(Ad Hoc)[1]。由于WSNs 具有自組織、部署迅捷、高容錯(cuò)性和強(qiáng)隱蔽性等技術(shù)優(yōu)勢,因此非常適用于軍事偵察,設(shè)施監(jiān)測和環(huán)境監(jiān)測等眾多領(lǐng)域[2]。無線傳感器網(wǎng)絡(luò)的網(wǎng)絡(luò)模型如圖1所示。
由于WSNs通常部署在無人看守的環(huán)境中,當(dāng)傳感器節(jié)點(diǎn)能量耗盡時(shí)對(duì)其電池進(jìn)行替換幾乎是不可能的[3,4]。因此,在能量有限的傳感器節(jié)點(diǎn)如何實(shí)現(xiàn)復(fù)雜的數(shù)據(jù)監(jiān)測和信息報(bào)告是WSNs中需要解決的首要問題[5,6]。在WSNs中,能量主要消耗在3個(gè)方面:數(shù)據(jù)傳輸、信號(hào)處理和硬件操作。已經(jīng)證明得出,傳感器節(jié)點(diǎn)間的傳輸能量消耗是遠(yuǎn)高于節(jié)點(diǎn)內(nèi)的計(jì)算能量消耗的[7]。因此,提出一個(gè)降低傳感器節(jié)點(diǎn)間數(shù)據(jù)傳輸量從而降低網(wǎng)絡(luò)能耗的方法是非常有必要的。傳感器網(wǎng)絡(luò)數(shù)據(jù)融合技術(shù)則能很好的解決上述問題。
圖1 無線傳感器網(wǎng)絡(luò)系統(tǒng)模型Fig.1 System model of wireless sensor networks
聯(lián)合實(shí)驗(yàn)室(Joint Directors of Laboratories, JDL)定義數(shù)據(jù)融合是一個(gè)“多層次、多方面處理自動(dòng)檢測、聯(lián)系、相關(guān)、估計(jì)以及多來源的信息和數(shù)據(jù)的組合過程”[8,9]。一般情況下,在數(shù)據(jù)收集和傳輸?shù)倪^程中,存在在許多數(shù)據(jù)冗余與毀壞,這影響了WSN的數(shù)據(jù)收集效率與準(zhǔn)確性,同時(shí)也降低了生命周期[10,11]。所以需要運(yùn)用數(shù)據(jù)融合算法,對(duì)來自不同數(shù)據(jù)源的數(shù)據(jù)進(jìn)行網(wǎng)內(nèi)處理,去除冗余信息,形成高質(zhì)量的融合數(shù)據(jù)傳輸?shù)絽R聚節(jié)點(diǎn),從而減小傳輸數(shù)據(jù)量,達(dá)到節(jié)省能量、延長網(wǎng)絡(luò)生命周期、提高數(shù)據(jù)收集效率和準(zhǔn)確度的目的[12,13]。
通過融合過程中采用的不同算法,本文將無線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合技術(shù)分為四類:基于統(tǒng)計(jì)學(xué)的數(shù)據(jù)融合、基于人工智能的數(shù)據(jù)融合、基于信息論的數(shù)據(jù)融合和基于拓?fù)鋵W(xué)的數(shù)據(jù)融合。分類的示意圖如圖2所示。
圖2 WSNs數(shù)據(jù)融合算法分類Fig.2 Classification of data fusion algorithms in WSNs
在無線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合中,基于統(tǒng)計(jì)學(xué)的算法主要運(yùn)用傳統(tǒng)概率統(tǒng)計(jì)方法,利用概率分布或者密度函數(shù)來描述數(shù)據(jù)的不確定性。數(shù)據(jù)融合的目的是從大量冗余、精準(zhǔn)性不高的數(shù)據(jù)中提取所需的數(shù)據(jù)及特征,這無疑與統(tǒng)計(jì)學(xué)研究的方法與目的具有相似性,故統(tǒng)計(jì)學(xué)知識(shí)被大量應(yīng)用于無線傳感器數(shù)據(jù)融合之中。
參數(shù)估計(jì)是根據(jù)從總體中抽取的樣本估計(jì)總體分布中包含的未知參數(shù)的方法。即根據(jù)樣本數(shù)據(jù)如何選擇統(tǒng)計(jì)量去推斷總體的分布或數(shù)字特征等[14]。
Bayes估計(jì)是參數(shù)估計(jì)的重要應(yīng)用之一,可以通過先驗(yàn)概率遞歸地更新狀態(tài)系統(tǒng)的概率分布或者密度函數(shù)[15]。文獻(xiàn)[16]采用了改進(jìn)的 Bayes方法(Modified Bayesian Fusion Algorithm, MB),引入了新的機(jī)制來考慮測量的不一致性,使個(gè)體分布的方差與因子f成正比,并與卡爾曼濾波器進(jìn)行結(jié)合,提高了估計(jì)值的精確度。改進(jìn)的Bayes方法能有效的增加數(shù)據(jù)的真實(shí)性,使后驗(yàn)概率的不確定性降低。
最大似然估計(jì)是在給定模型和樣本集的情況下,用來估計(jì)模型參數(shù)的方法。其基本思想是找到最佳的模型參數(shù),使得模型實(shí)現(xiàn)對(duì)樣本的最大程度擬合。文獻(xiàn)[17]提出了合作信息聚集(Cooperative Information Aggregation, CIA)方法來解決WSN中分布式估計(jì)問題。CIA通過減少數(shù)據(jù)傳輸量達(dá)到節(jié)能效果,并運(yùn)用最大似然估計(jì)對(duì)數(shù)據(jù)進(jìn)行融合,提高了數(shù)據(jù)的準(zhǔn)確性。但是,算法中對(duì)最優(yōu)源分配向量R的尋找是非常困難的,這無疑提高了算法的復(fù)雜度,也使得算法結(jié)果不夠穩(wěn)定。
卡爾曼濾波器是一種最優(yōu)化自回歸的數(shù)據(jù)處理算法,其本質(zhì)是根據(jù)前一次的濾波結(jié)果和當(dāng)前時(shí)刻的測量值,不斷對(duì)預(yù)測協(xié)方差進(jìn)行遞歸,從而估算出當(dāng)前時(shí)刻的濾波結(jié)果。
文獻(xiàn)[18]針對(duì)大規(guī)模傳感器網(wǎng)絡(luò),提出L-KF算法,算法通過定義一個(gè)驗(yàn)證門(validation gate)挑選與狀態(tài)估計(jì)相近的數(shù)據(jù),收集相似數(shù)據(jù)的節(jié)點(diǎn)只用挑選其中一個(gè)在下個(gè)時(shí)段繼續(xù)觀察,其他的則可以轉(zhuǎn)換為睡眠模式,以此減少網(wǎng)絡(luò)能耗。
文獻(xiàn)[19]運(yùn)用量化新息與分散卡爾曼濾波相結(jié)合的方法,考慮了網(wǎng)絡(luò)帶寬與能耗,提出了量化新息分散卡爾曼濾波算法(Quantized Innovation-decentralized Kalman Filter, QI-DKF),有效解決了線性目標(biāo)跟蹤系統(tǒng)量化融合估計(jì)問題,同時(shí)節(jié)約了融合中心的能量消耗。但本算法僅對(duì)標(biāo)量數(shù)據(jù)有明顯效果,對(duì)矢量數(shù)據(jù)則不利于處理。
回歸分析是確定兩種或兩種以上變量間相互依賴的定量關(guān)系的一種統(tǒng)計(jì)分析方法。按照涉及的變量的多少,分為一元回歸和多元回歸分析,其中多元線性回歸算法流程圖如圖3所示。
Carlos等人[20]考慮多元時(shí)空關(guān)系,提出了基于多元回歸方程的數(shù)據(jù)融合算法,提高了數(shù)據(jù)融合的準(zhǔn)確性。運(yùn)用多元線性回歸預(yù)測參數(shù)的方程如下:
其中pijX 表示多個(gè)數(shù)據(jù)樣本的歷史值,β表示多元線性回歸函數(shù)的系數(shù)向量,α為預(yù)測值的常量參數(shù)。回歸算法優(yōu)點(diǎn)在于實(shí)現(xiàn)簡單,算法復(fù)雜度低,但其預(yù)測精度不高,且需頻繁更新預(yù)測模型,造成一定能耗。
總的來說,基于概率統(tǒng)計(jì)的無線傳感器數(shù)據(jù)融合技術(shù),主要解決數(shù)據(jù)的不確定性融合,有完善和可理解的一套數(shù)學(xué)處理方法,但其對(duì)異常數(shù)據(jù)的處理能力較差,即魯棒性較低。表1對(duì)上文提到的幾種算法進(jìn)行了比較。
圖3 多元線性回歸流程圖Fig.3 Flow chart of multivariate linear regression
表1 基于概率統(tǒng)計(jì)的數(shù)據(jù)融合算法比較Table 1 Comparison of data fusion algorithms based on probability and statistics
人工智能是屬于自然科學(xué)和社會(huì)科學(xué)交叉的一門邊緣學(xué)科,其本質(zhì)是對(duì)人的思維的信息過程的模擬,其分支計(jì)算智能技術(shù)是運(yùn)用最廣泛的技術(shù)之一[21,22]。
遺傳算法(Genetic Algorithm)是模擬達(dá)爾文生物進(jìn)化論的自然選擇和遺傳學(xué)機(jī)理的生物進(jìn)化過程的計(jì)算模型,它并不保證你能獲得問題的最優(yōu)解,而只需簡單的“否定”一些表現(xiàn)不好的個(gè)體即可。由于遺傳算法的這些特點(diǎn),使其適用于搜索空間較大且對(duì)結(jié)果準(zhǔn)確性要求不高的應(yīng)用中[23]。
文獻(xiàn)[23]考慮到傳感器節(jié)點(diǎn)的負(fù)載均衡和能耗問題,提出了利用遺傳算法建立平衡、節(jié)能數(shù)據(jù)聚集生成樹。算法使用修復(fù)函數(shù)來避免無效的染色體。同時(shí),該算法把節(jié)點(diǎn)負(fù)載和能量剩余作為參考因素,優(yōu)化了傳感器網(wǎng)絡(luò)的負(fù)載均衡問題,大大提高了網(wǎng)絡(luò)的生命周期。但在節(jié)點(diǎn)選擇時(shí)會(huì)額外消耗能量,且樹形結(jié)構(gòu)往往會(huì)有延遲問題。
文獻(xiàn)[24]基于遺傳算法中的分類器系統(tǒng),提出遺傳機(jī)器學(xué)習(xí)算法(Genetic Machine Learning Algorithm, GMLA)。該算法通過動(dòng)態(tài)的調(diào)整傳感器節(jié)點(diǎn)把數(shù)據(jù)發(fā)送到基站的概率,來提高數(shù)據(jù)融合的質(zhì)量,并減少了數(shù)據(jù)傳輸量,節(jié)約網(wǎng)絡(luò)能耗。但該方案適用于高密度的傳感器網(wǎng)絡(luò),對(duì)發(fā)送率低的網(wǎng)絡(luò)則效果不夠明顯,且存在一定數(shù)據(jù)延遲。
神經(jīng)網(wǎng)絡(luò)(Neural Networks, NNs),是由大量簡單的處理單元(神經(jīng)元)組成的非線性自適應(yīng)自組織系統(tǒng),具有極強(qiáng)的非線性逼近、大規(guī)模并行處理、自訓(xùn)練學(xué)習(xí)、自組織和容錯(cuò)能力等優(yōu)點(diǎn)[25][26]。
文獻(xiàn)[27]將 BP神經(jīng)網(wǎng)絡(luò)和傳感器網(wǎng)絡(luò)分簇路由協(xié)議進(jìn)行結(jié)合,提出 BPNDA(Back-Propagation Networks Data Aggregation)算法。數(shù)據(jù)融合模型以分簇路由協(xié)議 LEACH為基礎(chǔ),通過在簇首節(jié)點(diǎn)利用 BP神經(jīng)網(wǎng)絡(luò)對(duì)簇成員節(jié)點(diǎn)采集的原始數(shù)據(jù)進(jìn)行特征提取,從而提高數(shù)據(jù)收集效率,延長網(wǎng)絡(luò)生存時(shí)間。但文獻(xiàn)中沒有提出缺乏訓(xùn)練集合情況下的實(shí)現(xiàn)方案。
類似的,文獻(xiàn)[28]也采用BP神經(jīng)網(wǎng)絡(luò)與傳感器網(wǎng)絡(luò)分簇路由協(xié)議結(jié)合的方法,提出了 CNNSMPSO(Clustering Hamming Network-SMPSO)算法。算法采用分期變異粒子群優(yōu)化算法來優(yōu)化神經(jīng)網(wǎng)絡(luò),加強(qiáng)了數(shù)據(jù)融合的準(zhǔn)確性,同時(shí)分簇協(xié)議也延長了傳感器網(wǎng)絡(luò)生命周期。但對(duì)樣本先驗(yàn)信息的提取問題文章沒有涉及,特別是在大規(guī)模網(wǎng)絡(luò)樣本的情況下,樣本的選擇直接影響訓(xùn)練的結(jié)果準(zhǔn)確性。
模糊邏輯運(yùn)用模糊集合的方法來研究模糊性思維、語言形式及其規(guī)律,故其適合處理不準(zhǔn)確性以及不確定性的數(shù)據(jù)[29]。
文獻(xiàn)[30]在每個(gè)傳感器節(jié)點(diǎn)中嵌入二型模糊邏輯系統(tǒng)(Type-II Fuzzy Logic System, T2FLS),基于當(dāng)前數(shù)據(jù)狀態(tài)與歷史狀態(tài),通過模糊邏輯控制器對(duì)待發(fā)送的數(shù)據(jù)分配一個(gè)權(quán)重,簇頭再對(duì)簇成員的數(shù)據(jù)進(jìn)行統(tǒng)一收集與融合后將融合的數(shù)據(jù)發(fā)送到基站,達(dá)到了對(duì)源數(shù)據(jù)進(jìn)行區(qū)分,僅傳輸正確數(shù)據(jù)的目的。
文獻(xiàn)[31]對(duì)行星探測無線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合算法(Space Wireless Sensor Networks for Planetary Exploration, SWIPE)進(jìn)行了介紹。傳感器數(shù)據(jù)通過數(shù)據(jù)類型和時(shí)間標(biāo)示對(duì)數(shù)據(jù)進(jìn)行重分類,然后提取特征和建立模糊集,最后分析特征和輸出決定值。該算法通過運(yùn)用模糊邏輯系統(tǒng)與統(tǒng)計(jì)規(guī)則相結(jié)合的融合方式,提高了數(shù)據(jù)預(yù)測的準(zhǔn)確性,并且減少了數(shù)據(jù)傳輸量,節(jié)約了能耗。
人工智能算法因?yàn)槟芡ㄟ^一定的先驗(yàn)知識(shí)與規(guī)律,通過自組織、自適應(yīng)的學(xué)習(xí)方式有效的對(duì)數(shù)據(jù)進(jìn)行訓(xùn)練及預(yù)測,被廣泛的應(yīng)用到無線傳感器網(wǎng)絡(luò)中。為了更好的進(jìn)行對(duì)比分析,表2對(duì)本章涉及到的算法進(jìn)行了整體的比較。
基于信息論的傳感器管理方法是通過信息熵來定量的描述與目標(biāo)環(huán)境作用的不確定性,通過度量信息熵的變化求解信息增量,然后根據(jù)人為的設(shè)定或優(yōu)化條件,對(duì)網(wǎng)絡(luò)的數(shù)據(jù)進(jìn)行合理與科學(xué)的融合。
表2 基于人工智能數(shù)據(jù)融合算法總結(jié)Table 2 Comparison of data fusion algorithms based on artificial intelligence
聚類分析算法因?yàn)楹唵沃庇^,不需要先驗(yàn)知識(shí)等特點(diǎn)而廣泛應(yīng)用于數(shù)據(jù)融合之中,但由于其分類結(jié)果完全依賴與事先選擇的聚類變量,同時(shí)有時(shí)依據(jù)距離參數(shù)并不能得到理想的數(shù)據(jù)關(guān)聯(lián)性,這也影響了聚類分析法的具體應(yīng)用。
文獻(xiàn)[32]提出的KC(K-means Clustering)算法運(yùn)用K-均值算法對(duì)傳感器節(jié)點(diǎn)進(jìn)行分簇,然后用數(shù)據(jù)融合算法對(duì)簇內(nèi)數(shù)據(jù)進(jìn)行數(shù)據(jù)型融合和決策型融合。該算法通過相似性來分組未標(biāo)記的節(jié)點(diǎn),以達(dá)到對(duì)數(shù)據(jù)的分類管理,因此大大提高了簇內(nèi)成員數(shù)據(jù)的相關(guān)性,但k值的選取需要人為的給出,在不知道具體分類數(shù)量的情況下難以進(jìn)行,并且該方法不適用于大規(guī)模傳感器網(wǎng)絡(luò)。
文獻(xiàn)[33]提出基于分簇的最優(yōu)融合集(Optimal Fusion Set based Clustering, OFSC)算法來優(yōu)化對(duì)連續(xù)目標(biāo)的監(jiān)測問題。最優(yōu)融合集φ的定義如下:
其中sji(t)表示t時(shí)刻第 j個(gè)簇中號(hào)節(jié)點(diǎn)i的數(shù)據(jù),cj(t)表示t時(shí)刻的簇中心,即簇?cái)?shù)據(jù)的平均值,TH表示融合誤差。該算法增加了分簇效率,同時(shí)兼顧負(fù)載均衡,提高了融合準(zhǔn)確度和網(wǎng)絡(luò)生命周期。
信息熵是信息論中非常重要的一個(gè)概念,它表示信源輸出的所有數(shù)據(jù)的自信息的統(tǒng)計(jì)平均值,也稱為平均自信息量。
文獻(xiàn)[34]提出基于熵的數(shù)據(jù)融合樹(Energy Efficient Data Aggregation Trees, EDAT)算法。算法首先運(yùn)用Prim算法構(gòu)建最小生成樹,通過不斷廣播信息與附近節(jié)點(diǎn)構(gòu)建連接,再選擇權(quán)重最小的邊加入生成樹中。本算法通過使冗余度大的節(jié)點(diǎn)進(jìn)入休眠來減少了數(shù)據(jù)的傳輸量與總的能耗,但對(duì)錯(cuò)誤數(shù)據(jù)很難進(jìn)行排除,且距離基站越近的節(jié)點(diǎn)能耗越高,越易死亡。
文獻(xiàn)[35]提出熵值敏感、基于分簇的目標(biāo)追蹤算法(Entropy-aware Cluster-based Object Tracking,ECOT)。算法引入變量獎(jiǎng)勵(lì)來判斷節(jié)點(diǎn)是否值得被激活。當(dāng)時(shí),該節(jié)點(diǎn)激活,反之,則抑制,以此提高數(shù)據(jù)準(zhǔn)確性的目的。但對(duì)于大規(guī)模無線傳感器網(wǎng)絡(luò)來說,計(jì)算相鄰節(jié)點(diǎn)間的獎(jiǎng)勵(lì)無疑增加了計(jì)算量,降低節(jié)能效果。
基于信息論的數(shù)據(jù)融合算法是通過識(shí)別觀測空間中參數(shù)的相似性來進(jìn)行融合操作,一般不能直接對(duì)數(shù)據(jù)的某些方面建立明確的識(shí)別函數(shù)。表3對(duì)本節(jié)提到的4種算法進(jìn)行了比較。
表3 基于信息論數(shù)據(jù)融合算法比較Table 3 Comparison of data fusion algorithms based on information theory
基于拓?fù)鋵W(xué)的無線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合主要從網(wǎng)絡(luò)節(jié)點(diǎn)的拓?fù)浣Y(jié)構(gòu)出發(fā),設(shè)計(jì)符合該網(wǎng)絡(luò)需求的拓?fù)浣Y(jié)構(gòu),具體可分為以下兩類,即:基于平面網(wǎng)絡(luò)結(jié)構(gòu)的數(shù)據(jù)融合協(xié)議與基于層次網(wǎng)絡(luò)結(jié)構(gòu)的數(shù)據(jù)融合協(xié)議。
在平面網(wǎng)絡(luò)結(jié)構(gòu)中,每一個(gè)傳感器節(jié)點(diǎn)扮演著相同的角色,不存在等級(jí)與層次的差異,且有著相同的硬件結(jié)構(gòu)和電池能量[36,37]。平面型路由協(xié)議的優(yōu)點(diǎn)是簡單、易于擴(kuò)展,對(duì)數(shù)據(jù)融合的損失最??;其缺點(diǎn)是缺乏對(duì)通信資源的優(yōu)化管理,對(duì)網(wǎng)絡(luò)動(dòng)態(tài)變化的反應(yīng)速度慢,同時(shí),平面型網(wǎng)絡(luò)可能會(huì)導(dǎo)致匯聚節(jié)點(diǎn)過度的通信和計(jì)算負(fù)擔(dān),導(dǎo)致更快的耗盡其電池功率。平面型網(wǎng)絡(luò)結(jié)構(gòu)圖示如圖4所示。
圖4 平面型路由協(xié)議示意圖Fig.4 Diagram of planar routing protocol
文獻(xiàn)[38]提出基于模糊邏輯的平面路由算法FRFL(Flat Routing Using Fuzzy Logic)。在每個(gè)傳感器節(jié)點(diǎn)運(yùn)用模糊推理系統(tǒng),以物理位置與轉(zhuǎn)發(fā)數(shù)據(jù)包的數(shù)量為參考來決定該節(jié)點(diǎn)的下一跳節(jié)點(diǎn)。該算法利用模糊系統(tǒng)能有效處理異構(gòu)與不準(zhǔn)確性數(shù)據(jù)的優(yōu)點(diǎn),增加了路由的速度與準(zhǔn)確性。同時(shí),以轉(zhuǎn)發(fā)數(shù)據(jù)包的數(shù)量而不是節(jié)點(diǎn)剩余能量為參數(shù),降低了節(jié)點(diǎn)間交換信息的能量損耗,提高了網(wǎng)絡(luò)生命周期。
文獻(xiàn)[39]提出一種新的能量感知路由協(xié)議(Efficient Energy Aware Routing Protocol, EEARP)用來找到源節(jié)點(diǎn)與sink間通信的最小消耗,同時(shí)找出實(shí)時(shí)數(shù)據(jù)傳輸?shù)淖疃搪酚伞T撍惴ㄒ阅芎呐c時(shí)延作為參數(shù)構(gòu)建成本函數(shù),為每條路由分配一個(gè)成本。成本函數(shù)的公式如下:
其中ijD 代表節(jié)點(diǎn)i與 j的距離,jE 代表節(jié)點(diǎn) j的剩余能量,pETX 代表在該鏈路上發(fā)送一個(gè)數(shù)據(jù)包需要的數(shù)據(jù)傳輸量的預(yù)測。
層次型路由將傳感器網(wǎng)絡(luò)中的節(jié)點(diǎn)按照地理位置或者數(shù)據(jù)類型分為不同層次,處于不同層的節(jié)點(diǎn)在網(wǎng)絡(luò)中進(jìn)行著不同的任務(wù)。
4.2.1 基于樹的數(shù)據(jù)融合算法
在一個(gè)基于樹的網(wǎng)絡(luò)中,傳感器節(jié)點(diǎn)被組織成一棵樹,即形成以sink為根,源節(jié)點(diǎn)為葉的數(shù)據(jù)融合樹。基于樹的數(shù)據(jù)融合網(wǎng)絡(luò)如圖5所示。
圖5 基于樹拓?fù)涞臄?shù)據(jù)融合Fig.5 Data fusion based on tree topology
文獻(xiàn)[40]提出一種網(wǎng)內(nèi)融合數(shù)據(jù)路由(Reliable Routing Approach for In-Network Aggregation,DRINA)算法,旨在建立一條擁有連接所有源節(jié)點(diǎn)和sink的最短路徑的路由樹。該算法將簇的思想融入生成樹中,保證了擁有相似數(shù)據(jù)的節(jié)點(diǎn)能盡快對(duì)數(shù)據(jù)進(jìn)行融合,同時(shí)最短路徑也減少了能量消耗。但主節(jié)點(diǎn)對(duì)數(shù)據(jù)進(jìn)行融合會(huì)額外消耗更多能量,容易過早死亡。
文獻(xiàn)[41]針對(duì)節(jié)點(diǎn)負(fù)載不均的問題,提出了本地樹重建(Local-Tree-Reconstruction Algorithm, LTRA)算法。該算法通過動(dòng)態(tài)的調(diào)整生成樹的結(jié)構(gòu),將能量低、數(shù)據(jù)多的節(jié)點(diǎn)設(shè)定為葉子或較低層節(jié)點(diǎn),以此來均衡網(wǎng)絡(luò)能耗。但越準(zhǔn)確的調(diào)整意味著節(jié)點(diǎn)需要知道的其他節(jié)點(diǎn)信息越多,從而數(shù)據(jù)交換量越大,故本算法需要對(duì)能耗與準(zhǔn)確度進(jìn)行折中選擇。
4.2.2 基于簇的數(shù)據(jù)融合
基于簇的數(shù)據(jù)融合協(xié)議將整個(gè)網(wǎng)絡(luò)分成若干個(gè)簇區(qū)域,每個(gè)簇通過一定的規(guī)則選取它們的簇頭,簇頭負(fù)責(zé)簇內(nèi)節(jié)點(diǎn)的協(xié)調(diào)與簇間數(shù)據(jù)的通信?;诖氐木W(wǎng)絡(luò)結(jié)構(gòu)因其高效性、較低的復(fù)雜度和靈活性而廣泛運(yùn)用于不同環(huán)境中[42,43]?;诖氐木W(wǎng)絡(luò)結(jié)構(gòu)示意圖如圖6所示。
圖6 基于簇拓?fù)涞臄?shù)據(jù)融合Fig.6 Data fusion based on cluster topology
最早的分簇協(xié)議是LEACH(Low Energy Adaptive Clustering Hierarchy)[44]。該算法將整個(gè)網(wǎng)絡(luò)的能量消耗均勻分配到網(wǎng)絡(luò)中的每個(gè)傳感器節(jié)點(diǎn),從而達(dá)到均衡網(wǎng)絡(luò)負(fù)載,提高網(wǎng)絡(luò)生存周期的目的。但簇的重建需要消耗額外能量,同時(shí)算法也沒有考慮簇頭節(jié)點(diǎn)的物理位置,故存在許多待完善的地方。
文獻(xiàn)[45]針對(duì)簇結(jié)構(gòu)網(wǎng)絡(luò)存在數(shù)據(jù)轉(zhuǎn)發(fā)時(shí)延問題,提出了時(shí)延敏感網(wǎng)絡(luò)結(jié)構(gòu)(Delay-Aware Network Structure, DANS),將節(jié)點(diǎn)分為不同尺寸的簇,使其能夠以交錯(cuò)的時(shí)間分別與融合中心通信。但簇成員較多的簇頭實(shí)現(xiàn)數(shù)據(jù)融合與傳輸時(shí)必然會(huì)消耗更多的能力,這會(huì)使其過早死亡。
文獻(xiàn)[46]為了獲得安全與準(zhǔn)確數(shù)據(jù),提出了雙簇頭模型(Double Cluster Heads Model, DCHM)。雙簇頭機(jī)制能有效分擔(dān)簇頭因數(shù)據(jù)融合而消耗的大量能量,提高了網(wǎng)絡(luò)生命周期。但本算法的部分參數(shù)需要用戶運(yùn)用先驗(yàn)知識(shí)預(yù)先設(shè)定,則增加了算法的不確定性。
4.2.3 基于鏈的數(shù)據(jù)融合
基于鏈的的網(wǎng)絡(luò)結(jié)構(gòu)是對(duì)基于簇的網(wǎng)絡(luò)結(jié)構(gòu)的一種變換?;阪湹臄?shù)據(jù)融合的主要思想是每個(gè)節(jié)點(diǎn)只將數(shù)據(jù)傳輸給鄰近節(jié)點(diǎn),節(jié)點(diǎn)間通過鏈的方式多跳傳輸數(shù)據(jù),以此來節(jié)約網(wǎng)絡(luò)能耗。
PEGASIS(Power-Efficient GAthering in Sensor Information Systems)[47]協(xié)議正是基于鏈的思想設(shè)計(jì)出的路由協(xié)議。在PEGASIS中,算法通過貪心方式或者sink以集中式方法將網(wǎng)絡(luò)中的所有節(jié)點(diǎn)連接成一條單鏈,然后選擇一個(gè)節(jié)點(diǎn)作為主節(jié)點(diǎn),最終由主節(jié)點(diǎn)將融合好的數(shù)據(jù)傳輸給 sink。圖 7展示了PEGASIS的網(wǎng)絡(luò)結(jié)構(gòu)示意圖。
圖7 PEGASIS的網(wǎng)絡(luò)結(jié)構(gòu)Fig.7 The network structure of PEGASIS
文獻(xiàn)[48]將網(wǎng)絡(luò)鏈結(jié)構(gòu)與簇結(jié)構(gòu)相結(jié)合,提出了基于鏈的簇合作協(xié)議(ChainBased Cluster Cooperative Protocol, CBCCP)。該算法通過設(shè)置協(xié)調(diào)節(jié)點(diǎn)降低了不同簇間的通信距離,減少了網(wǎng)絡(luò)延遲,也提高了簇內(nèi)數(shù)據(jù)融合的能量有效性。但是在成簇階段,協(xié)調(diào)節(jié)點(diǎn)的選擇需要與子簇進(jìn)行通信,這無疑增加了能量消耗。
文獻(xiàn)[49]提出基于 MECA(Mobile-sink based energy-efficient clustering algorithm)與PEGASIS的能量有效分簇算法。算法設(shè)置移動(dòng)sink以固定、可預(yù)知的方式圍繞傳感區(qū)域移動(dòng)。以此均衡了網(wǎng)絡(luò)節(jié)點(diǎn)的能量消耗、提高了網(wǎng)絡(luò)生命周期,但是移動(dòng)sink的使用必定會(huì)增加節(jié)點(diǎn)與sink間的通信能耗,且不易擴(kuò)展。對(duì)于節(jié)點(diǎn)分布不均勻的網(wǎng)絡(luò),密集簇內(nèi)的簇頭能耗負(fù)擔(dān)會(huì)變大。
就一般來說,相比于分層網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu),平面型網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)因其節(jié)點(diǎn)間同構(gòu),故具備算法簡單、冗余度高、數(shù)據(jù)融合精確和魯棒性高等特點(diǎn)。但同時(shí),它也存在許多不足,如通信效率較低、能量消耗相對(duì)大等。層次型網(wǎng)絡(luò)通過構(gòu)建更為復(fù)雜的協(xié)議,使其具備了許多較于平面型網(wǎng)絡(luò)所不具備的優(yōu)點(diǎn)。表4對(duì)本章提到的幾種算法進(jìn)行了比較,分析了他們的特點(diǎn)。
表4 基于拓?fù)鋵W(xué)的數(shù)據(jù)融合算法比較Table 4 Comparison of data fusion algorithms based on topology
無線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合技術(shù)旨在對(duì)傳感器采集的數(shù)據(jù)通過多層次、多方面的特征提取以及估計(jì)的方式,將信源在時(shí)間與空間上的互補(bǔ)與冗余信息依照某種優(yōu)化準(zhǔn)則重新組合起來。一般來說,數(shù)據(jù)融合的優(yōu)點(diǎn)包括提升數(shù)據(jù)可信度以及有效性、節(jié)省通信帶寬及提高網(wǎng)絡(luò)生命周期[50]。在未來,也有許多需要研究的熱點(diǎn),包括:
自動(dòng)融合。這方面研究的主要目的是開發(fā)出一個(gè)統(tǒng)一的融合體系,它將以一個(gè)標(biāo)準(zhǔn)規(guī)范各種融合方式。這將使得每個(gè)新研究提出的數(shù)據(jù)融合方法能夠快速以及自動(dòng)化的實(shí)現(xiàn)。同時(shí)開發(fā)人員可以以一致的開發(fā)語言完成他們的設(shè)計(jì),提高了參照性。
融合可靠性[51]。目前許多研究都對(duì)基本模型的可靠性采取樂觀假設(shè)或者不予考慮。故在將來對(duì)于數(shù)據(jù)源的可靠性、異質(zhì)數(shù)據(jù)的可靠性等方面存在很大的可研究性。包括研究基于環(huán)形拓?fù)浣Y(jié)構(gòu)等多徑傳輸?shù)陌踩珨?shù)據(jù)融合方案等。
安全性[52,53]。在軍事等領(lǐng)域,數(shù)據(jù)融合的安全性是極為重要的。安全隱患包括數(shù)據(jù)被竊聽、數(shù)據(jù)被篡改、數(shù)據(jù)重放攻擊等。融合節(jié)點(diǎn)往往是網(wǎng)絡(luò)中被攻擊的焦點(diǎn),因此,如何保護(hù)融合節(jié)點(diǎn)以及檢測異常入侵是安全性問題的關(guān)鍵。
融合性能的評(píng)估?,F(xiàn)階段大部分研究均是基于模擬或者理想化的假設(shè)前提,這使得很難預(yù)測算法在實(shí)際場合的應(yīng)用。所以,建立一個(gè)通行、標(biāo)準(zhǔn)的評(píng)測測試平臺(tái)是非常有必要的,它能增強(qiáng)系統(tǒng)設(shè)計(jì)員與用戶需求間的可參照性,評(píng)估過程的規(guī)范化也能使評(píng)估更具有靈活性與普遍適用性。
[1] S Chhabra, D Singh. Data Fusion and Data Aggregation/Summarization Techniques in WSNs: A Review, nternational Journal of Computer Applications (0975-8887) 2015, 121(19):21-30.
[2] R Rajagopalan, PK Varshney. Data-aggregation techniques in sensor networks: a survey. IEEE Communications Surveys &Tutorials, 2006, 8(4): 48-63.
[3] BS Jayashri, GR Rao. Reviewing the research paradigm of techniques used in data fusion in WSN .International Conference on Computing & Communications Technologies,2015 : 83-88.
[4] P Zou, Y Liu. An Efficient Data Fusion Approach for Event Detection in Heterogeneous Wireless Sensor Networks. Applied Mathematics & Information Sciences, 2015, 9(1):517-526.
[5] 康健, 左憲章, 唐力偉, 等. 無線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合技術(shù).計(jì)算機(jī)科學(xué), 2010, 37(4): 31-35.
[6] EJ Msechu, GB Giannakis. Sensor-Centric Data Reduction for Estimation With WSNs via Censoring and Quantization.IEEE Transactions on Signal Processing, 2012, 60(1):400-414.
[7] P Zou, Y Liu. An Efficient Data Fusion Approach for Event Detection in Heterogeneous Wireless Sensor Networks. Applied Mathematics & Information Sciences, 2015, 9(1):517-526.
[8] B Khaleghi, A Khamis, FO Karray, et al. Multisensor data fusion: A review of the state-of-the-art, Information Fusion,2013, 14(1): 28-44.
[9] MG Yang, JS He, XG Sun. Research on Secure Data Aggregation in Wireless Sensor Networks based on Clustering Method. Internet Technology and Applications (iTAP), 2011 International Conference on, 2011: 1-4.
[10] J Yue, W Zhang, W Xiao, et al. A Novel Cluster-based Data Fusion Algorithm for Wireless Sensor Network. International Conference on Wireless Communications, Networking &Mobile Computing, 2011, 6796(1): 1-5.
[11] E Baccarelli, F Chiti, N Cordeschi, et al. Green multimedia wireless sensor networks: distributed intelligent data fusion,in-network processing, and optimized resource management.Wireless Communications IEEE, 2014, 21(4): 20-26.
[12] MM Fouad, NE Oweis, T Gaber, et al, Data Mining and Fusion Techniques for WSNs as a Source of the Big Data.Procedia Computer Science, 2015, 65: 778-786.
[13] MF Duarte, YH Hu. Vehicle classification in distributed sensor networks. Journal of Parallel & Distributed Computing, 2004, 64(7): 826-838.
[14] H Luo, H Tao, H Ma, et al. Data Fusion with Desired Reliability in Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 2010, 22(3): 501-513.
[15] Z Zhang, JX Li, L Liu. Distributed state estimation and data fusion in wireless sensor networks using multi-level quantized innovation. Sciece China Information Sciences, 2016,59(2): 1-15.
[16] WA Abdulhafiz, A Khamis. Bayesian approach to multisensor data fusion with Pre- and Post-Filtering. IEEE International Conference on Networking, 2013: 373-378.
[17] YR Tsai, CJ Chang. Cooperative Information Aggregation for Distributed Estimation in Wireless Sensor Networks.IEEE Transactions on Signal Processing, 2011, 59(8): 3876-3888.
[18] M Soltani, M Hempel, H Sharif. Data fusion utilization for optimizing large-scale Wireless Sensor Networks. IEEE ICC 2014 - Ad-hoc and Sensor Networking Symposium.
[19] J Xu, JX Li, S Xu. Data fusion for target tracking in wireless sensor networks using quantized innovations and Kalman filtering. Science China Information Sciences, 2012, 55(3):530-544.
[20] M Yang. Constructing energy efficient data aggregation trees based on information entropy in wireless sensor networks.IEEE Advanced Information Technology, Electronic &Automation Control Conference, 2015: 527-531.
[21] RV Kulkarni, A F?rster, GK Venayagamoorthy. Computational Intelligence in Wireless Sensor Networks: A Survey.IEEE Communications Surveys & Tutorials, 2011, 13(1):68-96.
[22] MR Senouci, A Mellouk, N Aitsaadi, et al. Fusion-based surveillance WSN deployment using Dempster-Shafer theory.Journal of Network & Computer Applications, 2016, 64(C):154-166.
[23] O Islam, S Hussain, H Zhang. Genetic algorithm for data aggregation trees in wireless sensor networks. Intelligent Environments, 2007, 43(20): 312-316.
[24] AR Pinto, C Montez, G Araújo, et al. An approach to implement data fusion techniques in wireless sensor networks using genetic machine learning algorithms. Information Fusion,2014, 15(1): 90-101.
[25] DF Larios, J Barbancho, G RodríGuez, et al. Energy efficient wireless sensor network communications based on computational intelligent data fusion for environmental monitoring.Communications Iet, 2012, 6(14): 2189-2197.
[26] X Luo, XH Chang. A Novel Data Fusion Scheme using Grey Model and Extreme Learning Machine in Wireless Sensor Networks. International Journal of Control, Automation, and Systems, 2015, 13(3): 539-546.
[27] 孫凌逸, 黃先祥, 蔡偉, 等.基于神經(jīng)網(wǎng)絡(luò)的無線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合算法.傳感技術(shù)學(xué)報(bào), 2011, 24(1): 122-127.
[28] S Li, M Liu, L Xia. WSN data fusion approach based on improved BP algorithm and clustering protocol. 2015 27th Chinese Control and Decision Conference, 2015: 1450-1454
[29] X Zhai, H Jing, T Vladimirova. Multi-sensor data fusion in Wireless Sensor Networks for Planetary Exploration. Adaptive Hardware & Systems, 2014: 188-195.
[30] D Izadi, JH Abawajy, S Ghanavati, et al. A Data Fusion Method in Wireless Sensor Networks. Sensors 2015, 15,2964-2979.
[31] YN Yu, XF Feng, JX Hu. Multi-sensor Data Fusion Algorithm of Triangle Module Operator in WSN. International Conference on Mobile Ad-hoc & Sensor Networks, 2014:105-111.
[32] AD Ribas, JG Colonna, CMS Figueiredo, et al. Similarity Clustering for Data Fusion in Wireless Sensor Networks using k-means. International Joint Conference on Neural Networks, 2012, 20: 1-7.
[33] H Chen, G Liu, X Wu, et al. Optimal Fusion Set based Clustering in WSN for continuous objects monitoring. International Conference on Communications & Networking in China, 2014: 26-31.
[34] M Yang. Constructing energy efficient data aggregation trees based on information entropy in wireless sensor networks.2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 19-20 Dec.2015, 527-531.
[35] SBA De, JR Martinez-De Dios, A Ollero. Entropy-aware cluster-based object tracking for camera Wireless Sensor Networks. IEEE/RSJ International Conference on Intelligent Robots & Systems IEEE/RSJ International Conference on Intelligent Robots & Systems, 2012: 3985-3992.
[36] J Kulik, W Heinzelman, H Balakrishnan. Negotiation-Based Protocols for Disseminating Information in Wireless Sensor Networks. Wireless Networks, 1999, 8(2/3): 169-185.
[37] C Intanagonwiwat, R Govindan, D Estrin. Directed diffusion:a scalable and robust communication paradigm for sensor networks. Proceedings of Annual International Conference on Mobile Computing and Networking, 2000: 56-67.
[38] SJ Dastgheib, H Oulia, MRS Ghassami, et al. A new method for flat routing in wireless sensor etworks using fuzzy logic.2011 International Conference on Computer Science and Network Technology, 2012, 3: 2112-2116.
[39] S Arulselvi, B Karthik, TVUK Kumar. Energy Conservation Protocol for Real Time Traffic in Wireless Sensor Networks.Middle East Journal of Scientific Research, 2013, 15(12):1727-1732.
[40] L Villas, A Boukerche, HSR Filho, et al. DRINA: A Lightweight and Reliable Routing Approach for In-Network Aggregation in Wireless Sensor Networks. IEEE Transactions on Computers, 2012, 99(4): 676-689.
[41] NT Nguyen, BH Liu, VT Pham. On maximizing the lifetime for data aggregation in wireless sensor networks using virtual data aggregation trees. Computer Networks the International Journal of Computer & Telecommunications Networking,2016, 105(C): 99-110.
[42] T Liu, YQ Wu. Energy Optimized Approach Based on Clustering Routing Arithmetic for Wireless Senor Networks.Chinese Journal of Sensors & Actuators》, 2011, 24(5):764-770.
[43] C Zhang, Y Su, Y Liu. Dynamic Clustering Algorithm with Balanced Load in Wireless Sensor Networks. IEEE International Conference on Computer Science & Information Technology, 2009, 13(6): 177-181.
[44] WR Heinzelman, A Chandrakasan, H Balakrishnan. Energy-efficient communication protocol for wireless microsensor networks. Adhoc & Sensor Wireless Networks,2000, 18: 8020.
[45] CT Cheng, H Leung, P Maupin. A Delay-Aware Network Structure for Wireless Sensor Networks With In-Network Data Fusion. IEEE Sensors Journal, 2013, 13(5): 1622-1631.[46] JS Fu, Y Liu. Double Cluster Heads Model for Secure and Accurate Data Fusion in Wireless Sensor Networks. Sensors 2015, 15(1): 2021-2040.
[47] S Lindsey, C Raghavendra, KM Sivalingam. Data gathering algorithms in sensor Networks using energy metrics. IEEE Transactions on Parallel & Distributed Systems2002, 13(13):924-935.
[48] S Rani, J Malhotra, R Talwar. Energy efficient chain based cooperative routing protocol for WSN, Applied Soft Computing, 2015, 35(C): 386-397.
[49] J Wang, J Cao, Y Cao, et al. An Improved Energy-Efficient Clustering Algorithm Based on MECA and PEGASIS for WSNs. Third International Conference on Advanced Cloud &Big Data, 2015: 262-266.
[50] 趙小敏, 梁學(xué)利, 蔣雙雙, 等. 安全的WSN數(shù)據(jù)融合隱私保護(hù)方案設(shè)計(jì). 通信學(xué)報(bào), 2014, 35(11): 154-161.
[51] J Joshi, A Bagga, A Bhargava. Secured and energy efficient architecture for sensor networks. IEEE International Conference on Computational Intelligence & Virtual Environments for Measurement Systems & Applications, 2016: 1-6.
[52] L Li, J Li. Research of Compressed Sensing Theory in WSN Data Fusion. International Symposium on Computational Intelligence & Design, 2011, 2: 125-128.
[53] 趙繼軍, 魏忠誠, 李志華, 等. 無線傳感器網(wǎng)絡(luò)中多類型數(shù)據(jù)融合研究綜述. 計(jì)算機(jī)應(yīng)用研究, 2012, 29(8):2811-2816.
A Survey of Data Fusion in Wireless Sensor Networks
ZHANG Hao, ZHANG Jing-jing
(College of Computer Science, South-central University For Nationalities, Wuhan 430074, China)
Data fusion is one of the key technologies in wireless sensor networks, it can fuse similar data and predict the future data to reduce the transmission of data between nodes and simplify the redundant data, so as to improve the network lifetime and data accuracy. In this paper, the research status of data fusion algorithm in recent years is analyzed depth. Based on the fusion algorithm and fusion rule adopted in the fusion process, the existing data fusion technology in wireless sensor networks is divided into four categories which based on statistics, artificial intelligence, information theory and topological. These four kinds of technology are summarized in principle. The different fusion algorithms are analyzed and compared in terms of performance, latency, complexity and energy consumption. Finally we introduces the research emphases of data fusion in future, which including automatic fusion, fusion evaluation and so on.
WSNs; Data fusion; Energy-efficiency
TP2 12.9
A
10.3969/j.issn.1003-6970.2017.12.060
本文著錄格式:張浩,張靜靜. 無線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合算法綜述[J]. 軟件,2017,38(12):296-304
國家自然科學(xué)基金面上項(xiàng)目(61772562);湖北省自然科學(xué)基金杰出青年項(xiàng)目(2017CFA043)
張浩(1993-),男,碩士,無線網(wǎng)絡(luò)。