• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-degree-of-freedom H-infinity control of combustion in diesel engine using a discrete dynamics model

    2017-12-26 09:28:34MitsuoHIRATASotaISHIZUKIMasasyasuSUZUKI
    Control Theory and Technology 2017年2期

    Mitsuo HIRATA,Sota ISHIZUKI,Masasyasu SUZUKI

    Department of Electrical and Electronic Systems Engineering,Utsunomiya University,7-1-2 Yoto,Utsunomiya,Tochigi 321-8585,Japan

    Two-degree-of-freedom H-infinity control of combustion in diesel engine using a discrete dynamics model

    Mitsuo HIRATA?,Sota ISHIZUKI,Masasyasu SUZUKI

    Department of Electrical and Electronic Systems Engineering,Utsunomiya University,7-1-2 Yoto,Utsunomiya,Tochigi 321-8585,Japan

    This paper proposes an H-infinity combustion control method for diesel engines.The plant model is the discrete dynamics model developed by Yasuda et al.,which is implementable on a real engine control unit.We introduce a two-degree-of-freedom control scheme with a feedback controller and a feedforward controller.This scheme achieves both good feedback properties,such as disturbance suppression and robust stability,and a good transient response.The feedforward controller is designed by taking the inverse of the static plant model,and the feedback controller is designed by the H-infinity control method,which reduces the effect of the trubocharger lag. The effectiveness of the proposed method is evaluated in simulations using the nonlinear discrete dynamics model.

    Combustion control,diesel engines,H-infinity control,two-degree-of-freedom control

    1 Introduction

    In diesel engines,efforts to reduce both NOxand particulate matter(PM)emissions have increased in recent years due to the need to comply with increasingly stringent emission regulations.To meet these requirements,new technologies such as exhaust gas recirculation(EGR)circuits,variable-geometry turbochargers(VGTs),and exhaust gas after treatment systems have been introduced[1–3].However,these technologies increase the complexity of the system architecture and the difficulty of the control system design.

    Conventional controllers are based on lookup tables compiled from the results of many experiments[4].The complexity of recent engines has greatly increased the effort of constructing these tables.Premixed charge compression ignition(PCCI)combustion is the inevitable next step,as it achieves high energy efficiency while reducing the engine-out emissions,but it is nonrobust and difficult to control[5–8].Indeed,PCCI combustion cannot be adequately controlled by conventional control,in either steady-state or transient operation.Model-based controller design methods offer a promising alternative to traditional control of PCCI[9,10].

    This paper proposes an H∞combustion control method for diesel engines.The plant model is the discrete dynamics model,which has been developed by Yasuda et al.as a future implementable model on a real engine control unit as a feedforward controller to predict control input from reference inputs and multiple sensory information without optional lookup tables[11,12].We introduce a two-degree-of-freedom control scheme with a feedback controller and a feedforward controller.This scheme achieves both good feedback properties,such as disturbance suppression and robust stability,and a good transient response.The feedforward controller is designed by taking the inverse of the static plant model,and the feedback controller is designed by the H∞control method[13].The generalized plant for the H∞controller design is constructed to reduce not only various disturbances but also the influence of the turbocharger lag.

    The effectiveness of the proposed method is evaluated in simulations using the nonlinear discrete dynamics model.

    2 Discrete dynamics model

    To reduce the computational cost,the discrete dynamics model calculates fundamental thermodynamic equations and some empirical equations only at representative points in the engine cycle;namely,the timings of the exhaust valve closing(EVC),the intake valve closing(IVC),the ignition(IGN),the peak pressure(PEAK),and the exhaust valve opening(EVO).

    Initially,the discrete dynamics model comprised a single injection system[11];then,the model was extended to include multi-injection systems[12].In this initial examination,we assume the single injection system.The state variable Xk,the input Uk,and the output Ykof the single-injection model are presented in Table 1.In terms of these variables,the discrete dynamics model with single injection is expressed as1The EGR ratio is also the input to the discrete dynamics model.However,in this study,we treat the EGR ratio as a constant(30%)rather than as an input variable.:

    In(1),f and g are complex nonlinear equations,and the details are described in[11].

    Table 1 Definitions of states,inputs,and outputs in the discrete dynamics model.

    In the controller design,(1)is linearized around the equilibrium points U0,Y0,and X0of the input,output,and state,respectively.The deviations from the equilibrium points are defined as follows:

    In this article,the equilibrium point U0of the input is selected as

    Thus,Y0and X0are obtained as

    Based on these equilibrium points,we obtained a linearized model with the following state-space representation:

    We also define the transfer function P:

    3 Structure of control system

    We introduce the following assumptions to design the two-degree-of freedom control system.

    a)The peak pressure δPPEAK,kand the peak pressure timing δθPEAK,kcan be measured at time k+1 by sensors embedded in the cylinder.

    b)The actual boost pressure δPboost,kfollows the referencewith a first-order lag,i.e.,the following equation holds:

    where δPboost[z]andare the z-transforms of δPboost,kandrespectively,and Fb[z]is a discrete-time first-order lag filter with a time constant of Tb=2s.

    c)The boost pressure δPboost,kcan be measured without a time delay.

    d)The feedback controller can manipulate the fuel injection timing δθINJ,kand the boost pressure reference

    By assumption a),the measurement output ys,kis given by

    Further,by assumption b),the input u of P is related to the controller output usas

    Under the above assumptions,a two-degree-offreedom control system was proposed as shown in Fig.1.The reference input r is assumed to be

    where r1[z]is the actual fuel injection quantity δQfuelgiven by a driver,and r2[z]and r3[z]are the references for δPPEAK,and δθPEAK,respectively.As shown in the next section,δQfuelis included in the reference r since it is used to calculate the second and the third elements of the feedforward input uあ.

    Fig.1 Proposed control system.

    The reference input rsis the reference to ys,and it is generated by RFF.An one sampling delay z?1is introduced to generate rsbecause yshas the same delay relative to y.The feedforward input uあis generated by the feedforward controller KFF.

    The inputs of the feedback controller KFBare the error er=rs?ysand the external input yex,which is introduced to compensate for the turbocharger lag,and the controller output is ufb.From assumption d),we have

    The design method of KFF,RFF,and KFBwill be shown in the next section.

    4 Design of KFFand RFF

    By examining the linearlized model(12)and(13),we found that the dynamics of the plant exert a small effect.Thus,for the feedforward controller design,we assume that the input and output relation can be described by the direct transmission term D as follows:

    We define u1and u23as

    then(20)can be described as

    The feedforward controller KFFwhich generates the following feedforward input,

    should be designed so as to satisfy the following relation for a given reference input r,

    By isolating u23in(22)and using(24),we have

    Therefore we have the following feedforward controller KFFfrom(23)and(25):

    On the other hand,RFFis defined to generate the reference to δPPEAKand δθPEAKas follows:

    In order to evaluate the performance of the feedforward controller KFF,we obtained the output response by substituting the output of(26)into(1).The reference for fuel injection quantity was increased 5mm3from the equivalent point at t=1.The references for peak pressure and peak pressure timing were increased by 1 unit from the equivalent points as step signal at t=4 and t=7,respectively.Fig.2 shows the simulation result,and it indicates that the feedforward controller works correctly.

    Further,in order to evaluate the influence of the turbocharger lag,M of(17)was inserted between the output of(26)and(1),and the simulation was conducted again.As shown in Fig.3,the tracking performance was degraded and it shows that the turbocharger lag cannot be neglected.

    Fig.2 Simulation result 1.

    Fig.3 Simulation result 2.

    5 Design of H∞controller

    5.1 H∞control theory

    Given a generalized closed-loop configuration shown in Fig.4,the H∞control is formulated as a problem that finds an internally stabilizing controller that minimizes the H∞norm from w to z[13].The transfer matrix G in Fig.4 is referred to as a generalized plant.

    The H∞controller minimizes H∞norm,which corresponds to the maximum gain of the transfer function.Therefore,the H∞control is essentially a disturbance suppression.Multiple disturbances are imposed to the controlled object in actual systems,and the modeling error can also be regarded as an equivalent disturbance[14].Therefore,the H∞control is a powerful approach because various control problems are reduced to disturbance attenuation problems.

    Fig.4 Standard configuration for H∞control.

    5.2 H∞controller design

    The H∞controller KFBin Fig.1 is designed so as to reduce the influence of the turbocharger lag.By assumption d),the plant PFBfor the H∞controller design is defined as

    The generalized plant for the H∞controller design is shown in Fig.5.MFBis introduced to incorporate the turbocharger lag into controller design as follows:

    wdand wnrepresent the disturbance and the measurement noise,respectively.zuand zeare the controlled outputs that are minimized by the H∞controller.

    Fig.5 Generalized plant.

    The second element wd2of wdis the equivalent disturbance that represents the turbocharger lag,and let us estimate the amount of the equivalent disturbance.

    Since the feedforward controller was designed by taking the inverse of D,it is desirable to add a feedforward inputuあbetween Mand P in the two-degree-of-freedomcontrol system(Fig.1).However,the actual boost pressure cannot be directly manipulated,so uあis added to the input side of M,as shown in Fig.1.

    Fig.6(a)presents the extracted block diagram of the input and output portions of Fbin Fig.1.Fig.6(a)is transformed to Fig.6(b)by preserving the transfer function from uあ3to u32uあ3and u3represent the 3rd element of uあ and u,respectively.The same manner will be used..

    Fig.6 Equivalent transformation of uあ3.

    From this diagram,we observe that adding uあ3to the input side of Fbis equivalent to adding to the output side of Fb.Since deqvcan be calculated from(26)and(30),it is reasonable to assume that deqvis a measurable signal.In the generalized plant Fig.5,wd2corresponds to deqv,and it is defined as a measured signal yex.

    The weighting functions We,Wu,and Wnwere selected with some trial and errors as

    All of the weighting functions were discretized by a pole-zero matching equivalent method.Next,referring to discrete-time H∞control theory,we calculated an H∞controller with these weighting functions using the MATLAB robust control toolbox R2012a.The achieved minimum H∞norm from w to z was 0.81.The singular values plot of the H∞controller is shown in Fig.7,and the state space matrices of the obtained H∞controller are shown below

    where

    Fig.7 Singular values plot of H∞controller.

    5.3 Simulation

    The obtained H∞controller was employed as the feedback controller of the two-degree-of-freedom control system in Fig.1,and evaluated in simulations.The linear model P was replaced by the nonlinear discrete dynamics model(1)for simulation.The second input yexof the H∞controller was given as

    Fig.8 shows the simulation result.The references are same as that used to evaluate the performance of the feedforward controller.From Fig.8,a small interference between channels are observed,though,the output of each channel accurately follows the reference input.

    Fig.8 Simulation result 3.

    Fig.9shows the responses of the control inputs. In the graph of Pboost,us3is the reference of the boost pressure,and u3is the actual boost pressure.The reference of the boost pressure moves largely to compensate for the turbocharger lag.

    Fig.9 Simulation result 3(control input).

    6 Conclusions

    In this study,we proposed a two-degree-of-freedom control structure for a combustion control.The feedforward controller was designed using the static model of the plant.On the other hand,the feedback controller was designed by the H∞control theory.The H∞controller was obtained by accounting for the turbocharger lag.The improved tracking performance was demonstrated in simulation.

    Future work will focus on the implementation of the proposed method into real engine.Concerning the fixed EGR ratio,it should be treated as a variable because it varies in actual driving situation. As for the input and output of the plant,they might deviate from the equivalent point significantly and the plant exhibits a nonlinearity.In this case,a gain scheduled H∞control approach will be effective to cope with the nonlinearity[15].It is also effective to replace the gain feedforward controller KFFby a nonlinear feedforward controller obtained by taking the inverse of the discrete dynamics model,though,we must wait for the improvement of current ECU’s computation performance.

    [1]H.Xie,S.Li,K.Song,et al.Model-based decoupling control of VGT and EGR with active disturbance rejection in diesel engines.IFAC Proceedings Volumes,2013,46(21):282–288.

    [2]A.G.Stefanopoulou,I.Kolmanovsky,J.S.Freudenberg.Control of variable geometry turbocharged diesel engines for reduced emissions.IEEE Transactions on Control Systems Technology,2000,8(4):733–745.

    [3]G.H.Abd-Alla.Using exhaust gas recirculation in internal combustion engines:a review.Energy Conversion and Management,2002,43(8):1027–1042.

    [4]D.Schiefer,D.Maennel,W.Nardoni.Advantages of Diesel Engine Control Using In-Cylinder Pressure Information for Closed Loop Control.SAE Technical Paper 2003-01-0364.Detroit:SAE International,2003.

    [5]G.D.Neely,S.Sasaki,Y.Huang,et al.New Diesel Emisson Control Strategy to Meet US Tier 2 Emissions Regulations.SAE Technical Paper 2005-01-1091.Detroit:SAE International,2005.

    [6]A.M.Kulkarni,K.C.Stricker,A.Blum,et al.PCCI Control Authority of a Modern Diesel Engine Outfitted With Flexible Intake Valve Actuation.SAE Technical Paper 2009-01-18882.Detroit:SAE International,2009.

    [7]A.E.Ctania,S.d’Ambrosio,R.Finesso,et al.Combustion system optimization of a low compression-ratio PCCI diesel engine for light-duty application.SAE International Journal of Engines,2009,2(1):1314–1326.

    [8]T.Ishikawa,N.Horibe.Characteristics and problems of diesel base PCCI combustion.Marine Engineering,47(6):859–864(in Japanese).

    [9]L.Guzzella,C.H.Onder.Introduction to Modeling and Control of Internal Combustion Engine Systems.Berlin:Springer,2010.

    [10]M.Iwadare,M.Ueno,Y.Hattori,et al.Modeling and control systems design by model predictive control for air-path system of diesel engine.Transactions of the Society of Instrument and Control Engineers,2010,46(8):456–462(in Japanese).

    [11]K. Yasuda, Y. Yamasaki, S. Kaneko, et al. Diesel combustion model for on-board application. International Journal of Engine Research,2016,17(7):748–765.

    [12]H.Shimizu,K.Hoshida,Y.Nakamura,et al.Discrete dynamics model for diesel combustion:expansion of the model to multiinjection(two-stage injection).2nd report.Proceedings of the 25th Internal Combustion Engine Symposium.Tokyo,2014(in Japanese).

    [13]K.Zhou,J.C.Doyle.Essentials of Robust Control.Englewood Cliffs:Prentice Hall,1998.

    [14]T.Yamaguchi,M.Hirata,C.K.Pang.High-Speed Precision Motion Control.New York:CRC Press,2012.

    [15]P.Apkarian,P.Gahinet,G.Backer.Self-scheduled H∞control of linear parameter-varying system–a design example.Automatica,1998,31(9):1251–1261.

    28 September 2016;revised 2 March 2017;accepted 3 March 2017

    DOI10.1007/s11768-017-6144-8

    ?Corresponding author.

    E-mail:hirata@cc.utsunomiya-u.ac.jp.

    This work was supported by “Innovative Combustion Technology”of a cross-ministerial strategic innovation promotion program(SIP)under Japan Science and Technology Agency(JST).

    ?2017 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Mitsuo HIRATAreceived B.E.,M.E.,and Ph.D.degrees from Chiba University in 1991,1993,and 1996,respectively.From 1996 through 2004,he was a Research Associate in the Department of Electronics and Mechanical Engineering,Chiba University.From 2002 through 2003,he was a Visiting Scholar in the Department of Mechanical Engineering,University of California,Berkeley.Since June 2004,he has been at Utsunomiya University,where he is currently a Professor of the Department of Electrical and Electronic Systems Engineering.His research interests include robust control,high-precision motion control,sampled-data control,and their applications to industrial systems.He is a member of IEEE,SICE,ISCIE,IEEJ,and JSME.E-mail:hirata@cc.utsunomiya-u.ac.jp.

    Sota ISHIZUKIreceived the B.E.and M.E.degrees from National Institute of Technology,Nagaoka College and Utsunomiya University in 2015 and 2017,respectively.His current research interest is advanced control of combustion in diesel engines.

    Masayasu SUZUKIreceived the B.E.,M.E.,and Ph.D. degrees in Aerospace Engineering from Nagoya University,Nagoya,Japan,in 2005,2007,and 2010,respectively.From 2010 to 2013,he was a Post-Doctoral researcher of FIRST Aihara Innovative Mathematical Modelling Project,Japan Science and Technology Agency,in the Department of Mechanical and Environmental Informatics,Tokyo Institute of Technology.Since December 2013,he has been with the Department of Electrical and Electronic Systems Engineering,Utsunomiya University,where he is currently an Assistant Professor.His research interests include control of nonlinear systems,control of distributed parameter systems,and network structure identification.He is a member of IEEE,SICE,ISCIE,IEEJ,JSME and IEICE.E-mail:ma-suzuki@cc.utsunomiya-u.ac.jp.

    亚洲狠狠婷婷综合久久图片| 一进一出抽搐动态| 97人妻精品一区二区三区麻豆| 人人妻人人看人人澡| 久久久久性生活片| 欧美日韩中文字幕国产精品一区二区三区| 嫩草影视91久久| 在线观看舔阴道视频| 欧美丝袜亚洲另类 | 岛国在线免费视频观看| 在线观看一区二区三区| 99久久九九国产精品国产免费| 国产精品一区二区免费欧美| 成人无遮挡网站| 宅男免费午夜| 国产高清视频在线播放一区| 老司机午夜福利在线观看视频| 麻豆国产97在线/欧美| 好男人电影高清在线观看| 国产黄片美女视频| 午夜日韩欧美国产| 女生性感内裤真人,穿戴方法视频| 一区二区三区激情视频| 91在线观看av| 99久久99久久久精品蜜桃| 欧美另类亚洲清纯唯美| 亚洲av免费高清在线观看| 极品教师在线免费播放| 久久久国产精品麻豆| 日本 av在线| 成人av一区二区三区在线看| 一个人看视频在线观看www免费 | 999久久久精品免费观看国产| 搞女人的毛片| 99热这里只有是精品50| 一进一出抽搐动态| 亚洲欧美日韩卡通动漫| 88av欧美| 搡老妇女老女人老熟妇| 亚洲精品在线美女| 亚洲在线自拍视频| 性欧美人与动物交配| 亚洲av熟女| 岛国视频午夜一区免费看| 中文字幕av成人在线电影| 内射极品少妇av片p| 制服人妻中文乱码| 又爽又黄无遮挡网站| 亚洲五月婷婷丁香| 性色av乱码一区二区三区2| 美女黄网站色视频| 人人妻人人澡欧美一区二区| 亚洲色图av天堂| 99久久精品一区二区三区| 91麻豆av在线| 女警被强在线播放| 中国美女看黄片| 九九热线精品视视频播放| 国产伦精品一区二区三区视频9 | 嫩草影视91久久| 国内少妇人妻偷人精品xxx网站| 日韩精品中文字幕看吧| 99久久精品一区二区三区| www.熟女人妻精品国产| 非洲黑人性xxxx精品又粗又长| 操出白浆在线播放| 夜夜夜夜夜久久久久| 欧美极品一区二区三区四区| 国产精品久久电影中文字幕| 国产欧美日韩精品亚洲av| 日韩av在线大香蕉| 可以在线观看的亚洲视频| 日本三级黄在线观看| 怎么达到女性高潮| 婷婷亚洲欧美| 午夜福利18| 宅男免费午夜| 国产精品久久久久久人妻精品电影| 非洲黑人性xxxx精品又粗又长| 丁香六月欧美| 亚洲国产高清在线一区二区三| 亚洲片人在线观看| 天堂√8在线中文| 国产精品久久久久久人妻精品电影| 少妇人妻精品综合一区二区 | 90打野战视频偷拍视频| 成人三级黄色视频| 人人妻,人人澡人人爽秒播| 人妻夜夜爽99麻豆av| 中文亚洲av片在线观看爽| 欧美激情久久久久久爽电影| 国产午夜精品论理片| 99久久99久久久精品蜜桃| 亚洲在线自拍视频| 久久伊人香网站| www国产在线视频色| 美女 人体艺术 gogo| 少妇裸体淫交视频免费看高清| 香蕉av资源在线| 精品久久久久久,| 国产乱人视频| 日本成人三级电影网站| 两性午夜刺激爽爽歪歪视频在线观看| 国产又黄又爽又无遮挡在线| av黄色大香蕉| 亚洲一区高清亚洲精品| 亚洲成av人片免费观看| 精品欧美国产一区二区三| 久99久视频精品免费| 亚洲成av人片免费观看| 亚洲黑人精品在线| 观看美女的网站| 丰满乱子伦码专区| 亚洲激情在线av| 国产精品久久久久久精品电影| 女人高潮潮喷娇喘18禁视频| 国内少妇人妻偷人精品xxx网站| 一区二区三区高清视频在线| 亚洲专区国产一区二区| 欧美日韩瑟瑟在线播放| av专区在线播放| 国产 一区 欧美 日韩| 在线播放国产精品三级| 99久国产av精品| 亚洲成a人片在线一区二区| 国产精品美女特级片免费视频播放器| 一本一本综合久久| 99riav亚洲国产免费| 色播亚洲综合网| 国产精品,欧美在线| 在线视频色国产色| 亚洲自拍偷在线| 国产野战对白在线观看| 国产三级在线视频| 大型黄色视频在线免费观看| 在线观看av片永久免费下载| 久久久久亚洲av毛片大全| 身体一侧抽搐| 欧美三级亚洲精品| 岛国在线观看网站| 国产精品乱码一区二三区的特点| 国产亚洲精品av在线| 午夜视频国产福利| 欧美最黄视频在线播放免费| 怎么达到女性高潮| 精品久久久久久久久久久久久| 久久久久精品国产欧美久久久| 亚洲av电影不卡..在线观看| 最新在线观看一区二区三区| 亚洲精品456在线播放app | 熟女少妇亚洲综合色aaa.| 午夜激情福利司机影院| 可以在线观看的亚洲视频| a在线观看视频网站| 日本 欧美在线| 欧美激情在线99| or卡值多少钱| 超碰av人人做人人爽久久 | 国产美女午夜福利| 国产v大片淫在线免费观看| 欧美另类亚洲清纯唯美| 国产精品久久电影中文字幕| 午夜精品一区二区三区免费看| 91在线观看av| 成人国产综合亚洲| 国产精品国产高清国产av| 99久久九九国产精品国产免费| 国产探花极品一区二区| 天天一区二区日本电影三级| 午夜视频国产福利| 看片在线看免费视频| 可以在线观看毛片的网站| 最新美女视频免费是黄的| 精品久久久久久久久久久久久| 国产久久久一区二区三区| 老司机午夜福利在线观看视频| 99热6这里只有精品| av女优亚洲男人天堂| 亚洲欧美日韩高清专用| 国产欧美日韩一区二区精品| 午夜精品在线福利| 在线观看免费午夜福利视频| 精品99又大又爽又粗少妇毛片 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美日韩高清在线视频| 国内精品一区二区在线观看| 亚洲精品亚洲一区二区| 日本与韩国留学比较| 1000部很黄的大片| 久久国产精品人妻蜜桃| 一本精品99久久精品77| 日本一本二区三区精品| 国产av一区在线观看免费| 无限看片的www在线观看| 久久精品国产综合久久久| 在线观看舔阴道视频| 一个人看视频在线观看www免费 | 国产精品98久久久久久宅男小说| 一区二区三区激情视频| 国产99白浆流出| 身体一侧抽搐| 人人妻,人人澡人人爽秒播| 神马国产精品三级电影在线观看| 午夜福利18| 少妇人妻一区二区三区视频| 久久这里只有精品中国| 久久精品国产亚洲av香蕉五月| www日本黄色视频网| 久久99热这里只有精品18| 美女高潮喷水抽搐中文字幕| 亚洲无线在线观看| 噜噜噜噜噜久久久久久91| 天天添夜夜摸| 啪啪无遮挡十八禁网站| 午夜福利视频1000在线观看| 国产成人av教育| 亚洲av电影不卡..在线观看| 国产成人a区在线观看| 99热这里只有是精品50| 国产精品野战在线观看| 久久久久久久久中文| 亚洲va日本ⅴa欧美va伊人久久| 露出奶头的视频| 色噜噜av男人的天堂激情| 男人舔女人下体高潮全视频| 国产91精品成人一区二区三区| 长腿黑丝高跟| 19禁男女啪啪无遮挡网站| 天堂动漫精品| 国产一区二区激情短视频| 精品乱码久久久久久99久播| www.999成人在线观看| 女生性感内裤真人,穿戴方法视频| 嫩草影院精品99| 18禁在线播放成人免费| 18禁美女被吸乳视频| 中国美女看黄片| 99在线视频只有这里精品首页| 亚洲人成伊人成综合网2020| 欧美丝袜亚洲另类 | 男女午夜视频在线观看| 日韩成人在线观看一区二区三区| 色综合亚洲欧美另类图片| 成年女人永久免费观看视频| 日本a在线网址| www.www免费av| 免费在线观看亚洲国产| 天堂影院成人在线观看| 怎么达到女性高潮| 内射极品少妇av片p| 好看av亚洲va欧美ⅴa在| 国产毛片a区久久久久| 亚洲欧美日韩东京热| 欧美日韩综合久久久久久 | 麻豆久久精品国产亚洲av| 大型黄色视频在线免费观看| 亚洲国产精品999在线| 欧美在线黄色| 亚洲国产精品999在线| 亚洲av免费在线观看| 噜噜噜噜噜久久久久久91| 99国产综合亚洲精品| 亚洲aⅴ乱码一区二区在线播放| 国产日本99.免费观看| 精品久久久久久久久久久久久| 国产午夜精品论理片| 国产极品精品免费视频能看的| 一级a爱片免费观看的视频| 国产蜜桃级精品一区二区三区| www.999成人在线观看| 久久久久久久久久黄片| 国产一区二区亚洲精品在线观看| 性色av乱码一区二区三区2| 免费观看人在逋| 啪啪无遮挡十八禁网站| 午夜激情欧美在线| 欧美日韩亚洲国产一区二区在线观看| 中出人妻视频一区二区| 最近最新中文字幕大全电影3| 国产成+人综合+亚洲专区| 国产精品久久久久久久电影 | 最近最新中文字幕大全免费视频| 18禁黄网站禁片午夜丰满| 美女 人体艺术 gogo| 亚洲天堂国产精品一区在线| 18+在线观看网站| 精品福利观看| 亚洲自拍偷在线| 波多野结衣高清作品| 少妇裸体淫交视频免费看高清| 1024手机看黄色片| 又爽又黄无遮挡网站| 国产色爽女视频免费观看| 成人国产综合亚洲| 日本免费一区二区三区高清不卡| 91麻豆精品激情在线观看国产| 制服丝袜大香蕉在线| 毛片女人毛片| e午夜精品久久久久久久| 欧美极品一区二区三区四区| 特级一级黄色大片| 精品一区二区三区视频在线观看免费| 嫩草影视91久久| 九九久久精品国产亚洲av麻豆| 麻豆国产97在线/欧美| 男女视频在线观看网站免费| 51国产日韩欧美| 99精品在免费线老司机午夜| 国内精品一区二区在线观看| 亚洲av二区三区四区| 少妇人妻一区二区三区视频| 国产精品日韩av在线免费观看| 欧美日韩一级在线毛片| 亚洲av成人精品一区久久| 变态另类成人亚洲欧美熟女| 久久欧美精品欧美久久欧美| 亚洲,欧美精品.| 久久6这里有精品| 国产成人aa在线观看| 久久人妻av系列| 国产精品国产高清国产av| 国产精品久久久久久亚洲av鲁大| 精品乱码久久久久久99久播| 69av精品久久久久久| 精品无人区乱码1区二区| 成人一区二区视频在线观看| 精品福利观看| 亚洲成人精品中文字幕电影| 国产国拍精品亚洲av在线观看 | 丰满人妻熟妇乱又伦精品不卡| 香蕉久久夜色| 国产精品综合久久久久久久免费| 久久久久久久久大av| 欧美成人性av电影在线观看| 国产美女午夜福利| 一本精品99久久精品77| 国产乱人伦免费视频| 99国产极品粉嫩在线观看| 国产成年人精品一区二区| 中亚洲国语对白在线视频| 精品午夜福利视频在线观看一区| 成人欧美大片| 日本成人三级电影网站| 亚洲国产精品sss在线观看| 九色成人免费人妻av| 日韩欧美精品免费久久 | 久久精品91无色码中文字幕| 性欧美人与动物交配| 中文字幕av在线有码专区| 国内精品美女久久久久久| 久久久成人免费电影| 偷拍熟女少妇极品色| 欧美一级毛片孕妇| 亚洲成av人片在线播放无| 欧美日韩黄片免| 黄片小视频在线播放| 嫩草影院入口| 夜夜夜夜夜久久久久| 久久久久久久久中文| 国产免费一级a男人的天堂| 国产精品香港三级国产av潘金莲| 一个人免费在线观看的高清视频| 午夜免费激情av| 亚洲一区高清亚洲精品| 免费av观看视频| 我的老师免费观看完整版| 国产精品,欧美在线| 老鸭窝网址在线观看| 无人区码免费观看不卡| 精品久久久久久久久久免费视频| 久久久久免费精品人妻一区二区| 国产免费一级a男人的天堂| 国产国拍精品亚洲av在线观看 | 亚洲精品乱码久久久v下载方式 | 长腿黑丝高跟| 日韩高清综合在线| www.熟女人妻精品国产| 在线观看66精品国产| 少妇丰满av| 岛国在线免费视频观看| 国产亚洲欧美98| 看片在线看免费视频| 男人舔奶头视频| 亚洲18禁久久av| 性色avwww在线观看| 色av中文字幕| 国产免费男女视频| 人人妻,人人澡人人爽秒播| 亚洲熟妇中文字幕五十中出| 亚洲最大成人手机在线| 欧美一级a爱片免费观看看| 午夜影院日韩av| av视频在线观看入口| 桃色一区二区三区在线观看| 首页视频小说图片口味搜索| 亚洲成av人片在线播放无| 国产真实伦视频高清在线观看 | 国产成人av激情在线播放| 亚洲 欧美 日韩 在线 免费| 国产成年人精品一区二区| 亚洲最大成人手机在线| 中文字幕久久专区| 国产高清视频在线播放一区| 有码 亚洲区| bbb黄色大片| 国产激情偷乱视频一区二区| 欧美+亚洲+日韩+国产| 90打野战视频偷拍视频| xxxwww97欧美| 无限看片的www在线观看| 啦啦啦免费观看视频1| 欧美成人性av电影在线观看| 日韩欧美在线二视频| 麻豆成人av在线观看| 久久久久久久久久黄片| 一级作爱视频免费观看| 成人精品一区二区免费| 免费看a级黄色片| 一个人免费在线观看电影| 在线看三级毛片| 老司机深夜福利视频在线观看| 精华霜和精华液先用哪个| 国产精品久久久久久人妻精品电影| 国产精品永久免费网站| 久久久久久人人人人人| 成年女人永久免费观看视频| 一进一出抽搐动态| 91在线观看av| 一区福利在线观看| 一区二区三区免费毛片| 黑人欧美特级aaaaaa片| 亚洲成人久久性| 欧美一区二区国产精品久久精品| 成年免费大片在线观看| 成人高潮视频无遮挡免费网站| 久久99热这里只有精品18| 成人av在线播放网站| 国产免费男女视频| 国产精品久久久久久亚洲av鲁大| 搡老妇女老女人老熟妇| 亚洲人成网站在线播| 中文亚洲av片在线观看爽| 天堂√8在线中文| 热99re8久久精品国产| 最新中文字幕久久久久| 久久精品国产综合久久久| 国产精品影院久久| 亚洲性夜色夜夜综合| 国产v大片淫在线免费观看| 欧美日韩精品网址| 国产精品av视频在线免费观看| 欧美乱妇无乱码| 免费一级毛片在线播放高清视频| 久久精品人妻少妇| 99国产综合亚洲精品| 国产精品 欧美亚洲| 波野结衣二区三区在线 | 国产成人福利小说| 成年免费大片在线观看| 亚洲色图av天堂| www.色视频.com| 最后的刺客免费高清国语| 日韩大尺度精品在线看网址| 日韩精品青青久久久久久| 偷拍熟女少妇极品色| 午夜福利成人在线免费观看| 九九在线视频观看精品| 欧美日韩中文字幕国产精品一区二区三区| 成年免费大片在线观看| 黄色日韩在线| 亚洲内射少妇av| 国产97色在线日韩免费| 国产黄片美女视频| 天堂动漫精品| 女人被狂操c到高潮| 小说图片视频综合网站| 国产亚洲欧美在线一区二区| 97超级碰碰碰精品色视频在线观看| 久久久久国产精品人妻aⅴ院| 高清日韩中文字幕在线| 亚洲人成电影免费在线| 久久精品国产亚洲av涩爱 | 非洲黑人性xxxx精品又粗又长| av天堂中文字幕网| 亚洲av日韩精品久久久久久密| 蜜桃亚洲精品一区二区三区| 免费在线观看影片大全网站| 极品教师在线免费播放| 成人18禁在线播放| 悠悠久久av| 亚洲黑人精品在线| 看片在线看免费视频| 亚洲欧美日韩无卡精品| 免费看美女性在线毛片视频| 最近最新中文字幕大全电影3| 欧美又色又爽又黄视频| 国产黄色小视频在线观看| 尤物成人国产欧美一区二区三区| 久久久久久九九精品二区国产| 一个人免费在线观看的高清视频| 丰满人妻熟妇乱又伦精品不卡| 男人舔奶头视频| 亚洲av免费高清在线观看| 国产激情欧美一区二区| 人妻夜夜爽99麻豆av| 日韩欧美精品免费久久 | 一本精品99久久精品77| 又黄又爽又免费观看的视频| 丰满的人妻完整版| 色精品久久人妻99蜜桃| 国产在线精品亚洲第一网站| 午夜福利在线在线| 亚洲精品影视一区二区三区av| 小蜜桃在线观看免费完整版高清| 日韩欧美三级三区| 色综合欧美亚洲国产小说| 日韩人妻高清精品专区| 99久久无色码亚洲精品果冻| 真人做人爱边吃奶动态| 九九久久精品国产亚洲av麻豆| 性欧美人与动物交配| 日本免费一区二区三区高清不卡| 亚洲五月天丁香| 国产亚洲精品一区二区www| 久久久久久国产a免费观看| 国产精品永久免费网站| av中文乱码字幕在线| 1024手机看黄色片| 黄色成人免费大全| 免费观看人在逋| 看片在线看免费视频| 他把我摸到了高潮在线观看| 又爽又黄无遮挡网站| 91久久精品电影网| 国产精品久久视频播放| 日韩精品中文字幕看吧| 免费观看人在逋| 一级毛片女人18水好多| 国产高清激情床上av| 成年免费大片在线观看| 亚洲 国产 在线| 一本久久中文字幕| 伊人久久精品亚洲午夜| 亚洲内射少妇av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 在线观看日韩欧美| 国产精品国产高清国产av| 欧美一区二区国产精品久久精品| 丰满人妻熟妇乱又伦精品不卡| 久久久久久九九精品二区国产| 亚洲精品影视一区二区三区av| 欧美日韩瑟瑟在线播放| 香蕉丝袜av| 亚洲无线观看免费| a级毛片a级免费在线| 日日夜夜操网爽| 五月玫瑰六月丁香| 级片在线观看| 久久婷婷人人爽人人干人人爱| 中出人妻视频一区二区| 人人妻,人人澡人人爽秒播| 熟女人妻精品中文字幕| 国内精品美女久久久久久| 欧美xxxx黑人xx丫x性爽| 日韩精品中文字幕看吧| 性色av乱码一区二区三区2| 久久精品国产综合久久久| 国产精品日韩av在线免费观看| 中文字幕久久专区| 岛国视频午夜一区免费看| 精品人妻一区二区三区麻豆 | 亚洲国产欧美网| 国产一区二区亚洲精品在线观看| 一级毛片女人18水好多| 五月玫瑰六月丁香| 真实男女啪啪啪动态图| 久久人人精品亚洲av| 国产真实乱freesex| 精品一区二区三区视频在线观看免费| 一区二区三区免费毛片| www日本在线高清视频| 久久久久久国产a免费观看| 在线观看舔阴道视频| 亚洲性夜色夜夜综合| 午夜精品一区二区三区免费看| 99热只有精品国产| 观看免费一级毛片| 精品国产三级普通话版| 日本在线视频免费播放| www.色视频.com| 午夜久久久久精精品| 久久中文看片网| 欧洲精品卡2卡3卡4卡5卡区| 午夜a级毛片| 国内久久婷婷六月综合欲色啪| 欧美+亚洲+日韩+国产| 99久久无色码亚洲精品果冻| 国产精品电影一区二区三区| 欧美乱码精品一区二区三区| 亚洲国产高清在线一区二区三| 啪啪无遮挡十八禁网站| 免费看光身美女| 亚洲熟妇中文字幕五十中出| 夜夜躁狠狠躁天天躁| 久久人人精品亚洲av| 性色avwww在线观看| 欧美最新免费一区二区三区 | 天天躁日日操中文字幕| 手机成人av网站| 午夜免费观看网址| 午夜激情欧美在线| 手机成人av网站| 九色成人免费人妻av| 国产激情欧美一区二区| 久久婷婷人人爽人人干人人爱|