• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design optimization of a silicon-germanium heterojunction negative capacitance gate-all-around tunneling field effect transistor based on a simulation study

    2023-10-11 07:56:08WeijieWei魏偉杰Weifeng呂偉鋒YingHan韓穎CaiyunZhang張彩云andDengkeChen諶登科
    Chinese Physics B 2023年9期
    關(guān)鍵詞:登科彩云

    Weijie Wei(魏偉杰), Weifeng Lü(呂偉鋒), Ying Han(韓穎), Caiyun Zhang(張彩云), and Dengke Chen(諶登科)

    School of Microelectronics,Hangzhou Dianzi University,Hangzhou 310018,China

    Keywords: negative capacitance (NC), gate-all-around (GAA), silicon-germanium heterojunction, gate-tosource overlap(SOL)

    1.Introduction

    Currently, reducing the power consumption of complementary metal–oxide semiconductor (CMOS) integrated circuits is an urgent problem that needs to be solved.One way to achieve this is to design CMOS devices with good switching characteristics that are defined by sub-threshold swing (SS).[1]TheSSof a conventional metal–oxide–semiconductor field-effect transistor (MOSFET) cannot be lower than 60 mV/decade due to the Boltzmann limit defined by its conduction mechanism.[2,3]A negative capacitance field-effect transistor (NCFET) can meet this requirement because of the negative capacitance(NC)effect of ferroelectric materials.[4]Due to the NC effect,an NCFET can amplify the surface potential of the channel to increase the channel current.[5]Another promising solution to the aforementioned problem could be to use a tunneling field-effect transistor(TFET),which generates the current by injecting charge carriers from the source into the channel via band-to-band tunneling.[6]TFETs can easily obtain a sub-60 mV/decadeSS.However, the TFETs have a low off-state current (IOFF)and on-state current (ION), which results in poor driving capability.[7]To overcome this limitation,materials with a narrow band gap and high carrier mobility, such as germanium(Ge) and indium arsenide (InAs), could be used to form a heterojunction.A heterojunction can improve the band-toband tunneling rate, thus increasing the channel current.[8,9]For sub-3-nm node devices,replacing the fin-type field-effect transistor with a gate-all-around (GAA) structure can further suppress the short-channel effect because of the improved gate control ability.[10–12]

    In previous studies, NCGAA-TFETs were created by connecting a ferroelectric capacitor in series with a metal gate of a GAA-TFET.[13,14]Similarly, other studies used MATLAB simulations to combine the Landau–Khalatnikov equation with a GAA-TFET device model.[15]These techniques make the NCGAA-TFET ideal because they cannot reflect the ferroelectric material deposition on the oxide layer well.In addition, while depositing several materials between the oxide layer and the gate metal can improve device performance,it can also increase the fabrication complexity.[16]Furthermore,the vertical tunneling rate and tunneling area of an NCTFET can be improved by partially moving the gate to the source,thus increasing the channel current.[17–20]In addition,the gate-to-drain extension can improve the bipolar effect of a double-gate tunneling field-effect transistor.[21]Moreover,the inner gate, outer gate, and gate–source overlap can be used to improve the electrical performance of a device, but this makes its structure complex.[22]Moreover,applying the gatesource overlap to a line TFET can also improve the analog performance.[23]However, many of the TFET structures designed to enhance the channel current use compounds in heterojunctions,which increase the CMOS process complexity.

    In this work,a GAA-TFET is combined with the NC effect, silicon–germanium (SiGe) heterojunction, and gate-tosource overlap(SOL),and a comprehensive investigation and analysis are conducted on the proposed NCGAA-SOL-TFET structure.The proposed structure can effectively increase the driving current and improve electrical performance.In addition,the electrical performance of the device can be easily optimized by adjusting the SOL length(LSOL)and the thickness of the ferroelectric layer(TFE).

    2.Proposed structure design and simulations

    A schematic of an NCGAA-SOL-TFET is presented in Fig.1(a), where the thicknesses of HfO2(TOX) and the ferroelectric layer (TFE) are 1 nm and 4 nm, respectively; the channel length(LG)is 15 nm;the source length(LS)and drain length(LD)are 20 nm;the radii(R)of the source,channel,and drain are 5 nm; and the gate-to-source overlap length (LSOL)is 3 nm.The GAA-TFET is selected as a baseline device and used for performance comparison; its schematic is presented in Fig.1(b).Germanium with a band gap of 0.66 eV is used as the source material,and silicon with a band gap of 1.12 eV is used as the construction material of the channel and drain;thus, a heterojunction is formed between the source and the channel.The doping concentrations of the source, channel,and drain are 1×1020cm-3,1×1015cm-3,and 2×1019cm-3,respectively.The device structural parameters and process parameters are in accordance with the IRDS More Moore 2021 version for a 3-nm node.[24]

    Fig.1.(a) The NCGAA-SOL-TFET with SiGe heterojunction, SOL,and ferroelectric layer;(b)the GAA-TFET as a baseline device.

    Excellent capacitance matching can be achieved whenCtotal?CMOS, and this condition should be considered in device design and optimization.As shown in Fig.2,Ctotalis larger thanCMOS,and peak capacitance occurs at a smallerVGS.This indicates that the ferroelectric layer has exhibited a hysteresis-free NC effect.However,whenVGSis larger thanVDS,Ctotalis less thanCMOS,indicating that the capacitanceCFEdoes not matchCMOS.

    Fig.2.The total capacitance for TFE=4 nm and TFE=0 at TOX=1 nm.

    The channel current in the TFET is mostly generated by the band-to-band tunneling of carriers,which mainly occurs at the heterojunction formed at the interface between the source and the channel.When the conduction band in the channel is lower than the valence band in the source, the probability of carrier tunneling is increased.Thus, carrier tunneling mainly occurs in the region between the valence band of the source and the conduction band of the channel.Under the condition of a uniform electric field,GBTBTdenotes the band-to-band tunneling rate of the carrier, which is derived from the Kane model[30,31]as follows:

    whereAk,Bk, andθare the tunneling parameters of the material;AkandBkare 4×1014cm-3·s-1and 1.9×107V/cm for silicon and 9.1×1016cm-3·s-1and 4.9×106V/cm for germanium, respectively;Eis the electric field intensity under the current tunnel volume; andEgis the band gap.In the technology computer-aided design (TCAD) simulations,the Fermi–Dirac distribution model is used for a high doping concentration, and the hydrodynamic model is employed for nanodevices.The other models used in the TCAD simulations include the carrier high electric field velocity saturation model, the scattering model, the band gap narrowing model under high doping concentration,the SRH recombination model,the Auger recombination model,and the Landau–Khalatnikov ferroelectric equation.In addition, the nonlocal band-to-band tunneling model is used to judge the tunneling area based on the local variation in the energy band.The application of the listed physical models makes simulations conducted in this study more accurate and reliable.In addition,as shown in Fig.3,the simulated transfer characteristics(IDS–VGScurve) of the GAA-TFET are calibrated using previous experimental data.[32]

    Fig.3.Calibration of the IDS–VGS curve using the experimental data.

    3.Results,analysis and discussion

    3.1.Source overlap effect on device performance

    The energy band diagrams of the GAA-TFET in the off state (VGS=0,VDS=0.8 V) are presented in Fig.4(a).In this state,the valence band of the source is lower than the conduction band of the channel.Therefore,the band-to-band tunneling rate is low, and only a few electrons will tunnel into the channel to form the off-state current (IOFF).The energy band in the on state (VGS=1.0 V,VDS=0.8 V), where the valence band of the source is higher than the conduction band of the channel, is presented in Fig.4(b).Thus, a large number of electrons will tunnel into the channel to form the onstate current (ION).The transfer characteristics of the GAASOL-TFET are presented in Fig.5(a), where it can be seen that whenLSOLincreases,IONalso increases.WhenLSOLis larger than 1 nm, the sub-threshold current of the GAASOL-TFET is smaller than that of its GAA-TFET counterpart.However,asLSOLincreases,the increase in the saturation current is reduced.Furthermore, when the gate extends toward the source, the electric field on the left side of the heterojunction increases, as shown in Fig.5(b).Moreover, the energy bands of the source–channel interface and the left side of the source–channel interface bend,which improves the bandto-band tunneling area and tunneling rate, increasing the current.WhenLSOLincreases to 5 nm,the current almost reaches the saturation level.As shown in Fig.6, with the increases inLSOL, the electric field is mainly concentrated on the gate corner edge,which decreases the electric field intensity at the heterojunction center.As a result, the tunneling area and the area of the region with a high tunneling rate stop increasing whenLSOL>5 nm.The band-to-band tunneling generation rate and tunneling area along the central section of the GAASOL-TFET are presented in Fig.7.As shown in Fig.7,due to the effect of the electric field edge, whenLSOLincreases, the area with a high band-to-band tunneling rate is gradually concentrated on the heterojunction surface.This reduces the bandto-band tunneling rate at the heterojunction center so that the channel current stops increasing gradually.In addition, with the energy band bending on the left side of the source–channel interface,the width of the depletion region of the heterojunction increases, thus increasing the total capacitance (CMOS),as shown in Fig.8.The tunneling junction is equivalent to a reverse-biased diode.When the gate voltage is large enough,a large number of carriers will accumulate in the channel,and theCMOSwill be dominated by these carriers.However, the carriers that dominate the current are those that tunnel from the source to the channel.[9]

    Fig.4.Band diagrams of the GAA-TFET and GAA-SOL-TFET:(a)off state;(b)on state.

    Fig.5.(a)Transfer characteristics of the GAA-SOL-TFET at different LSOL values; (b)variations in the electric field intensity of the GAASOL-TFET at different LSOL values.

    Fig.7.The band-to-band generation tunneling and tunneling area of the GAA-SOL-TFET at different LSOL values.

    Therefore,CMOSand channel current are not dominated by the same group of carriers, which is the main difference between the TFET and the MOSFET.As shown in Fig.9,whenLSOLincreases, although theSSof the device gradually increases,it still remains below 60 mV/decade.A steeperIDS–VGScurve indicates a faster device switching speed,indicating a smallerSS.In Fig.5(a), it can be observed that theIDS–VGScurves atLSOL=1 nm andLSOL=2 nm are steeper than that ofLSOL=0.However, atLSOL>2 nm, theIDS–VGScurve becomes flatter than that atLSOL=0.Therefore,atLSOL=1 nm andLSOL=2 nm, theSSis smaller than atLSOL=0, but it becomes larger whenLSOL>2 nm.In addition,the threshold voltage(Vth)increases whenLSOLis less than 4 nm but decreases whenLSOLis larger than 4 nm while still staying lower than that of the baseline device.ConsideringVth,ION/IOFF, andSS, the GAA-SOL-TFET achieves its optimal performance atLSOL=3 nm.

    Fig.8.The total capacitance of the GAA-SOL-TFET versus LSOL.

    Fig.9.The SS value versus LSOL value; when LSOL increases, the SS of the GAA-SOL-TFET increases but remains below 60 mV/decade.The Vth of the GAA-SOL-TFET fluctuates in a small range as LSOL increases.

    3.2.NCGAA-SOL-TFET design optimization

    The variations in the channel surface potential at differentTFEvalues are presented in Fig.10.As shown in Fig.10,the surface potential in the NCGAA-SOL-TFET channel is amplified compared to that of the GAA-SOL-TFET.[33]The total capacitance increases due to the increase inLSOL, which makes the capacitance-matching process more complex.As presented in Fig.10,the potential amplification of the channel surface is almost the same atTFE<4 nm.This indicates that in the NCGAA-SOL-TFET,a largerTFEamplifies the channel surface potential obviously.

    TheIDS–VGScurves of the NCGAA-SOL-TFET at differentTFEvalues are presented in Fig.11(a).As shown in Fig.11(a), in the subthreshold region, theIOFFgradually improves with the increase inTFE,except forTFE=1 nm.However, asTFEincreases, the variation trend of the saturation current becomes non-monotonic withVGSwhenVGS>VDS.WhenTFE<3 nm, the saturation current increases slightly withVGS, while it decreases atTFE=5 nm.AtTFE=4 nm,the saturation current increases monotonically and obviously.The main reason for this can be found using Fig.11(b)and formula(1).WhenVGSis small,the change ofCtotalatTFE=1 nm fluctuates, indicating that the capacitance matching becomes poor.WhenVGSis larger thanVDS, atTFE>2 nm, theCtotalof the NCGAA-SOL-TFET is smaller than that of the GAATFET,which indicates poor capacitance matching.As shown in Fig.12(a),for the NCGAA-SOL-TFET,the changes in theSSandVthvalues show opposite trends whenTFEincreases;namely,theSSfirst decreases and then increases,whereas theVthfirst increases and then decreases.The reason for this change can be observed in Fig.11(a).The results indicate that theIDS–VGScurve is the steepest atTFE=0, so theSSis the smallest atTFE=0.Moreover, theIDS–VGScurves atTFE=1 nm andTFE=5 nm are almost the flattest among all the curves.

    Fig.10.Variations in channel surface potential in the NCGAA-SOLTFET under different TFE values.

    As shown in Fig.12(b), bothIONand the peaktransconductance of the NCGAA-SOL-TFET are improved compared to the other devices,and the peak-transconductance appears at a lower gate voltage.The electrical characteristics in Table 1 show thatIONand the peak-transconductance of the NCGAA-SOL-TFET are 2.32 times and 2.11 times larger than those of the other devices,respectively.In addition,Vthdrops from 0.39 V to 0.31 V.It should be noted that both the NC effect and the SOL can enhance the driving capability,but theSSof the NCGAA-SOL-TFET is slightly larger than that of the GAA-TFET, resulting in a reducedION/IOFF.Therefore,different optimized designs should be used for different performance requirements.The GAA-SOL-TFET is suitable for devices with good switching performance,whereas the NCGAASOL-TFET is suitable for devices with a high driving current and a low threshold voltage.

    Fig.11.(a)The IDS of the NCGAA-SOL-TFET versus VGS under different TFE values;(b)Ctotal–VGS characteristics of the NCGAA-SOL-TFET at LSOL of 3 nm and TFE of 0,1 nm,2 nm,3 nm,4 nm,and 5 nm.

    Fig.12.(a)Changing trends of the SS and Vth at different TFE values;(b)IDS–VGS and Gm–VGS curves of the GAA-TFET,GAA-SOL-TFET,NCGAA-TFET,and NCGAA-SOL-TFET.

    Table 1.Electrical performance comparison results of different devices.

    4.Conclusion

    This study proposes the NCGAA-SOL-TFET structure and performs a comprehensive investigation of the proposed structure via TCAD simulations.The results indicate that the NC effect on the silicon–germanium heterojunction and the gate-to-source overlap increase the band-to-band tunneling rate and tunneling area of the source–channel interface,increasing the device current.Thus,in the proposed structure,the problem of the insufficient driving capability of the TFET is effectively solved.In the NCGAA-SOL-TFET structure,changing the gate-to-source overlap length will affect the NC matching and dynamic response characteristics.Therefore,the SOL length and the ferroelectric layer thickness should be considered in the device design.In addition, the proposed structure can improve the driving ability of the GAA-TFET by design optimization.However,the improvement in driving ability may be at the cost of sub-threshold leakage, although the sub-threshold swing of the NCGAA-SOL-TFET is still less than 60 mV/decade.In summary,the proposed NCGAASOL-TFET can achieve both high driving ability and low subthreshold swing,which makes it suitable for future low-power circuit applications.

    Acknowledgements

    The research presented in this work was supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY22F040001), the National Natural Science Foundation of China(Grant No.62071160),and the Graduate Scientific Research Foundation of Hangzhou Dianzi University.

    猜你喜歡
    登科彩云
    Single flow treatment degradation of antibiotics in water using fallingfilm dielectric barrier discharge
    曹陸軍攝影作品
    大眾文藝(2022年19期)2022-10-19 08:18:16
    競技足球比賽技術(shù)制勝因素研究
    彩云之南
    Optical scheme to demonstrate state-independent quantum contextuality
    一路彩云奔小康
    香格里拉(2021年2期)2021-07-28 06:50:48
    當(dāng)時明月在,曾照彩云歸
    海峽姐妹(2020年5期)2020-06-22 08:26:08
    彩云問
    民族音樂(2019年3期)2019-08-14 01:05:16
    趙樹理“折磨”年輕人
    彩云飛
    寶藏(2017年7期)2017-08-09 08:15:17
    国产成人a∨麻豆精品| 国产毛片在线视频| 99精国产麻豆久久婷婷| 国产熟女午夜一区二区三区| av国产精品久久久久影院| 国产 精品1| 狠狠精品人妻久久久久久综合| 一级爰片在线观看| 国产成人精品在线电影| 欧美人与性动交α欧美精品济南到| 欧美另类一区| 欧美日韩av久久| 国产亚洲精品第一综合不卡| 久久精品人人爽人人爽视色| 国产麻豆69| 日本爱情动作片www.在线观看| 麻豆精品久久久久久蜜桃| 亚洲精品久久成人aⅴ小说| 99国产综合亚洲精品| 99热国产这里只有精品6| 久久人人爽av亚洲精品天堂| 欧美成人精品欧美一级黄| 尾随美女入室| 免费观看a级毛片全部| 黄片播放在线免费| 999精品在线视频| 蜜桃在线观看..| 国产精品 国内视频| 一边亲一边摸免费视频| 在线免费观看不下载黄p国产| av线在线观看网站| 叶爱在线成人免费视频播放| 精品午夜福利在线看| 人妻人人澡人人爽人人| 天天影视国产精品| 国产免费福利视频在线观看| 精品久久久久久电影网| 婷婷色综合www| 免费黄网站久久成人精品| 欧美激情极品国产一区二区三区| 国产一区二区在线观看av| 国产成人免费无遮挡视频| 国产精品久久久久久久久免| 波野结衣二区三区在线| 极品人妻少妇av视频| av卡一久久| 丝瓜视频免费看黄片| 黄色视频不卡| 七月丁香在线播放| 国产片特级美女逼逼视频| 免费少妇av软件| 最近最新中文字幕大全免费视频 | av国产精品久久久久影院| 丝袜在线中文字幕| 波野结衣二区三区在线| 亚洲av福利一区| 欧美人与性动交α欧美软件| 亚洲精品久久成人aⅴ小说| 亚洲七黄色美女视频| 国产一区亚洲一区在线观看| 亚洲欧美一区二区三区国产| 亚洲精品美女久久av网站| 免费观看a级毛片全部| 亚洲色图综合在线观看| 美女视频免费永久观看网站| 成年人免费黄色播放视频| av福利片在线| 久久国产亚洲av麻豆专区| 亚洲专区中文字幕在线 | 国产精品熟女久久久久浪| 国产成人系列免费观看| 亚洲精品自拍成人| 久久久久人妻精品一区果冻| www.自偷自拍.com| 最近最新中文字幕大全免费视频 | 国产 精品1| 国产精品久久久人人做人人爽| 国产黄色免费在线视频| 日日摸夜夜添夜夜爱| 午夜精品国产一区二区电影| 精品免费久久久久久久清纯 | 国产精品一区二区精品视频观看| 亚洲国产精品999| 成人手机av| 日本爱情动作片www.在线观看| 久久久久久久大尺度免费视频| 成人免费观看视频高清| 大片电影免费在线观看免费| 一区二区三区激情视频| 欧美人与善性xxx| 免费观看a级毛片全部| 午夜福利视频精品| 日韩视频在线欧美| 成人手机av| 久久97久久精品| 国产爽快片一区二区三区| 国产成人精品在线电影| 国产精品亚洲av一区麻豆 | 久久性视频一级片| 大片免费播放器 马上看| 男女午夜视频在线观看| 色精品久久人妻99蜜桃| 日日摸夜夜添夜夜爱| 亚洲伊人色综图| 成年美女黄网站色视频大全免费| 国产日韩一区二区三区精品不卡| 中文字幕亚洲精品专区| 国产成人精品久久久久久| 亚洲精品国产一区二区精华液| 一级a爱视频在线免费观看| 国产成人午夜福利电影在线观看| 一区二区三区精品91| 久久久久久久精品精品| 天天躁狠狠躁夜夜躁狠狠躁| 大香蕉久久成人网| 亚洲综合精品二区| 亚洲人成网站在线观看播放| 操出白浆在线播放| 老司机亚洲免费影院| 午夜福利一区二区在线看| 亚洲人成电影观看| 校园人妻丝袜中文字幕| 女人高潮潮喷娇喘18禁视频| 美女大奶头黄色视频| 国产精品一区二区在线不卡| 丁香六月天网| 免费高清在线观看视频在线观看| 咕卡用的链子| 国产淫语在线视频| 午夜影院在线不卡| 欧美乱码精品一区二区三区| 国产免费一区二区三区四区乱码| 老司机深夜福利视频在线观看 | 国产男女超爽视频在线观看| 国产高清不卡午夜福利| 99国产综合亚洲精品| 免费女性裸体啪啪无遮挡网站| 女人久久www免费人成看片| 亚洲av欧美aⅴ国产| 久久精品亚洲av国产电影网| bbb黄色大片| 男女国产视频网站| 一区二区三区乱码不卡18| 成年人午夜在线观看视频| 亚洲专区中文字幕在线 | 欧美人与性动交α欧美精品济南到| 少妇的丰满在线观看| 伦理电影免费视频| 丰满乱子伦码专区| 美女福利国产在线| 另类精品久久| 日本欧美视频一区| 亚洲第一av免费看| 欧美激情 高清一区二区三区| av有码第一页| 亚洲欧洲日产国产| 国产视频首页在线观看| 国产精品久久久久久精品古装| 五月开心婷婷网| 可以免费在线观看a视频的电影网站 | 丝瓜视频免费看黄片| 亚洲第一区二区三区不卡| 激情五月婷婷亚洲| 精品人妻一区二区三区麻豆| 免费人妻精品一区二区三区视频| 2021少妇久久久久久久久久久| 成人午夜精彩视频在线观看| 色吧在线观看| 999精品在线视频| 国产有黄有色有爽视频| 精品一区在线观看国产| 精品亚洲乱码少妇综合久久| 国产精品成人在线| 中文乱码字字幕精品一区二区三区| 免费在线观看完整版高清| 亚洲欧美成人综合另类久久久| 日本欧美国产在线视频| 亚洲中文av在线| 亚洲av福利一区| 激情视频va一区二区三区| 免费高清在线观看日韩| 久久久久精品国产欧美久久久 | 国产成人免费无遮挡视频| 老汉色∧v一级毛片| 成人午夜精彩视频在线观看| 麻豆av在线久日| 免费久久久久久久精品成人欧美视频| 九九爱精品视频在线观看| 国产成人精品久久二区二区91 | 久久精品aⅴ一区二区三区四区| 91aial.com中文字幕在线观看| 欧美日韩国产mv在线观看视频| 午夜免费观看性视频| 日本午夜av视频| 咕卡用的链子| 国产在线视频一区二区| 国产片内射在线| 国产深夜福利视频在线观看| 久久性视频一级片| a 毛片基地| 国产一区二区激情短视频 | 十分钟在线观看高清视频www| 一边摸一边做爽爽视频免费| 你懂的网址亚洲精品在线观看| av天堂久久9| 亚洲伊人色综图| 婷婷色麻豆天堂久久| 久久精品国产综合久久久| 亚洲精华国产精华液的使用体验| 国产精品人妻久久久影院| 建设人人有责人人尽责人人享有的| 最近中文字幕2019免费版| 亚洲精品国产色婷婷电影| 成年av动漫网址| 美女大奶头黄色视频| av卡一久久| 国产又色又爽无遮挡免| 久久久国产一区二区| 成年av动漫网址| 久久天躁狠狠躁夜夜2o2o | 免费黄频网站在线观看国产| 欧美人与性动交α欧美精品济南到| 亚洲精品日本国产第一区| 日韩,欧美,国产一区二区三区| 啦啦啦在线观看免费高清www| 国产精品蜜桃在线观看| 丝袜人妻中文字幕| 国产老妇伦熟女老妇高清| 国产欧美亚洲国产| 久久人人爽av亚洲精品天堂| 欧美变态另类bdsm刘玥| 亚洲精品乱久久久久久| 伊人久久大香线蕉亚洲五| 亚洲精品日韩在线中文字幕| 美女国产高潮福利片在线看| 欧美日韩一区二区视频在线观看视频在线| 美女福利国产在线| 日韩,欧美,国产一区二区三区| 国产男女内射视频| 欧美av亚洲av综合av国产av | 在线观看一区二区三区激情| 亚洲美女视频黄频| 18禁动态无遮挡网站| 伊人亚洲综合成人网| 王馨瑶露胸无遮挡在线观看| 国产在线免费精品| xxxhd国产人妻xxx| 免费在线观看完整版高清| 亚洲av福利一区| 亚洲美女搞黄在线观看| 欧美人与性动交α欧美精品济南到| 欧美日韩av久久| 亚洲成人av在线免费| 青青草视频在线视频观看| 国产淫语在线视频| xxx大片免费视频| 国产欧美日韩一区二区三区在线| 如日韩欧美国产精品一区二区三区| 男人爽女人下面视频在线观看| 亚洲av日韩精品久久久久久密 | 亚洲成人手机| 啦啦啦 在线观看视频| av一本久久久久| 91成人精品电影| 婷婷色综合大香蕉| 妹子高潮喷水视频| 亚洲精品,欧美精品| a级毛片黄视频| 色网站视频免费| 精品少妇久久久久久888优播| 一区二区日韩欧美中文字幕| 亚洲av福利一区| 亚洲av成人不卡在线观看播放网 | 天天躁夜夜躁狠狠久久av| 咕卡用的链子| 天天添夜夜摸| 色播在线永久视频| 日韩熟女老妇一区二区性免费视频| 青春草亚洲视频在线观看| 免费少妇av软件| 日韩一卡2卡3卡4卡2021年| 超碰97精品在线观看| av网站免费在线观看视频| 国产在视频线精品| 色94色欧美一区二区| 色视频在线一区二区三区| 久热这里只有精品99| 可以免费在线观看a视频的电影网站 | 欧美日韩视频精品一区| 激情视频va一区二区三区| 电影成人av| 不卡av一区二区三区| 看十八女毛片水多多多| 日韩成人av中文字幕在线观看| 日韩一区二区视频免费看| 狂野欧美激情性xxxx| 亚洲av在线观看美女高潮| 国产熟女午夜一区二区三区| 丝袜在线中文字幕| 日本色播在线视频| 黄色 视频免费看| 只有这里有精品99| 一边摸一边做爽爽视频免费| 又大又爽又粗| 麻豆乱淫一区二区| 又大又爽又粗| 青春草国产在线视频| 伊人亚洲综合成人网| 免费在线观看视频国产中文字幕亚洲 | 久久久久久人人人人人| 国产熟女午夜一区二区三区| 如何舔出高潮| 精品国产乱码久久久久久小说| 色婷婷av一区二区三区视频| 亚洲图色成人| 国产成人91sexporn| 午夜精品国产一区二区电影| 又大又黄又爽视频免费| 亚洲美女搞黄在线观看| 一区二区av电影网| av线在线观看网站| 别揉我奶头~嗯~啊~动态视频 | 最近2019中文字幕mv第一页| 久久久久久久久久久久大奶| 97人妻天天添夜夜摸| 亚洲av日韩在线播放| 啦啦啦视频在线资源免费观看| 久久狼人影院| 成人黄色视频免费在线看| 不卡av一区二区三区| 不卡视频在线观看欧美| 成人国产麻豆网| 免费在线观看视频国产中文字幕亚洲 | 亚洲欧美成人综合另类久久久| 亚洲四区av| 亚洲男人天堂网一区| 日本vs欧美在线观看视频| 9热在线视频观看99| 亚洲在久久综合| 亚洲av福利一区| 悠悠久久av| 美女大奶头黄色视频| 国产免费视频播放在线视频| 午夜福利乱码中文字幕| bbb黄色大片| 精品少妇一区二区三区视频日本电影 | 精品国产露脸久久av麻豆| 多毛熟女@视频| 黑人巨大精品欧美一区二区蜜桃| 日韩av不卡免费在线播放| 欧美日韩国产mv在线观看视频| 国产在线免费精品| 嫩草影院入口| 叶爱在线成人免费视频播放| 热99国产精品久久久久久7| 男女之事视频高清在线观看 | 天堂俺去俺来也www色官网| 汤姆久久久久久久影院中文字幕| 久久精品久久久久久久性| 欧美亚洲 丝袜 人妻 在线| 最近2019中文字幕mv第一页| 亚洲人成电影观看| 老汉色∧v一级毛片| 国产精品一国产av| 成年av动漫网址| 日韩不卡一区二区三区视频在线| 99久久人妻综合| 久久这里只有精品19| 丝瓜视频免费看黄片| 国产极品粉嫩免费观看在线| 精品亚洲乱码少妇综合久久| 中文字幕色久视频| 亚洲国产看品久久| 夫妻午夜视频| 久久av网站| 综合色丁香网| 亚洲精品美女久久av网站| 免费观看性生交大片5| 日韩,欧美,国产一区二区三区| 亚洲色图综合在线观看| 90打野战视频偷拍视频| 一本大道久久a久久精品| 欧美激情高清一区二区三区 | 免费人妻精品一区二区三区视频| 国产一级毛片在线| 又大又黄又爽视频免费| 国产野战对白在线观看| 久久久国产一区二区| 一区二区日韩欧美中文字幕| 国产一区二区 视频在线| 国产伦理片在线播放av一区| 午夜免费鲁丝| 亚洲成色77777| 日韩欧美精品免费久久| 国产成人精品久久久久久| 亚洲国产精品成人久久小说| 汤姆久久久久久久影院中文字幕| 丝袜在线中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 亚洲伊人色综图| 日韩大片免费观看网站| 国产精品香港三级国产av潘金莲 | 亚洲精品第二区| 欧美日韩成人在线一区二区| 美女视频免费永久观看网站| 亚洲国产av新网站| 亚洲第一av免费看| 亚洲欧洲精品一区二区精品久久久 | 一级,二级,三级黄色视频| 亚洲五月色婷婷综合| 免费人妻精品一区二区三区视频| 久久久久久久大尺度免费视频| 亚洲欧洲国产日韩| 国产成人系列免费观看| 免费av中文字幕在线| a级片在线免费高清观看视频| 黄片播放在线免费| 久久久久久久久久久免费av| 亚洲自偷自拍图片 自拍| 欧美在线一区亚洲| 麻豆乱淫一区二区| 久久精品久久久久久噜噜老黄| 国产乱人偷精品视频| 亚洲免费av在线视频| 精品一区二区三卡| 亚洲av电影在线观看一区二区三区| 欧美人与善性xxx| 丁香六月欧美| 中文字幕另类日韩欧美亚洲嫩草| 午夜激情av网站| 又大又爽又粗| 久久久久久久国产电影| 久久久久视频综合| 日韩欧美一区视频在线观看| 亚洲情色 制服丝袜| 九草在线视频观看| 一本大道久久a久久精品| 亚洲av欧美aⅴ国产| 一级a爱视频在线免费观看| 两性夫妻黄色片| 亚洲精品中文字幕在线视频| 精品一区二区免费观看| 国产精品香港三级国产av潘金莲 | 精品国产超薄肉色丝袜足j| 欧美日韩一级在线毛片| 免费黄频网站在线观看国产| 男女国产视频网站| 大香蕉久久网| 热99国产精品久久久久久7| 亚洲精品视频女| 麻豆乱淫一区二区| 日韩不卡一区二区三区视频在线| 欧美在线黄色| 久久久久久久久免费视频了| 欧美最新免费一区二区三区| 亚洲精品日本国产第一区| 午夜福利影视在线免费观看| 母亲3免费完整高清在线观看| 建设人人有责人人尽责人人享有的| 欧美日韩一级在线毛片| 在线观看一区二区三区激情| 中国国产av一级| 女性生殖器流出的白浆| 成年人午夜在线观看视频| 免费人妻精品一区二区三区视频| 亚洲图色成人| 亚洲欧洲日产国产| 啦啦啦 在线观看视频| 日韩免费高清中文字幕av| 美女大奶头黄色视频| 亚洲精品中文字幕在线视频| 最新在线观看一区二区三区 | 在线天堂中文资源库| 美国免费a级毛片| 国产女主播在线喷水免费视频网站| 天堂俺去俺来也www色官网| 亚洲欧美成人综合另类久久久| 天天影视国产精品| 久久久久久久久免费视频了| 99国产综合亚洲精品| 亚洲欧美一区二区三区国产| 精品国产乱码久久久久久小说| 亚洲国产毛片av蜜桃av| 亚洲国产精品一区三区| 天天添夜夜摸| 少妇人妻精品综合一区二区| 亚洲av成人精品一二三区| 亚洲国产看品久久| 久久99热这里只频精品6学生| 香蕉丝袜av| 国产亚洲av高清不卡| 人人妻人人澡人人看| 亚洲国产看品久久| 最近中文字幕高清免费大全6| 色94色欧美一区二区| 丝袜脚勾引网站| 国产熟女午夜一区二区三区| 天天影视国产精品| 日本av手机在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 黄网站色视频无遮挡免费观看| 国产 一区精品| 在线观看人妻少妇| 久久午夜综合久久蜜桃| 精品国产一区二区三区久久久樱花| a 毛片基地| 少妇被粗大猛烈的视频| 日韩精品免费视频一区二区三区| 一区二区三区四区激情视频| 成人毛片60女人毛片免费| 黄色 视频免费看| 狂野欧美激情性xxxx| 欧美黄色片欧美黄色片| 亚洲国产最新在线播放| 亚洲av国产av综合av卡| 国产在线一区二区三区精| 一级片'在线观看视频| 老汉色av国产亚洲站长工具| 国产精品久久久久成人av| 一区二区三区精品91| videos熟女内射| 国产亚洲最大av| 看十八女毛片水多多多| 狂野欧美激情性bbbbbb| bbb黄色大片| 一区二区日韩欧美中文字幕| 中文字幕高清在线视频| 日韩一本色道免费dvd| www.自偷自拍.com| 亚洲精品国产色婷婷电影| 午夜福利在线免费观看网站| 国产精品免费视频内射| 别揉我奶头~嗯~啊~动态视频 | 新久久久久国产一级毛片| 搡老乐熟女国产| 午夜福利在线免费观看网站| 99热全是精品| 中国三级夫妇交换| 亚洲在久久综合| www日本在线高清视频| 69精品国产乱码久久久| 青春草视频在线免费观看| 亚洲,一卡二卡三卡| 51午夜福利影视在线观看| 黄色 视频免费看| 欧美日韩亚洲国产一区二区在线观看 | 男人添女人高潮全过程视频| av一本久久久久| 91精品三级在线观看| 色播在线永久视频| 久久精品国产亚洲av高清一级| a 毛片基地| 国产精品国产三级专区第一集| 999精品在线视频| 午夜老司机福利片| 无遮挡黄片免费观看| 国产成人啪精品午夜网站| 亚洲,欧美精品.| 亚洲精品av麻豆狂野| 亚洲成色77777| 一本大道久久a久久精品| 国产女主播在线喷水免费视频网站| 狂野欧美激情性bbbbbb| 久久性视频一级片| 中文字幕制服av| av片东京热男人的天堂| 久久国产精品男人的天堂亚洲| 多毛熟女@视频| 一本一本久久a久久精品综合妖精| 亚洲 欧美一区二区三区| 亚洲人成77777在线视频| 免费日韩欧美在线观看| a级毛片在线看网站| 国产精品一二三区在线看| 欧美日韩福利视频一区二区| 国产亚洲av片在线观看秒播厂| 2018国产大陆天天弄谢| 亚洲欧美成人精品一区二区| 亚洲欧美一区二区三区久久| 日本av免费视频播放| 男女无遮挡免费网站观看| 亚洲成人手机| 青草久久国产| 一区福利在线观看| 咕卡用的链子| av免费观看日本| 赤兔流量卡办理| 亚洲欧美清纯卡通| 免费观看a级毛片全部| 精品人妻在线不人妻| 天天躁日日躁夜夜躁夜夜| 亚洲熟女精品中文字幕| 亚洲精品久久成人aⅴ小说| 欧美日韩国产mv在线观看视频| 制服诱惑二区| 两个人免费观看高清视频| 国产在视频线精品| 99香蕉大伊视频| 国产不卡av网站在线观看| 老司机深夜福利视频在线观看 | 一区二区三区精品91| 国产免费又黄又爽又色| 99久久综合免费| 亚洲色图 男人天堂 中文字幕| 久久精品aⅴ一区二区三区四区| 精品久久久精品久久久| 国产熟女午夜一区二区三区| 另类亚洲欧美激情| 欧美人与性动交α欧美软件| bbb黄色大片| 亚洲,欧美,日韩| 亚洲欧美一区二区三区国产| 亚洲精品乱久久久久久| 性高湖久久久久久久久免费观看| 国产亚洲一区二区精品|