陳棟 趙萍 陸連芳 蘇彤 任清霞 賈巍 王全 王春陽
抑制miR-29對胰腺癌PANC1細胞生長、侵襲和轉(zhuǎn)移的影響
陳棟 趙萍 陸連芳 蘇彤 任清霞 賈巍 王全 王春陽
目的觀察抑制miR-29對胰腺癌PANC1細胞生長、侵襲和轉(zhuǎn)移能力的影響,探討其可能機制。方法以抑制miR-29表達的寡核苷酸(anti-miR-29)及對照寡核苷酸(miR-NC)轉(zhuǎn)染PANC1細胞,構(gòu)建anti-miR-29-PANC1細胞及miR-NC-PANC1細胞,并采用瞬時轉(zhuǎn)染PUMA-siRNA、E-cadherin-siRNA或NC-siRNA方法構(gòu)建共轉(zhuǎn)染的anti-miR-29+PUMA-siRNA-PANC1細胞及anti-miR-29+E-cadherin-siRNA-PANC1細胞。觀察各組細胞的克隆形成數(shù),MTT法檢測細胞存活率,流式細胞儀檢測細胞凋亡,Transwell小室檢測細胞侵襲能力,劃痕試驗檢測癌細胞遷移能力。采用anti-miR-29-PANC1 細胞皮下注射建立裸鼠移植瘤模型,靜脈注射建立肺轉(zhuǎn)移模型,以注射PANC1細胞作為對照。觀察移植瘤的生長情況及肺轉(zhuǎn)移結(jié)節(jié)數(shù)量, TUNEL法檢測移植瘤的細胞凋亡,免疫組織化學法檢測移植瘤的PUMA、E-cadherin表達。結(jié)果PANC1、miR-NC-PANC1、anti-miR-29-PANC1組的細胞存活率分別為100%、(96.8±2.8)%、(24.4±3.2)%;細胞克隆形成數(shù)為(213±36)、(196±28)、(37±6)個/100倍視野;穿膜細胞數(shù)為(56.3±9.6)、(49.8±7.3)、(11.2±3.4)個/400倍視野;細胞的遷移距離為(260±48)、(247±46)、(53±7)μm;細胞凋亡率分別為(1.5+0.9)%、(2.6+0.9)%、(22.4+2.8)%,anti-miR-29-PANC1組細胞與其他2組差異均有統(tǒng)計學意義(P值均<0.05)。anti-miR-29+PUMA-siRNA-PANC1組的細胞存活率為(84.7±10.9)%,細胞凋亡率為(1.3±0.8)%;anti-miR-29+E-cadherin-siRNA-PANC1的穿膜細胞數(shù)為(49.7±6.4)個/400倍視野,細胞遷移距離為(182±36)μm,均消除抑制miR-29表達對PANC1細胞所帶來的影響(P值均<0.05)。PANC1、anti-miR-29-PANC1細胞移植瘤的體積分別為(3 800±270)、(1 890±160)mm3,細胞凋亡指數(shù)為0.93±0.14、8.26±1.15,肺轉(zhuǎn)移結(jié)節(jié)為(26.4±6.5)、(8.6±2.7)個,PUMA陽性表達率為(7.2±1.6)%、(43.8±7.6)%,E-cadherin陽性表達率為(8.3±3.6)%、(47.4±5.7)%。anti-miR-29-PANC1組移植瘤體積、肺轉(zhuǎn)移結(jié)節(jié)較對照組顯著減小或減少,而細胞凋亡、PUMA及E-cadherin表達顯著增加,差異均有統(tǒng)計學意義(P值均<0.05)。結(jié)論抑制miR-29表達后PANC1細胞的增殖、侵襲、轉(zhuǎn)移能力下降,其機制可能與上調(diào)PUMA及E-adherin表達有關(guān)。
胰腺腫瘤; 腫瘤轉(zhuǎn)移; 細胞凋亡; 基因,抑制; miR-29
microRNAs(miRNA)是一種廣泛存在于真核生物細胞中非編碼的長19~24 nt的單鏈小分子RNA,是最大的一類基因表達轉(zhuǎn)錄后調(diào)控因子[1]。目前研究表明,多種miRNA參與腫瘤的發(fā)生、發(fā)展及轉(zhuǎn)移,并可作為腫瘤治療的有效靶點。miRNA-29(miR-29)家族是一類抑癌基因,在多種惡性腫瘤細胞內(nèi)低表達,對癌細胞的生長和轉(zhuǎn)移起負調(diào)控作用[2-5],但研究表明胰腺癌細胞過表達miR-29,且增加miR-29表達能明顯增強胰腺癌細胞的增殖和轉(zhuǎn)移能力[6]。研究發(fā)現(xiàn),促凋亡蛋白PUMA和Ca2+依賴性細胞黏附分子超家庭成員E-鈣黏蛋白(E-cadherin)均在抑制腫瘤發(fā)生和轉(zhuǎn)移中起著重要作用[7-9]。本研究通過抑制胰腺癌PANC1細胞miR-29表達,觀察其與PUMA、E-cadherin之間的關(guān)系,探討它對胰腺細胞侵襲和轉(zhuǎn)移能力的影響及可能的作用機制。
人胰腺癌PANC1細胞購自中國醫(yī)學科學院上海細胞所,常規(guī)培養(yǎng)、傳代。取對數(shù)生長期細胞,接種于6孔細胞培養(yǎng)板培養(yǎng)24 h,待細胞融合度達70%~80%時棄完全培養(yǎng)基,用無血清DMEM清洗2次,每孔加入2 ml無血清無抗生素的DMEM培養(yǎng)基饑餓培養(yǎng)24 h,采用Lipofectamine2000將100 nmol/L抗miR-29的寡核苷酸(anti-miR-29)轉(zhuǎn)染PANC1細胞,繼續(xù)培養(yǎng)4 h后更換為含10% FBS的完全培養(yǎng)基培養(yǎng)48 h。應用400 μg/ml G418篩選2~3周以獲得穩(wěn)定低表達miR-29的anti-miR-29-PANC1細胞株。以轉(zhuǎn)染100 nmol/L無匹配miRNA的miR-NC-PANC1細胞作為對照。anti-miR-29和miR-NC均購自北京傲銳東源生物科技有限公司。此外,對穩(wěn)定轉(zhuǎn)染anti-miR-29-PANC1細胞瞬時轉(zhuǎn)染PUMA-siRNA或E-cadherin-siRNA 48 h,構(gòu)建共轉(zhuǎn)染的anti-miR-29+PUMA-siRNA-PANC1細胞及anti-miR-29+E-cadherin-siRNA-PANC1細胞,以轉(zhuǎn)染無匹配的NC-siRNA的PANC1細胞作為對照組。PUMA-siRNA、E-cadherin-siRNA及NC-siRNA均購自Cell Signaling Technology(上海)公司。
收集各組對數(shù)生長期PANC1細胞,用預冷PBS清洗后加入Trizol提取細胞總RNA,按試劑盒(北京百泰克生物技術(shù)有限公司)說明書操作。采用熒光定量PCR法檢測miR-29, PUMA、E-cadherin mRNA的表達。引物序列(5′-3′):miR-29上游為ACTTGAACATGATTCCGTGTGA,下游為CTTTAGTGTTGGAGATGTTAGG;E-cadherin上游為CAGAAGGGAAAGACTTCGTAT;下游為AACGGCTGAGGGAACTC;PUMA上游為CAGAAGGGAAAGACTTCGTAT;下游為 AACGGCTGAGGGAACTC;內(nèi)參U6上游為CTCACAGCCGCATCTACTT;下游為GACAAGACATGATTCCGG。引物由銳博生物科技有限公司設計并合成。先逆轉(zhuǎn)錄為cDNA,再行PCR擴增。PCR條件:95℃ 3 min,95℃ 3 s、58℃ 33 s、72℃ 10 s,共38個循環(huán),最后72 ℃延伸10 min。反應結(jié)束后行擴增曲線和融解曲線分析。由PCR儀自帶軟件獲取Ct值,通過公式2-△△Ct計算目的基因的相對表達量。
收集各組對數(shù)生長期PANC1細胞,用預冷PBS清洗后加入裂解液提取細胞總蛋白,Lowry法定量蛋白后常規(guī)行蛋白質(zhì)印跡法檢測細胞PUMA、E-cadherin蛋白表達。兔抗人PUMA、E-cadherin一抗1∶200稀釋,羊抗兔二抗1 ∶2 500稀釋,抗PUMA、E-cadherin抗體均購自Santa(上海)公司。最后ECL發(fā)光,X片曝光、顯影、定影。以GAPDH為內(nèi)參照。用圖像掃描軟件掃描條帶的灰度值,以目的條帶與內(nèi)參條帶的灰度值比表示目的蛋白表達量。
采用噻唑藍(MTT)法測定細胞增殖能力。取對數(shù)生長期PANC1、miR-NC-PANC1、anti-miR-29-PANC1、anti-miR-29+PUMA-siRNA-PANC1細胞接種于96孔板,每孔2×103個細胞(0.2 ml),每組設5個平行孔,常規(guī)培養(yǎng)4 h,換完全培養(yǎng)基后再培養(yǎng)72 h,每孔加入MTT(5 mg/ml)20 μl,繼續(xù)培養(yǎng)4 h,棄培養(yǎng)液,加入100 μl的DMSO振蕩10 min,上酶聯(lián)檢測儀測各孔波長490 nm處的值(A490值)。根據(jù)公式計算細胞存活率。存活率=100%-(對照組A490值-實驗組A490值)/對照組A490值×100%。
取對數(shù)生長期PANC1、miR-NC-PANC1、anti-miR-29-PANC1細胞,用0.25%胰酶消化并制成單細胞懸液,每組取600個細胞接種于底層鋪0.5%瓊脂糖,頂層鋪0.3%瓊脂糖的60 mm軟瓊脂培養(yǎng)皿,常規(guī)培養(yǎng)14 d。倒置顯微鏡下(100倍)隨機選擇10個視野,每個視野計數(shù)50個直徑>0.05 mm的克隆數(shù)和總克隆數(shù),克隆形成率=>0.05 mm的克隆數(shù)/總克隆數(shù)×100%。然后在每孔加入1 ml的0.005%結(jié)晶紫染色1 h以上,鏡下攝片。
取對數(shù)生長期PANC1、miR-NC-PANC1、anti-miR-29-PANC1、anti-miR-29+PUMA-siRNA-PANC1細胞用0.25%EDTA-胰酶消化,取3.0×105個細胞接種于6孔板各孔中,常規(guī)培養(yǎng)72 h,收集細胞,PBS洗滌2次后重懸于100 μl含Annexin V-FITC和0.5 μg PI的結(jié)合緩沖液,混勻,室溫下避光培養(yǎng)10 min,用結(jié)合緩沖液洗滌懸浮細胞,調(diào)整細胞密度為1.0×106個/ml,避光室溫孵育20 min,加入400 μl結(jié)合緩沖液,30 min內(nèi)上流式細胞儀檢測細胞凋亡。
于Transwell小室的聚碳酸酯膜表面加入50 μ1 Matrigel,待其凝固。收集PANC1細胞消化后行活細胞計數(shù),調(diào)整細胞密度為5×108/L。在Transwell上室加入含2×105個細胞的細胞懸液200 μl,下室每孔加入500 μl含血清的1640培養(yǎng)基,37℃、5% CO2孵育箱中培養(yǎng)24 h,甲醇固定30 min,常規(guī)蘇木素-伊紅(HE)染色。每組設3個小室,每張膜計數(shù)5個400倍視野下的穿膜細胞數(shù),取均值。
將各組PANC1細胞接種于6孔板,以含10%胎牛血清的RPMI 1640培養(yǎng)液培養(yǎng)至細胞將近長滿,換無血清RPMI 1640培養(yǎng)24 h后,以1 ml移液器吸頭在細胞層仔細劃痕,用PBS洗2遍,去除細胞碎片,更換含10%胎牛血清的RPMI 1640培養(yǎng)基繼續(xù)培養(yǎng)24 h,倒置顯微鏡下對劃痕前后的相應區(qū)域拍照。每組設3個復孔,重復3次。以上邊緣、中間和下邊緣3個直線距離評估劃痕長度,使用ImageJ軟件(NIH,Bethesda,MD,USA)進行長度定量。
裸鼠20只,4~6周齡,體重17~22 g,購于中科院上海動物研究所。取對數(shù)生長期PANC1、anti-miR-29-PANC1細胞,消化制成單細胞懸液,密度均為1×108/ml,臺盼蘭染色測細胞活力大于90%。經(jīng)裸鼠尾靜脈注射200 μl細胞懸液,每組6只。常規(guī)飼養(yǎng)3周后處死裸鼠,肉眼觀察肺轉(zhuǎn)移結(jié)節(jié)數(shù)量,取轉(zhuǎn)移結(jié)節(jié)常規(guī)病理檢查,并采用免疫組織化學法檢測轉(zhuǎn)移結(jié)節(jié)的E-cadherin蛋白表達。
同時,取兩種細胞懸液接種于裸鼠背部皮下,每組4只,飼養(yǎng)6周,每周測量腫塊體積2次,腫瘤體積(V)=長×寬×高×π/6(mm3)。4周后處死裸鼠。
采用免疫組織化學方法檢測移植瘤組織標本PUMA、E-cadherin蛋白表達,以武漢博士德公司提供的已知人直腸癌切片作陽性對照,以PBS代替一抗作陰性對照。抗PUMA抗體稀釋度為1∶50,抗E-cadherin抗體稀釋度為1∶100。顯微鏡下觀察5個視野, PUMA蛋白以細胞質(zhì)內(nèi)出現(xiàn)棕黃色細顆粒為陽性,E-cadherin蛋白以細胞膜內(nèi)有棕黃色細顆粒為陽性。陽性細胞≤10%為陰性,>10%為陽性。
取各組移植瘤標本,采用TUNEL法檢測細胞凋亡。隨機計數(shù)5個以上高倍視野,每個視野不少于1 000個細胞,綠色為凋亡細胞。凋亡指數(shù)(AI)=凋亡細胞數(shù)/總細胞數(shù)。
十一、統(tǒng)計學處理
PANC1、miR-NC-PANC1、anti-miR-29-PANC1組細胞的miR-29表達量分別為0.317±0.030、0.287±0.020、0.034±0.004。anti-miR-29-PANC1組miR-29表達水平降低90%以上,miR-NC-PANC1組無明顯下降,3組間差異有統(tǒng)計學意義(t=4.362,P<0.01)。
PANC1、NC-siRNA-PANC1、anti-miR-29-PANC1、anti-miR-29+E-cadherin-siRNA-PANC1組細胞的E-cadherin mRNA表達量分別為0.94±0.16、1.05±0.17、7.38±1.68、0.98±0.14。anti-miR-29-PANC1組顯著高于其他3組,差異均有統(tǒng)計學意義(t值分別為4.564、4.342、4.282,P值均<0.01)。E-cadherin蛋白表達的變化與mRNA表達一致(圖1)。
PANC1、NC-siRNA-PANC1、anti-miR-29-PANC1、anti-miR-29+PUMA-siRNA-PANC1組細胞的PUMA mRNA表達量分別為1.17±0.18、1.23±0.21、6.45±1.36、1.04±0.16。anti-miR-29-PANC1組顯著高于其他3組,差異均有統(tǒng)計學意義(t值分別為3.863、3.980、4.106,P值均<0.01)。PUMA蛋白表達的變化與mRNA表達一致(圖2)。
圖1 PANC1(1)、NC-siRNA-PANC1(2)、anti-miR-29-PANC1(3)、anti-miR-29+E-cadherin-siRNA-PANC1組(4)細胞的E-cadherin 蛋白表達 圖2 PANC1(1)、NC-siRNA-PANC1(2)、anti-miR-29-PANC1(3)、anti-miR-29+PUMA-siRNA-PANC1組(4)細胞的PUMA蛋白表達
PANC1、miR-NC-PANC1、anti-miR-29-PANC1、anti-miR-29+PUMA-siRNA-PANC1組的細胞存活率分別為100%、(96.8±2.8)%、(24.4±3.2)%、(84.7±10.9)%,anti-miR-29-PANC1組的細胞存活率顯著低于其他3組,差異均有統(tǒng)計學意義(P值均<0.05)。
PANC1、miR-NC-PANC1和anti-miR-29-PANC1組的細胞克隆形成數(shù)分別為(213±36)、(196±28)、(37±6)個/100倍視野,anti-miR-29-PANC1組顯著少于其他2 組,差異均有統(tǒng)計學意義(P值均<0.05,圖3)。
圖3 PANC1(3A)、miR-NC-PANC1(3B)、anti-miR-29-PANC1(3C)細胞形成的克隆
PANC1、miR-NC-PANC1、anti-miR-29-PANC1、anti-miR-29+PUMA-siRNA-PANC1組細胞凋亡率分別為(1.5±0.9)%、(2.6±0.9)%、(22.4±2.8)%、(1.3±0.8)%。抑制PANC1細胞miR-29表達顯著增加細胞凋亡率,而雙抑制miR-29及PUMA表達的PANC1細胞凋亡率又回復到親本細胞水平,差異均有統(tǒng)計學意義(P值均<0.05,圖4)。
圖4 PANC1(4A)、miR-NC-PANC1(4B)、anti-miR-29-PANC1(4C)、anti-miR-29+PUMA-siRNA-PANC1(4D)組的細胞凋亡
PANC1、miR-NC-PANC1、anti-miR-29-PANC1、anti-miR-29+E-cadherin-siRNA-PANC1組的穿膜細胞數(shù)分別為(56.3±9.6)、(49.8±7.3)、(11.2±3.4)、(49.7±6.4)個/400倍視野;細胞的遷移距離分別為(260±48)、(247±46)、(53±7)、(182±36)μm。抑制miR-29表達的PANC1組侵襲及遷移能力顯著低于親本細胞,而雙抑制miR-29及E-cadherin表達的PANC1細胞的侵襲及遷移能力又回復到親本細胞水平,差異均有統(tǒng)計學意義(P值均<0.01,圖5、6)。
圖5 PANC1(5A)、miR-NC-PANC1(5B)、anti-miR-29-PANC1(5C)組的穿膜細胞數(shù)(HE ×400)
圖6 PANC1(6A)、miR-NC-PANC1(6B)、anti-miR-29-PANC1(6C)組細胞24 h的遷移距離
PANC1、anti-miR-29-PANC1細胞皮下移植后4周,移植瘤的體積分別為(3 800±270)、(1 890±160)mm3,anti-miR-29-PANC1組腫瘤生長抑制率達50%以上(圖7);移植瘤的細胞AI分別為0.93±0.14、8.26±1.15,PUMA陽性表達率為(7.2±1.6)%、(43.8±7.6)%,anti-miR-29-PANC1組細胞凋亡及PUMA表達均顯著增加(圖8),差異有統(tǒng)計學意義(P值均< 0.05)。
圖7 PANC1、anti-miR-29-PANC1細胞皮下種植后的生長曲線
圖8 PANC1(8A)、anti-miR-29-PANC1(8B)細胞皮下移植瘤的細胞凋亡(TUNEL染色)
PANC1、anti-miR-29-PANC1細胞注射后3周,肺轉(zhuǎn)移結(jié)節(jié)分別為(26.4±6.5)、(8.6±2.7)個,anti-miR-29-PANC1組顯著少于親本細胞(圖9);E-cadherin陽性表達率分別為(8.3±3.6)%、(47.4±5.7)%, anti-miR-29-PANC1組顯著高于親本細胞,差異均有統(tǒng)計學意義(P值均< 0.05)。
圖9 PANC1、anti-miR-29-PANC1細胞皮下移植瘤的PUMA(9A、9B ×100)、E-cadherin(9C、9D ×100)及肺轉(zhuǎn)移結(jié)節(jié)的病理圖(9E、9F ×200)
胰腺癌是一種高度惡性的腫瘤,由于發(fā)病部位的特殊性以及癥狀的隱匿性,絕大多數(shù)患者在確診時已屬晚期,多數(shù)不能手術(shù)切除[7]。盡管結(jié)合放療、化療等方法進行綜合治療,但結(jié)果都不令人滿意,因此提高胰腺癌的療效需要探索新的治療方法[8],其中基因治療被寄予厚望。
前期的研究發(fā)現(xiàn),miR-29在胰腺癌組織中的表達明顯增加,且miR-29表達增加與胰腺癌侵襲轉(zhuǎn)移和2年生存率明顯相關(guān)[9],推測miR-29可作為胰腺癌基因治療的靶點。本研究結(jié)果顯示,靶向抑制miR-29表達后,胰腺癌PANC1細胞的增殖被抑制,細胞凋亡明顯增加,細胞的侵襲和運動能力明顯下降;miR-29表達抑制的PANC1細胞的皮下移植瘤生長緩慢,肺轉(zhuǎn)移結(jié)節(jié)數(shù)量少,提示抑制miR-29表達能明顯抑制移植瘤生長和肺臟轉(zhuǎn)移,與Qiu等[10]和Inoue等[11]在喉癌和直腸癌的研究結(jié)果相一致,但miR-29發(fā)揮作用的信號途徑尚不清楚。
PUMA是2001年發(fā)現(xiàn)的具有較強促凋亡作用的p53下游基因,在許多惡性腫瘤中表達缺失或低表達,PUMA低表達與惡性腫瘤的發(fā)生發(fā)展有關(guān)。上調(diào)細胞內(nèi)PUMA表達可顯著抑制腫瘤的生長[12-13]。本研究結(jié)果顯示,抑制miR-29表達后,PANC1細胞的PUMA表達上調(diào),細胞生長受到抑制,細胞凋亡增加;同時采用RNA干擾技術(shù)抑制PUMA表達后,細胞生長加快,細胞凋亡明顯下降,表明miR-29通過抑制PUMA表達來增強胰腺癌細胞生長、抑制細胞凋亡。
E-cadherin是Ca2+依賴性細胞黏附分子超家族成員之一,介導細胞-細胞間的黏附,在抑制腫瘤發(fā)生和轉(zhuǎn)移中起著重要作用[14]。本研究結(jié)果顯示,抑制miR-29表達后,PANC1細胞誘導E-cadherin表達上調(diào),細胞侵襲能力被抑制;而干擾E-cadherin表達后,細胞的侵襲能力顯著增強,表明miR-29通過抑制E-cadherin的表達從而增強胰腺癌細胞的侵襲和轉(zhuǎn)移能力。
由此可見, miR-29通過上調(diào)PUMA和E-cadherin的表達,增強PANC1細胞的生長、侵襲和轉(zhuǎn)移能力, miR-29可能是潛在的治療胰腺癌的靶點。
[1] Krol J,Loedige I,F(xiàn)ilipowicz W.The widespread regulation of microRNA biogenesis,function and decay[J].Nat Rev Genet, 2010,11(9):597-610.DOI: 10.1038/nrg2843.
[2] Rostas JW 3rd, Pruitt HC, Metge BJ, et al. microRNA-29 negatively regulates EMT regulator N-myc interactor in breast cancer[J].Mol Cancer, 2014, 13: 200.DOI: 10.1186/1476-4598-13-200.
[3] Fabbri M, Garzon R, Cimmino A, et al.MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B[J]. Proc Natl Acad Sci U S A, 2007,104(40):15805-15810.
[4] Xiong Y, Fang JH, Yun JP, et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma[J].Hepatology, 2010,51(3):836-845.DOI: 10.1002/hep.23380.
[5] Wu Z, Huang X, Huang X, et al. The inhibitory role of Mir-29 in growth of breast cancer cells[J]. J Exp Clin Cancer Res, 2013,32(8):98-104.DOI: 10.1186/1756-9966-32-98.
[6] Sun XJ, Liu BY, Yan S, et al. MicroRNA-29a promotes pancreatic cancer growth by inhibiting tristetraprolin[J]. Cell Physiol Biochem, 2015,37(2):707-718.
[7] Cory S, Huang DC, Adams JM. The Bcl-2 family: roles in cell survival and oncogenesis[J]. Oncogene, 2003, 22(7):8590-8607.
[8] Green DR, Kroemer G. The pathophysiology of mitochondrial cell death[J]. Science, 2004, 305(5684):626-629.
[9] Sun XJ, Liu BY, Yan S, et al. MicroRNA-29a promotes pancreatic cancer growth by inhibiting tristetraprolin[J]. Cell Physiol Biochem, 2015,37(2):707-718.DOI: 10.1159/000430389.
[10] Qiu F, Sun R, Deng N, et al. miR-29a/b enhances cell migration and invasion in nasopharyngeal carcinoma progression by regulating SPARC and COL3A1 gene expression[J]. PLoS One, 2015, 10(3): e0120969.DOI: 10.1371/journal.pone.0120969.
[11] Inoue A, Yamamoto H, Uemura M, et al. MicroRNA-29b is a novel prognostic marker in colorectal cancer[J]. Ann Surg Oncol, 2015, 22 Suppl 3:S1410-S1418.DOI: 10.1245/s10434-014-4255-8.
[12] Schuler M, Green DR. Mechanisms of p53-dependent apoptosis[J]. Biochem Soc Trans, 2001,29(Pt 6):684-688.
[13] Yu J, Zhang L.The transcriptional targets of p53 in apoptosis control[J]. Biochem Biophys Res Commun, 2005,331(3):851-858.
[14] Thiery JP, Chopin D. Epithelial cell plasticity in development and tumor progression[J]. Cancer Metastasis Rev, 1999,18(1):31-42.
InhibitingmiR-29ongrowth,invasionandmetastasisofPANC1cells
ChenDong,ZhaoPing,LuLianfang,SuTong,RenQingxia,JiaWei,WangQuan,WangChunyang.
DepartmentofGeneralSurgeny,AffiliatedHospitalofQingdaoUniversity,Qingdao266003,China
ObjectiveTo investigate the effects of inhibiting miR-29 on growth, invasion and metastasis of pancreatic cancer PANC1 cells, and explore the potential mechanism.MethodsOligonucleotides inhibiting miR-29 (anti miR-29) and control oligonucleotides (miR NC) were used to transfect PANC1 cells to establish anti miR-29 PANC1 cells and miR NC PANC1 cells. Transient transfection of PUMA siRNA, E-cadherin siRNA or NC siRNA was used to construct cotransfected anti miR29+ PUMA-siRNA-PANC1 cells and anti-miR-29+E-cadherin-siRNA-PANC1 cells. Number of colony formations was observed, cell survival was detected by MTT, cell apoptosis was measured by flow cytometry, cell invasion was detected by transwell chamber assay, and cell migration was detected by wound healing assay. Subcutaneous injection of anti miR-29 PANC1 cells was used to establish xenograft nude mice model, and venous injection of anti miR-29 PANC1 cells was used to establish lung metastasis nude mice model, and the subcutaneous and venous injection of PANC1 cells served as control. The growth of xenograft and the number of lung metastatic nodules were observed. TUNEL method was used to detect cell apoptosis in xenograft and immunohistochemical analysis was used to detect PUMA and E-cadherin in xenograft.ResultsThe survival rate of PANC1,miR-NC-PANC1 and anti-miR-29-PANC1 cells was 100%,(96.8±2.8)% and(24.4±3.2)%. The number of colony formation was (213±36),(196±28) and(37±6)per 100 high power field. The number of transmembrane cells was (56.3±9.6),(49.8±7.3) and (11.2±3.4) per 400 high power field. The distance of cell migration was(260±48),(247±46) and(53±7)μm. Cell apoptosis rate was(1.5+0.9)%,(2.6+0.9)% and(22.4+2.8)%. There was statistically significant difference between anti miR 29 PANC1 cells and other PANC1 cells (P<0.05). The survival rate, apoptosis rate, transmembrane cells and migration distance of anti-miR-29+PUMA-siRNA-PANC1 cells was (84.7±10.9)%,(1.3±0.8)%,(49.7±6.4)per 400 high power field and(182±36)μm, indicating that the effects of miR 29 inhibition on PANC1 cells were abolished (allP<0.05). The volume of the xenograft of PANC1 and anti-miR-29-PANC1 cells was (3 800±270) and (1 890±160)mm3, the cell apoptosis rate was 0.93±0.14 and 8.26±1.15, the number of metastatic lung lesions was (26.4±6.5) and(8.6±2.7),the PUMA positivity was(7.2±1.6)% and(43.8±7.6)%,E-cadherin positivity was(8.3±3.6)% and(47.4±5.7)%, respectively. The xenograft volume and the number of metastatic lung nodules of anti miR29 PANC1 cells was obviously decreased or decreased, but cell apoptosis rate, PUMA positivity and E cadherin positivity were obviously increased, and the differences were all statistically significant (P<0.05).ConclusionsInhibiting miR-29 expression can decrease cell proliferation, migration and metastasis of PANC1 cells, and the potential mechanism may be associated with the upregulation of PUMA and E-cadherin.
Pancreatic neoplasms; Neoplasm metastasis; Apoptosis; Genes, suppressor; miR-29
FundprogramHospital-level Issues from Jiangsu Provincial Cancer Hospital(ZN201611);Social Development Project from Jiangsu Province(BE2015668)
10.3760/cma.j.issn.1674-1935.2017.06.007
266003 山東青島,青島大學附屬醫(yī)院普通外科(陳棟、趙萍、蘇彤),肝膽胰外科(陸連芳);日照市人民醫(yī)院肝膽外科(任清霞);天津醫(yī)科大學總醫(yī)院肝膽胰外科(任清霞、賈巍);山東省省立醫(yī)院肝膽胰外科(王全、王春陽)
王春陽,Email:blooddoc@126.com
江蘇省腫瘤醫(yī)院院級課題(ZN201611);江蘇省社會發(fā)展項目(BE2015668)
2017-03-05)
屠振興)