• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-degree-of-freedom H-infinity control of combustion in diesel engine using a discrete dynamics model

    2017-12-26 09:28:34MitsuoHIRATASotaISHIZUKIMasasyasuSUZUKI
    Control Theory and Technology 2017年2期

    Mitsuo HIRATA,Sota ISHIZUKI,Masasyasu SUZUKI

    Department of Electrical and Electronic Systems Engineering,Utsunomiya University,7-1-2 Yoto,Utsunomiya,Tochigi 321-8585,Japan

    Two-degree-of-freedom H-infinity control of combustion in diesel engine using a discrete dynamics model

    Mitsuo HIRATA?,Sota ISHIZUKI,Masasyasu SUZUKI

    Department of Electrical and Electronic Systems Engineering,Utsunomiya University,7-1-2 Yoto,Utsunomiya,Tochigi 321-8585,Japan

    This paper proposes an H-infinity combustion control method for diesel engines.The plant model is the discrete dynamics model developed by Yasuda et al.,which is implementable on a real engine control unit.We introduce a two-degree-of-freedom control scheme with a feedback controller and a feedforward controller.This scheme achieves both good feedback properties,such as disturbance suppression and robust stability,and a good transient response.The feedforward controller is designed by taking the inverse of the static plant model,and the feedback controller is designed by the H-infinity control method,which reduces the effect of the trubocharger lag. The effectiveness of the proposed method is evaluated in simulations using the nonlinear discrete dynamics model.

    Combustion control,diesel engines,H-infinity control,two-degree-of-freedom control

    1 Introduction

    In diesel engines,efforts to reduce both NOxand particulate matter(PM)emissions have increased in recent years due to the need to comply with increasingly stringent emission regulations.To meet these requirements,new technologies such as exhaust gas recirculation(EGR)circuits,variable-geometry turbochargers(VGTs),and exhaust gas after treatment systems have been introduced[1–3].However,these technologies increase the complexity of the system architecture and the difficulty of the control system design.

    Conventional controllers are based on lookup tables compiled from the results of many experiments[4].The complexity of recent engines has greatly increased the effort of constructing these tables.Premixed charge compression ignition(PCCI)combustion is the inevitable next step,as it achieves high energy efficiency while reducing the engine-out emissions,but it is nonrobust and difficult to control[5–8].Indeed,PCCI combustion cannot be adequately controlled by conventional control,in either steady-state or transient operation.Model-based controller design methods offer a promising alternative to traditional control of PCCI[9,10].

    This paper proposes an H∞combustion control method for diesel engines.The plant model is the discrete dynamics model,which has been developed by Yasuda et al.as a future implementable model on a real engine control unit as a feedforward controller to predict control input from reference inputs and multiple sensory information without optional lookup tables[11,12].We introduce a two-degree-of-freedom control scheme with a feedback controller and a feedforward controller.This scheme achieves both good feedback properties,such as disturbance suppression and robust stability,and a good transient response.The feedforward controller is designed by taking the inverse of the static plant model,and the feedback controller is designed by the H∞control method[13].The generalized plant for the H∞controller design is constructed to reduce not only various disturbances but also the influence of the turbocharger lag.

    The effectiveness of the proposed method is evaluated in simulations using the nonlinear discrete dynamics model.

    2 Discrete dynamics model

    To reduce the computational cost,the discrete dynamics model calculates fundamental thermodynamic equations and some empirical equations only at representative points in the engine cycle;namely,the timings of the exhaust valve closing(EVC),the intake valve closing(IVC),the ignition(IGN),the peak pressure(PEAK),and the exhaust valve opening(EVO).

    Initially,the discrete dynamics model comprised a single injection system[11];then,the model was extended to include multi-injection systems[12].In this initial examination,we assume the single injection system.The state variable Xk,the input Uk,and the output Ykof the single-injection model are presented in Table 1.In terms of these variables,the discrete dynamics model with single injection is expressed as1The EGR ratio is also the input to the discrete dynamics model.However,in this study,we treat the EGR ratio as a constant(30%)rather than as an input variable.:

    In(1),f and g are complex nonlinear equations,and the details are described in[11].

    Table 1 Definitions of states,inputs,and outputs in the discrete dynamics model.

    In the controller design,(1)is linearized around the equilibrium points U0,Y0,and X0of the input,output,and state,respectively.The deviations from the equilibrium points are defined as follows:

    In this article,the equilibrium point U0of the input is selected as

    Thus,Y0and X0are obtained as

    Based on these equilibrium points,we obtained a linearized model with the following state-space representation:

    We also define the transfer function P:

    3 Structure of control system

    We introduce the following assumptions to design the two-degree-of freedom control system.

    a)The peak pressure δPPEAK,kand the peak pressure timing δθPEAK,kcan be measured at time k+1 by sensors embedded in the cylinder.

    b)The actual boost pressure δPboost,kfollows the referencewith a first-order lag,i.e.,the following equation holds:

    where δPboost[z]andare the z-transforms of δPboost,kandrespectively,and Fb[z]is a discrete-time first-order lag filter with a time constant of Tb=2s.

    c)The boost pressure δPboost,kcan be measured without a time delay.

    d)The feedback controller can manipulate the fuel injection timing δθINJ,kand the boost pressure reference

    By assumption a),the measurement output ys,kis given by

    Further,by assumption b),the input u of P is related to the controller output usas

    Under the above assumptions,a two-degree-offreedom control system was proposed as shown in Fig.1.The reference input r is assumed to be

    where r1[z]is the actual fuel injection quantity δQfuelgiven by a driver,and r2[z]and r3[z]are the references for δPPEAK,and δθPEAK,respectively.As shown in the next section,δQfuelis included in the reference r since it is used to calculate the second and the third elements of the feedforward input uあ.

    Fig.1 Proposed control system.

    The reference input rsis the reference to ys,and it is generated by RFF.An one sampling delay z?1is introduced to generate rsbecause yshas the same delay relative to y.The feedforward input uあis generated by the feedforward controller KFF.

    The inputs of the feedback controller KFBare the error er=rs?ysand the external input yex,which is introduced to compensate for the turbocharger lag,and the controller output is ufb.From assumption d),we have

    The design method of KFF,RFF,and KFBwill be shown in the next section.

    4 Design of KFFand RFF

    By examining the linearlized model(12)and(13),we found that the dynamics of the plant exert a small effect.Thus,for the feedforward controller design,we assume that the input and output relation can be described by the direct transmission term D as follows:

    We define u1and u23as

    then(20)can be described as

    The feedforward controller KFFwhich generates the following feedforward input,

    should be designed so as to satisfy the following relation for a given reference input r,

    By isolating u23in(22)and using(24),we have

    Therefore we have the following feedforward controller KFFfrom(23)and(25):

    On the other hand,RFFis defined to generate the reference to δPPEAKand δθPEAKas follows:

    In order to evaluate the performance of the feedforward controller KFF,we obtained the output response by substituting the output of(26)into(1).The reference for fuel injection quantity was increased 5mm3from the equivalent point at t=1.The references for peak pressure and peak pressure timing were increased by 1 unit from the equivalent points as step signal at t=4 and t=7,respectively.Fig.2 shows the simulation result,and it indicates that the feedforward controller works correctly.

    Further,in order to evaluate the influence of the turbocharger lag,M of(17)was inserted between the output of(26)and(1),and the simulation was conducted again.As shown in Fig.3,the tracking performance was degraded and it shows that the turbocharger lag cannot be neglected.

    Fig.2 Simulation result 1.

    Fig.3 Simulation result 2.

    5 Design of H∞controller

    5.1 H∞control theory

    Given a generalized closed-loop configuration shown in Fig.4,the H∞control is formulated as a problem that finds an internally stabilizing controller that minimizes the H∞norm from w to z[13].The transfer matrix G in Fig.4 is referred to as a generalized plant.

    The H∞controller minimizes H∞norm,which corresponds to the maximum gain of the transfer function.Therefore,the H∞control is essentially a disturbance suppression.Multiple disturbances are imposed to the controlled object in actual systems,and the modeling error can also be regarded as an equivalent disturbance[14].Therefore,the H∞control is a powerful approach because various control problems are reduced to disturbance attenuation problems.

    Fig.4 Standard configuration for H∞control.

    5.2 H∞controller design

    The H∞controller KFBin Fig.1 is designed so as to reduce the influence of the turbocharger lag.By assumption d),the plant PFBfor the H∞controller design is defined as

    The generalized plant for the H∞controller design is shown in Fig.5.MFBis introduced to incorporate the turbocharger lag into controller design as follows:

    wdand wnrepresent the disturbance and the measurement noise,respectively.zuand zeare the controlled outputs that are minimized by the H∞controller.

    Fig.5 Generalized plant.

    The second element wd2of wdis the equivalent disturbance that represents the turbocharger lag,and let us estimate the amount of the equivalent disturbance.

    Since the feedforward controller was designed by taking the inverse of D,it is desirable to add a feedforward inputuあbetween Mand P in the two-degree-of-freedomcontrol system(Fig.1).However,the actual boost pressure cannot be directly manipulated,so uあis added to the input side of M,as shown in Fig.1.

    Fig.6(a)presents the extracted block diagram of the input and output portions of Fbin Fig.1.Fig.6(a)is transformed to Fig.6(b)by preserving the transfer function from uあ3to u32uあ3and u3represent the 3rd element of uあ and u,respectively.The same manner will be used..

    Fig.6 Equivalent transformation of uあ3.

    From this diagram,we observe that adding uあ3to the input side of Fbis equivalent to adding to the output side of Fb.Since deqvcan be calculated from(26)and(30),it is reasonable to assume that deqvis a measurable signal.In the generalized plant Fig.5,wd2corresponds to deqv,and it is defined as a measured signal yex.

    The weighting functions We,Wu,and Wnwere selected with some trial and errors as

    All of the weighting functions were discretized by a pole-zero matching equivalent method.Next,referring to discrete-time H∞control theory,we calculated an H∞controller with these weighting functions using the MATLAB robust control toolbox R2012a.The achieved minimum H∞norm from w to z was 0.81.The singular values plot of the H∞controller is shown in Fig.7,and the state space matrices of the obtained H∞controller are shown below

    where

    Fig.7 Singular values plot of H∞controller.

    5.3 Simulation

    The obtained H∞controller was employed as the feedback controller of the two-degree-of-freedom control system in Fig.1,and evaluated in simulations.The linear model P was replaced by the nonlinear discrete dynamics model(1)for simulation.The second input yexof the H∞controller was given as

    Fig.8 shows the simulation result.The references are same as that used to evaluate the performance of the feedforward controller.From Fig.8,a small interference between channels are observed,though,the output of each channel accurately follows the reference input.

    Fig.8 Simulation result 3.

    Fig.9shows the responses of the control inputs. In the graph of Pboost,us3is the reference of the boost pressure,and u3is the actual boost pressure.The reference of the boost pressure moves largely to compensate for the turbocharger lag.

    Fig.9 Simulation result 3(control input).

    6 Conclusions

    In this study,we proposed a two-degree-of-freedom control structure for a combustion control.The feedforward controller was designed using the static model of the plant.On the other hand,the feedback controller was designed by the H∞control theory.The H∞controller was obtained by accounting for the turbocharger lag.The improved tracking performance was demonstrated in simulation.

    Future work will focus on the implementation of the proposed method into real engine.Concerning the fixed EGR ratio,it should be treated as a variable because it varies in actual driving situation. As for the input and output of the plant,they might deviate from the equivalent point significantly and the plant exhibits a nonlinearity.In this case,a gain scheduled H∞control approach will be effective to cope with the nonlinearity[15].It is also effective to replace the gain feedforward controller KFFby a nonlinear feedforward controller obtained by taking the inverse of the discrete dynamics model,though,we must wait for the improvement of current ECU’s computation performance.

    [1]H.Xie,S.Li,K.Song,et al.Model-based decoupling control of VGT and EGR with active disturbance rejection in diesel engines.IFAC Proceedings Volumes,2013,46(21):282–288.

    [2]A.G.Stefanopoulou,I.Kolmanovsky,J.S.Freudenberg.Control of variable geometry turbocharged diesel engines for reduced emissions.IEEE Transactions on Control Systems Technology,2000,8(4):733–745.

    [3]G.H.Abd-Alla.Using exhaust gas recirculation in internal combustion engines:a review.Energy Conversion and Management,2002,43(8):1027–1042.

    [4]D.Schiefer,D.Maennel,W.Nardoni.Advantages of Diesel Engine Control Using In-Cylinder Pressure Information for Closed Loop Control.SAE Technical Paper 2003-01-0364.Detroit:SAE International,2003.

    [5]G.D.Neely,S.Sasaki,Y.Huang,et al.New Diesel Emisson Control Strategy to Meet US Tier 2 Emissions Regulations.SAE Technical Paper 2005-01-1091.Detroit:SAE International,2005.

    [6]A.M.Kulkarni,K.C.Stricker,A.Blum,et al.PCCI Control Authority of a Modern Diesel Engine Outfitted With Flexible Intake Valve Actuation.SAE Technical Paper 2009-01-18882.Detroit:SAE International,2009.

    [7]A.E.Ctania,S.d’Ambrosio,R.Finesso,et al.Combustion system optimization of a low compression-ratio PCCI diesel engine for light-duty application.SAE International Journal of Engines,2009,2(1):1314–1326.

    [8]T.Ishikawa,N.Horibe.Characteristics and problems of diesel base PCCI combustion.Marine Engineering,47(6):859–864(in Japanese).

    [9]L.Guzzella,C.H.Onder.Introduction to Modeling and Control of Internal Combustion Engine Systems.Berlin:Springer,2010.

    [10]M.Iwadare,M.Ueno,Y.Hattori,et al.Modeling and control systems design by model predictive control for air-path system of diesel engine.Transactions of the Society of Instrument and Control Engineers,2010,46(8):456–462(in Japanese).

    [11]K. Yasuda, Y. Yamasaki, S. Kaneko, et al. Diesel combustion model for on-board application. International Journal of Engine Research,2016,17(7):748–765.

    [12]H.Shimizu,K.Hoshida,Y.Nakamura,et al.Discrete dynamics model for diesel combustion:expansion of the model to multiinjection(two-stage injection).2nd report.Proceedings of the 25th Internal Combustion Engine Symposium.Tokyo,2014(in Japanese).

    [13]K.Zhou,J.C.Doyle.Essentials of Robust Control.Englewood Cliffs:Prentice Hall,1998.

    [14]T.Yamaguchi,M.Hirata,C.K.Pang.High-Speed Precision Motion Control.New York:CRC Press,2012.

    [15]P.Apkarian,P.Gahinet,G.Backer.Self-scheduled H∞control of linear parameter-varying system–a design example.Automatica,1998,31(9):1251–1261.

    28 September 2016;revised 2 March 2017;accepted 3 March 2017

    DOI10.1007/s11768-017-6144-8

    ?Corresponding author.

    E-mail:hirata@cc.utsunomiya-u.ac.jp.

    This work was supported by “Innovative Combustion Technology”of a cross-ministerial strategic innovation promotion program(SIP)under Japan Science and Technology Agency(JST).

    ?2017 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Mitsuo HIRATAreceived B.E.,M.E.,and Ph.D.degrees from Chiba University in 1991,1993,and 1996,respectively.From 1996 through 2004,he was a Research Associate in the Department of Electronics and Mechanical Engineering,Chiba University.From 2002 through 2003,he was a Visiting Scholar in the Department of Mechanical Engineering,University of California,Berkeley.Since June 2004,he has been at Utsunomiya University,where he is currently a Professor of the Department of Electrical and Electronic Systems Engineering.His research interests include robust control,high-precision motion control,sampled-data control,and their applications to industrial systems.He is a member of IEEE,SICE,ISCIE,IEEJ,and JSME.E-mail:hirata@cc.utsunomiya-u.ac.jp.

    Sota ISHIZUKIreceived the B.E.and M.E.degrees from National Institute of Technology,Nagaoka College and Utsunomiya University in 2015 and 2017,respectively.His current research interest is advanced control of combustion in diesel engines.

    Masayasu SUZUKIreceived the B.E.,M.E.,and Ph.D. degrees in Aerospace Engineering from Nagoya University,Nagoya,Japan,in 2005,2007,and 2010,respectively.From 2010 to 2013,he was a Post-Doctoral researcher of FIRST Aihara Innovative Mathematical Modelling Project,Japan Science and Technology Agency,in the Department of Mechanical and Environmental Informatics,Tokyo Institute of Technology.Since December 2013,he has been with the Department of Electrical and Electronic Systems Engineering,Utsunomiya University,where he is currently an Assistant Professor.His research interests include control of nonlinear systems,control of distributed parameter systems,and network structure identification.He is a member of IEEE,SICE,ISCIE,IEEJ,JSME and IEICE.E-mail:ma-suzuki@cc.utsunomiya-u.ac.jp.

    成人鲁丝片一二三区免费| 日韩,欧美,国产一区二区三区| 一个人看的www免费观看视频| 人人妻人人澡欧美一区二区| 一级片'在线观看视频| 一个人观看的视频www高清免费观看| 韩国高清视频一区二区三区| 99久久精品一区二区三区| 精品国产露脸久久av麻豆 | 日日干狠狠操夜夜爽| 日韩一区二区三区影片| 尾随美女入室| 国产av在哪里看| 国产一区二区亚洲精品在线观看| 亚洲欧美中文字幕日韩二区| 日韩欧美一区视频在线观看 | 51国产日韩欧美| 国产日韩欧美在线精品| 国产女主播在线喷水免费视频网站 | 我要看日韩黄色一级片| 99热全是精品| 少妇的逼水好多| 成人毛片60女人毛片免费| 国产欧美另类精品又又久久亚洲欧美| 亚洲四区av| 天堂影院成人在线观看| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久精品电影| 在线观看免费高清a一片| 超碰97精品在线观看| 青春草视频在线免费观看| 在线天堂最新版资源| 午夜福利高清视频| 成人毛片60女人毛片免费| 春色校园在线视频观看| 亚洲av成人精品一二三区| 亚洲av免费在线观看| 国产成人91sexporn| 国产成年人精品一区二区| 亚洲美女视频黄频| 日韩制服骚丝袜av| 在线观看一区二区三区| 男女边摸边吃奶| 婷婷色综合大香蕉| 日本午夜av视频| av免费观看日本| 免费高清在线观看视频在线观看| 日韩精品有码人妻一区| 草草在线视频免费看| 亚洲综合色惰| 日韩精品有码人妻一区| 噜噜噜噜噜久久久久久91| 日日摸夜夜添夜夜爱| 99热6这里只有精品| 亚洲av中文字字幕乱码综合| 你懂的网址亚洲精品在线观看| 日本免费在线观看一区| 国产亚洲91精品色在线| 国语对白做爰xxxⅹ性视频网站| 亚洲精品一区蜜桃| 精品少妇黑人巨大在线播放| 亚洲欧美日韩无卡精品| 91久久精品国产一区二区三区| 免费黄色在线免费观看| 成人美女网站在线观看视频| 十八禁网站网址无遮挡 | 最近中文字幕高清免费大全6| 禁无遮挡网站| 乱码一卡2卡4卡精品| 国产男女超爽视频在线观看| 五月伊人婷婷丁香| 99九九线精品视频在线观看视频| 免费看日本二区| av专区在线播放| 亚洲av二区三区四区| 免费av毛片视频| 校园人妻丝袜中文字幕| 久热久热在线精品观看| 国产成人freesex在线| 伦理电影大哥的女人| 国产一级毛片七仙女欲春2| eeuss影院久久| 男女边吃奶边做爰视频| 女人被狂操c到高潮| 国产精品不卡视频一区二区| 哪个播放器可以免费观看大片| 有码 亚洲区| 春色校园在线视频观看| 日韩欧美一区视频在线观看 | 亚洲aⅴ乱码一区二区在线播放| 国产中年淑女户外野战色| 亚洲精华国产精华液的使用体验| 婷婷色麻豆天堂久久| or卡值多少钱| 国产精品一二三区在线看| 国产日韩欧美在线精品| 国产精品久久久久久久电影| 日日撸夜夜添| 99热6这里只有精品| 日本黄色片子视频| 久久亚洲国产成人精品v| 黄片无遮挡物在线观看| 欧美日韩视频高清一区二区三区二| 蜜桃亚洲精品一区二区三区| 99re6热这里在线精品视频| av在线观看视频网站免费| 搡老妇女老女人老熟妇| 一级av片app| h日本视频在线播放| 欧美日韩在线观看h| 亚洲国产欧美在线一区| a级毛色黄片| 啦啦啦韩国在线观看视频| 日韩精品青青久久久久久| 国产国拍精品亚洲av在线观看| 亚洲精品日本国产第一区| 日韩欧美国产在线观看| 亚洲成色77777| 男的添女的下面高潮视频| 亚洲国产精品专区欧美| 麻豆成人午夜福利视频| 又黄又爽又刺激的免费视频.| 亚洲第一区二区三区不卡| 亚洲欧美成人综合另类久久久| 免费看美女性在线毛片视频| 极品少妇高潮喷水抽搐| 看十八女毛片水多多多| 国产亚洲91精品色在线| 国产淫片久久久久久久久| 精品久久久噜噜| 亚洲第一区二区三区不卡| 婷婷六月久久综合丁香| 国产精品美女特级片免费视频播放器| 久久久精品免费免费高清| 亚洲自拍偷在线| 欧美一区二区亚洲| 欧美xxxx性猛交bbbb| 久久久久久久久久成人| 欧美日韩在线观看h| 日韩强制内射视频| 蜜桃亚洲精品一区二区三区| 国产精品一区二区三区四区免费观看| 在线免费观看的www视频| 2021少妇久久久久久久久久久| 国产在线男女| 国产永久视频网站| 成人漫画全彩无遮挡| 中文字幕亚洲精品专区| av福利片在线观看| 色吧在线观看| 国产精品美女特级片免费视频播放器| 成年av动漫网址| 免费少妇av软件| 午夜激情久久久久久久| 日韩伦理黄色片| 听说在线观看完整版免费高清| 一区二区三区免费毛片| 亚洲av免费高清在线观看| 免费在线观看成人毛片| 可以在线观看毛片的网站| 午夜久久久久精精品| 尾随美女入室| 看十八女毛片水多多多| 男的添女的下面高潮视频| 亚洲精品乱久久久久久| 夫妻午夜视频| 国产精品精品国产色婷婷| 亚洲综合精品二区| 天堂俺去俺来也www色官网 | 国产老妇伦熟女老妇高清| 中国国产av一级| 男女下面进入的视频免费午夜| 淫秽高清视频在线观看| 我要看日韩黄色一级片| 毛片一级片免费看久久久久| 一个人观看的视频www高清免费观看| 2021少妇久久久久久久久久久| 午夜免费激情av| 亚洲国产欧美人成| 亚洲精品日韩av片在线观看| 最近最新中文字幕免费大全7| 亚洲内射少妇av| 有码 亚洲区| av免费观看日本| 中文欧美无线码| 国产伦精品一区二区三区视频9| 国产成年人精品一区二区| 国产一区二区亚洲精品在线观看| 日日摸夜夜添夜夜爱| 亚洲一区高清亚洲精品| 内地一区二区视频在线| 国产探花极品一区二区| 街头女战士在线观看网站| 日本wwww免费看| 亚洲国产欧美人成| 午夜福利在线观看吧| av.在线天堂| 国产成人精品久久久久久| 国产午夜精品久久久久久一区二区三区| 成人国产麻豆网| 综合色av麻豆| 久久精品夜色国产| 成人亚洲精品av一区二区| 欧美高清成人免费视频www| 人妻夜夜爽99麻豆av| 日韩欧美三级三区| 毛片一级片免费看久久久久| 亚洲成人久久爱视频| 亚洲美女搞黄在线观看| 国产精品一区二区三区四区久久| 国产伦精品一区二区三区四那| 亚洲熟女精品中文字幕| 国产高潮美女av| 亚洲成人av在线免费| 亚洲国产高清在线一区二区三| 午夜福利高清视频| 亚洲精品乱码久久久久久按摩| 亚洲av中文av极速乱| 男女边吃奶边做爰视频| 亚洲av.av天堂| 欧美精品国产亚洲| 国产黄a三级三级三级人| 美女黄网站色视频| 国产av在哪里看| 久久国产乱子免费精品| 只有这里有精品99| 国产一级毛片七仙女欲春2| av.在线天堂| 色综合色国产| 亚洲在久久综合| 亚洲成色77777| 亚洲精品乱码久久久久久按摩| 欧美日韩在线观看h| 免费观看a级毛片全部| 日韩欧美三级三区| 婷婷六月久久综合丁香| 岛国毛片在线播放| 国产精品1区2区在线观看.| 你懂的网址亚洲精品在线观看| 午夜福利网站1000一区二区三区| 欧美区成人在线视频| 免费看不卡的av| 尾随美女入室| av在线亚洲专区| 99re6热这里在线精品视频| 岛国毛片在线播放| 三级国产精品欧美在线观看| 亚洲av日韩在线播放| 久久亚洲国产成人精品v| 日韩欧美一区视频在线观看 | 欧美xxxx黑人xx丫x性爽| 国产免费视频播放在线视频 | videos熟女内射| 一级爰片在线观看| 国产精品麻豆人妻色哟哟久久 | 日本一二三区视频观看| 国产精品一区二区性色av| 国产成人精品久久久久久| av免费观看日本| av一本久久久久| 又爽又黄无遮挡网站| 亚洲在久久综合| 亚洲真实伦在线观看| 日韩中字成人| 亚洲av.av天堂| 欧美一区二区亚洲| 美女内射精品一级片tv| 亚洲人与动物交配视频| 国产精品伦人一区二区| 久久久久久久亚洲中文字幕| 国内精品一区二区在线观看| 亚洲真实伦在线观看| 国产 一区精品| 国产精品女同一区二区软件| 欧美一区二区亚洲| 能在线免费看毛片的网站| 欧美xxxx性猛交bbbb| 狠狠精品人妻久久久久久综合| 国产精品麻豆人妻色哟哟久久 | 天天躁夜夜躁狠狠久久av| 欧美日韩在线观看h| 亚洲av免费在线观看| 偷拍熟女少妇极品色| 一本久久精品| 欧美3d第一页| 久久久久久久亚洲中文字幕| 精品少妇黑人巨大在线播放| 插逼视频在线观看| 只有这里有精品99| 国产精品国产三级国产av玫瑰| or卡值多少钱| 欧美激情在线99| 国产美女午夜福利| 国产69精品久久久久777片| 午夜久久久久精精品| 人妻一区二区av| 国产午夜福利久久久久久| av播播在线观看一区| 777米奇影视久久| 69人妻影院| 2021少妇久久久久久久久久久| 国产69精品久久久久777片| 成人美女网站在线观看视频| 久久精品国产亚洲av涩爱| 国产精品综合久久久久久久免费| 最新中文字幕久久久久| 免费观看性生交大片5| 欧美丝袜亚洲另类| 国产免费又黄又爽又色| 国产av码专区亚洲av| 国产伦精品一区二区三区视频9| 一二三四中文在线观看免费高清| 精品久久久久久成人av| 亚洲人成网站高清观看| 特级一级黄色大片| 只有这里有精品99| 亚洲最大成人av| 麻豆精品久久久久久蜜桃| 97超碰精品成人国产| 男人舔奶头视频| 国产 亚洲一区二区三区 | 亚洲欧美成人综合另类久久久| 舔av片在线| 久久人人爽人人片av| av黄色大香蕉| 国产精品1区2区在线观看.| 国产精品av视频在线免费观看| 18禁在线无遮挡免费观看视频| 亚洲国产成人一精品久久久| 中文字幕久久专区| .国产精品久久| 26uuu在线亚洲综合色| 国产精品精品国产色婷婷| 韩国高清视频一区二区三区| 免费看不卡的av| 麻豆久久精品国产亚洲av| 国产亚洲91精品色在线| av女优亚洲男人天堂| 天堂网av新在线| 黄色日韩在线| 国产不卡一卡二| 18禁在线播放成人免费| 韩国高清视频一区二区三区| 久久这里有精品视频免费| 午夜福利高清视频| 国产精品三级大全| 国产麻豆成人av免费视频| 看黄色毛片网站| 亚洲精品久久久久久婷婷小说| 又粗又硬又长又爽又黄的视频| 亚洲精品国产av成人精品| 亚洲成人一二三区av| 精品少妇黑人巨大在线播放| 日韩av不卡免费在线播放| 有码 亚洲区| 亚洲av免费高清在线观看| 日本一本二区三区精品| 欧美日韩综合久久久久久| 久久这里只有精品中国| 日韩av在线大香蕉| 中文字幕亚洲精品专区| 久久久久久久久久成人| 日产精品乱码卡一卡2卡三| 成人特级av手机在线观看| 51国产日韩欧美| 亚洲国产日韩欧美精品在线观看| 91午夜精品亚洲一区二区三区| 久久久精品欧美日韩精品| 好男人在线观看高清免费视频| 天堂影院成人在线观看| 成年版毛片免费区| 五月伊人婷婷丁香| 久久97久久精品| 嘟嘟电影网在线观看| 亚洲无线观看免费| 人人妻人人澡欧美一区二区| 国产一区二区亚洲精品在线观看| 国产精品熟女久久久久浪| 亚洲在线观看片| 亚洲电影在线观看av| 爱豆传媒免费全集在线观看| 欧美3d第一页| 国产精品.久久久| 一边亲一边摸免费视频| 久久6这里有精品| 午夜福利成人在线免费观看| 国内精品一区二区在线观看| eeuss影院久久| 午夜福利视频精品| 久久久久久久国产电影| 大香蕉久久网| 久久这里只有精品中国| 青青草视频在线视频观看| 韩国av在线不卡| 少妇的逼水好多| av在线观看视频网站免费| 听说在线观看完整版免费高清| 国产精品一二三区在线看| 可以在线观看毛片的网站| 1000部很黄的大片| 久久久久久国产a免费观看| 久久人人爽人人片av| 白带黄色成豆腐渣| 高清日韩中文字幕在线| 成人av在线播放网站| 欧美变态另类bdsm刘玥| 亚洲精品日韩在线中文字幕| 女人十人毛片免费观看3o分钟| 高清毛片免费看| www.av在线官网国产| 精品人妻视频免费看| 在线观看免费高清a一片| 精品一区二区三卡| 街头女战士在线观看网站| 国精品久久久久久国模美| 国产高清三级在线| 免费观看av网站的网址| 亚洲自偷自拍三级| 人妻少妇偷人精品九色| 国产伦理片在线播放av一区| 亚洲精品日韩av片在线观看| 在线观看免费高清a一片| 成人综合一区亚洲| 日本色播在线视频| 99久国产av精品国产电影| 国产成人一区二区在线| 久久精品夜夜夜夜夜久久蜜豆| 91在线精品国自产拍蜜月| 免费黄网站久久成人精品| 插逼视频在线观看| 一级毛片电影观看| 99久国产av精品| 91久久精品电影网| 青春草亚洲视频在线观看| 特大巨黑吊av在线直播| 一级毛片黄色毛片免费观看视频| 欧美另类一区| 亚洲av电影不卡..在线观看| 美女脱内裤让男人舔精品视频| 日本wwww免费看| 成人性生交大片免费视频hd| 国产精品99久久久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美不卡视频在线免费观看| av又黄又爽大尺度在线免费看| 免费在线观看成人毛片| 波野结衣二区三区在线| 天堂√8在线中文| 91在线精品国自产拍蜜月| 午夜激情福利司机影院| 看黄色毛片网站| 热99在线观看视频| 久久久久精品性色| 欧美不卡视频在线免费观看| 日本猛色少妇xxxxx猛交久久| 欧美 日韩 精品 国产| 国产毛片a区久久久久| 亚洲av福利一区| av在线播放精品| 观看免费一级毛片| 亚洲av国产av综合av卡| 嫩草影院新地址| 免费黄频网站在线观看国产| 边亲边吃奶的免费视频| av在线天堂中文字幕| 国产在线一区二区三区精| 国产成人精品久久久久久| 听说在线观看完整版免费高清| 九九爱精品视频在线观看| 我的老师免费观看完整版| 18禁在线播放成人免费| 色尼玛亚洲综合影院| 中文字幕av成人在线电影| 国精品久久久久久国模美| av在线老鸭窝| 男女啪啪激烈高潮av片| 一区二区三区四区激情视频| 天堂网av新在线| 久久国产乱子免费精品| 日本一二三区视频观看| 久久久久久久久久成人| 最近最新中文字幕免费大全7| 久久精品久久久久久久性| 国产午夜福利久久久久久| 一区二区三区四区激情视频| 一级毛片aaaaaa免费看小| eeuss影院久久| 国产片特级美女逼逼视频| 看免费成人av毛片| 激情 狠狠 欧美| 真实男女啪啪啪动态图| 黄片无遮挡物在线观看| 春色校园在线视频观看| 波多野结衣巨乳人妻| 色吧在线观看| 晚上一个人看的免费电影| 成人毛片60女人毛片免费| 男女视频在线观看网站免费| 秋霞伦理黄片| 少妇丰满av| 乱人视频在线观看| 蜜桃久久精品国产亚洲av| 国产精品综合久久久久久久免费| 日本av手机在线免费观看| 亚洲天堂国产精品一区在线| 哪个播放器可以免费观看大片| 午夜爱爱视频在线播放| 夜夜看夜夜爽夜夜摸| 久久午夜福利片| 少妇高潮的动态图| 国产黄片视频在线免费观看| av专区在线播放| 亚洲欧美成人综合另类久久久| 乱系列少妇在线播放| 成人亚洲欧美一区二区av| 日本免费a在线| 一级毛片aaaaaa免费看小| 九九久久精品国产亚洲av麻豆| 韩国高清视频一区二区三区| 91久久精品电影网| 国产亚洲av嫩草精品影院| www.av在线官网国产| 亚洲最大成人av| 黄色欧美视频在线观看| 国产精品一及| 欧美成人午夜免费资源| 精华霜和精华液先用哪个| 99热这里只有是精品在线观看| 欧美精品一区二区大全| 最后的刺客免费高清国语| 国产伦一二天堂av在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲av成人精品一区久久| 国产精品一及| 亚洲av电影不卡..在线观看| 亚洲欧美精品专区久久| 简卡轻食公司| 欧美区成人在线视频| 成人午夜高清在线视频| 亚洲,欧美,日韩| or卡值多少钱| 80岁老熟妇乱子伦牲交| xxx大片免费视频| 天堂影院成人在线观看| 搡女人真爽免费视频火全软件| 久久国内精品自在自线图片| 国产黄片美女视频| 日产精品乱码卡一卡2卡三| 国产综合懂色| 少妇丰满av| 亚洲精品中文字幕在线视频 | 午夜福利成人在线免费观看| av在线观看视频网站免费| 97精品久久久久久久久久精品| 亚洲av日韩在线播放| 日本一二三区视频观看| 欧美区成人在线视频| 18禁裸乳无遮挡免费网站照片| 大香蕉久久网| 免费大片18禁| kizo精华| 久久久精品94久久精品| 免费观看精品视频网站| 亚洲一级一片aⅴ在线观看| 国产久久久一区二区三区| 美女主播在线视频| 干丝袜人妻中文字幕| 亚洲av国产av综合av卡| 乱系列少妇在线播放| 午夜福利网站1000一区二区三区| 美女cb高潮喷水在线观看| 成人亚洲欧美一区二区av| 午夜福利视频精品| 九草在线视频观看| 免费观看性生交大片5| 欧美激情国产日韩精品一区| 美女内射精品一级片tv| 午夜精品一区二区三区免费看| 久久精品夜夜夜夜夜久久蜜豆| 国产精品蜜桃在线观看| 91av网一区二区| 亚洲精品国产av蜜桃| 中文字幕av成人在线电影| 在线免费观看不下载黄p国产| 亚洲精品亚洲一区二区| 成年人午夜在线观看视频 | 欧美日韩在线观看h| 久久精品久久久久久久性| 中文欧美无线码| 久久精品久久久久久久性| 中文欧美无线码| 欧美日韩亚洲高清精品| 亚洲av成人精品一二三区| 狠狠精品人妻久久久久久综合| 少妇被粗大猛烈的视频| 女的被弄到高潮叫床怎么办| 国产真实伦视频高清在线观看| 女人被狂操c到高潮| 精华霜和精华液先用哪个| 99久国产av精品| av国产免费在线观看| 中文字幕亚洲精品专区| 97人妻精品一区二区三区麻豆| 亚洲精品456在线播放app| 国产黄频视频在线观看| 亚洲一区高清亚洲精品| 国产 一区精品| 亚洲av电影不卡..在线观看| 男女下面进入的视频免费午夜| 久久精品国产鲁丝片午夜精品| 亚洲欧美成人综合另类久久久| 亚洲美女搞黄在线观看| www.色视频.com| 国产高清三级在线| 五月玫瑰六月丁香|