尹美嫻,胡春林,魏紅艷,廖曉星,李恒杰,楊焰,李慧,荊小莉,李浩明
(1. 廣東藥科大學(xué)生命科學(xué)與生物制藥學(xué)院,廣東 廣州 510006;2. 中山大學(xué)附屬第一醫(yī)院急診科,廣東 廣州 510080;3. 衛(wèi)生部輔助循環(huán)重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510080)
亞低溫上調(diào)Sirt1減少氧糖剝奪后原代神經(jīng)元細(xì)胞凋亡
尹美嫻1,2,3,胡春林2,魏紅艷2,廖曉星2,李恒杰2,楊焰2,李慧2,荊小莉2,李浩明1
(1. 廣東藥科大學(xué)生命科學(xué)與生物制藥學(xué)院,廣東 廣州 510006;2. 中山大學(xué)附屬第一醫(yī)院急診科,廣東 廣州 510080;3. 衛(wèi)生部輔助循環(huán)重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510080)
為探討亞低溫對(duì)氧糖剝奪/復(fù)氧后原代神經(jīng)元細(xì)胞自噬和凋亡的影響,運(yùn)用原代神經(jīng)元培養(yǎng)及OGD/R模型構(gòu)建,CCK8測(cè)定細(xì)胞活力,TUNEL檢測(cè)細(xì)胞凋亡, Western-blot檢測(cè)Sirt1、Foxo1、Rab7、Beclin1、LC3及p53等蛋白的表達(dá),以及轉(zhuǎn)染mRFP-GFP-LC3自噬雙標(biāo)腺病毒檢測(cè)神經(jīng)元自噬流等方法,成功培養(yǎng)原代神經(jīng)元及構(gòu)建OGD/R模型。結(jié)果發(fā)現(xiàn)OGD/R后Sirt1、P-Foxo1、Rab7、Beclin1、LC3b/LC3a表達(dá)隨著時(shí)間延長(zhǎng)逐漸減少,12 h更明顯,與R6 h組相比,P<0.05,而 p53增加,P<0.05;OGD3 h/R12 h,亞低溫組Sirt1、P-Foxo1、Rab7、Beclin1 及 LC3b/LC3a表達(dá)均明顯高于常溫組,P<0.05,而 p53明顯低于常溫組,P<0.05。R6 h亞低溫組,神經(jīng)元凋亡率為20%±6.7%,低于常溫組的56.8%±7.6%,P<0.05。mRFP-GFP-LC3 自噬雙標(biāo)觀察法顯示亞低溫組自噬溶酶體明顯增多,P<0.05。實(shí)驗(yàn)顯示原代神經(jīng)元OGD/R后亞低溫干預(yù)可以上調(diào)Sirt1的活性,增加Foxo1、Rab7 和自噬相關(guān)蛋白Beclin1、LC3b/LC3a的表達(dá),同時(shí)抑制p53,促進(jìn)神經(jīng)元自噬,減少凋亡。
亞低溫;Sirt1;神經(jīng)元細(xì)胞
亞低溫(mild hypothermia, MH),目前通用的概念是指32~35 ℃,是近年來腦損傷領(lǐng)域的研究熱點(diǎn)。亞低溫可以降低顱內(nèi)壓、減輕腦水腫、改善神經(jīng)功能、降低致殘率及增加存活率[1]。但是近些年,臨床上亞低溫治療也受到一定的爭(zhēng)議,究其原因,是亞低溫的治療機(jī)制仍然不明確。目前認(rèn)為缺血/再灌注損傷(ischemia reperfusion injury, I/R)與氧化應(yīng)激、細(xì)胞內(nèi)鈣超載、線粒體功能紊亂、細(xì)胞炎癥、自噬、凋亡等諸多細(xì)胞與分子生物學(xué)機(jī)制有關(guān),自噬在缺血/再灌注中的作用越來越受到關(guān)注,越來越多的證據(jù)表明,自噬參與了腦缺血缺氧的過程(包括全腦缺血和局部缺血)[2-3]。既然,亞低溫治療腦損傷有效,自噬又參與了缺血再灌注損傷的病理生理過程,那究竟亞低溫是如何調(diào)控自噬發(fā)揮腦保護(hù)作用的呢?目前未見報(bào)道。本文將通過體外實(shí)驗(yàn)來探討氧糖剝奪/復(fù)氧(oxygen-glucose deprivation/ reoxygenation, OGD/R)后原代神經(jīng)元自噬和凋亡的情況以及亞低溫對(duì)自噬和凋亡的影響,為亞低溫干預(yù)發(fā)揮神經(jīng)元保護(hù)在臨床上的應(yīng)用提供更可靠的理論依據(jù)。
SPF級(jí)SD大鼠新生鼠(1 d 內(nèi)),由中山大學(xué)實(shí)驗(yàn)動(dòng)物中心提供,動(dòng)物許可證號(hào):粵20150029,合格號(hào)No. 44008500011874。
① 正常對(duì)照組(C); ② OGD 3 h組(OGD);③ OGD 3 h /R 6 h 常溫組(R6 h);④ OGD 3 h /R 12 h 常溫組(R 12 h);⑤ OGD 3 h /R 6 h 亞低溫組(R 6 h+MH); ⑥ OGD 3 h /R 12 h亞低溫組(R 12 h+MH)。
1.3.1 原代神經(jīng)元細(xì)胞的培養(yǎng)與鑒定[4]
1)原代神經(jīng)元細(xì)胞的培養(yǎng)用適量多聚賴氨酸包被培養(yǎng)板;φ=75%乙醇浸泡消毒新生鼠,斷頭取腦;清除腦膜、腦干和腦微血管膜,剪成0.5~1 mm3的小塊;加適量w=0.125%胰蛋白酶,37 ℃消化10~15 min;吹打10次,取上清,重復(fù)操作2次,;200目濾網(wǎng)過濾上清,濾液800 r/min離心3 min;棄上清,用種植液(含φ=10%胎牛血清和w=0.1%雙抗的DMEM培養(yǎng)液)重懸,將細(xì)胞密度調(diào)整為5×105個(gè)/mL后種板,培養(yǎng)4~8 h后,若細(xì)胞貼壁良好,可換飼養(yǎng)液(含w=1% GlutaMAX、w=2% B27和w=0.1%雙抗的Neurobasal A),細(xì)胞培養(yǎng)至第5天可以進(jìn)行后續(xù)各種試驗(yàn)。
2) 原代神經(jīng)元免疫熒光鑒定培養(yǎng)至第5天的細(xì)胞,棄上清,PBS洗2次;w=4%的多聚甲醛固定20 min,PBS洗3次;w=0.3% Triton-X 100通透20 min,PBS洗3次;w=5% BSA封閉1 h;每張玻片滴加 β-tubulin(英國(guó) Abcam 公司)一抗(1∶200)100 μL, 4 ℃搖床孵育過夜,PBS洗3次;加熒光二抗,濕盒中37 ℃孵育1 h,PBS洗3次;加入DAPI染核3 min,PBS洗3次;熒光顯微鏡拍照。
1.3.2 氧糖剝奪/復(fù)糖復(fù)氧(OGD/R)模型的構(gòu)建及亞低溫模型構(gòu)建 據(jù)實(shí)驗(yàn)設(shè)計(jì)隨機(jī)分組;細(xì)胞棄上清,加適量PBS,培養(yǎng)板置于帶通氣管的密封細(xì)胞培養(yǎng)盒,持續(xù)通入體積比為95∶5的N2、CO2(流速約0.2 L/min),通氣15 min 后閉合通氣管,確保盒內(nèi)完全被混合氣體填充,移入37 ℃培養(yǎng)箱誘導(dǎo)缺氧開始;OGD[5]后從細(xì)胞培養(yǎng)盒中取出培養(yǎng)板,分別置于37、34 ℃恒溫培養(yǎng)箱中復(fù)氧6、12 h,構(gòu)建 OGD/R模型及亞低溫模型。
1.3.3 CCK8檢測(cè)細(xì)胞活力 細(xì)胞以1×104個(gè)/mL接種于96孔板中,培養(yǎng)至第5天,取出96孔板,進(jìn)行OGD造模;每孔加入80 μLw=10% CCK-8溶液后繼續(xù)培養(yǎng)4 h;用酶聯(lián)免疫檢測(cè)儀在450 nm波長(zhǎng)進(jìn)行檢測(cè),測(cè)定每孔吸光值(A);據(jù)每孔吸光值計(jì)算細(xì)胞存活率,計(jì)算公式為:存活率/%=(A實(shí)驗(yàn)組/A對(duì)照組)× 100%。
1.3.4 Western-blot檢測(cè)蛋白的表達(dá) 提取細(xì)胞總蛋白,據(jù)蛋白分子量的大小選擇合適的分離膠,SDS-PAGE電泳,80 V電壓電泳,待樣品進(jìn)入分離膠后調(diào)為120 V;轉(zhuǎn)膜時(shí)電流為300 mA,據(jù)目的蛋白大小調(diào)整轉(zhuǎn)膜時(shí)間;PVDF膜置w=5% BSA封閉液室溫封閉1 h,再分別孵一抗和二抗;ECL發(fā)光液 A∶B = 1∶1混勻,滴加顯色液,用化學(xué)發(fā)光儀進(jìn)行曝光顯影。Sirt1、P-Foxo1、p53一抗(英國(guó)Abcam公司),Beclin1、LC3、β-actin一抗及兔抗大鼠二抗(美國(guó) Cell Signaling Technology 公司)。
1.3.5 TUNEL檢測(cè)神經(jīng)元細(xì)胞凋亡 棄培養(yǎng)基,PBS洗3次;w=4%多聚甲醛固定20 min,PBS洗3次;加w=0.3% Triton-X 100透膜20 min,PBS洗3次;加50 μL TUNEL 反應(yīng)混合液,暗濕盒中37 ℃反應(yīng)1 h;PBS洗3次;DAPI染核,倒置熒光顯微鏡檢測(cè)神經(jīng)元凋亡。
1.3.6 Ad-mRFP-GFP-LC3檢測(cè)自噬流 GFP在酸性環(huán)境中降解,紅綠熒光重疊后出現(xiàn)的黃色斑點(diǎn)即指示自噬體,紅色的斑點(diǎn)指示自噬溶酶體。如吞噬體和溶酶體能正常融合,那么紅色熒光多于黃色熒光,如自噬下游阻滯,吞噬體和溶酶體不能正常融合,則主要為黃色熒光。通過不同顏色斑點(diǎn)的計(jì)數(shù)可以清晰的看出自噬流的強(qiáng)弱。
1) 腺病毒轉(zhuǎn)染方法及轉(zhuǎn)染率檢測(cè)加陰性對(duì)照腺病毒(MOI值0,50,100,200,400)或攜帶mRFP-GFP-LC3雙標(biāo)腺病毒加入培養(yǎng)液中,培養(yǎng)8 h后半量換液;每天觀察細(xì)胞狀態(tài);轉(zhuǎn)染24、48、72 h后,分別在熒光顯微鏡下觀察GFP熒光,隨機(jī)選擇10個(gè)視野,分別計(jì)數(shù)細(xì)胞總數(shù)及綠色熒光的細(xì)胞,估算轉(zhuǎn)染率。
2) 共聚焦顯微鏡下檢測(cè)自噬流根據(jù)轉(zhuǎn)染率,將MOI值為100的陰性對(duì)照腺病毒及mRFP-GFP-LC3雙標(biāo)腺病毒加入培養(yǎng)液中,培養(yǎng)8 h后半量換液;第3天,根據(jù)實(shí)驗(yàn)分組進(jìn)行 OGD/R 12 h造模,分常溫組及亞低溫組;造模后,將培養(yǎng)皿置于激光共聚焦顯微鏡下進(jìn)行拍照。
1.3.7 統(tǒng)計(jì)學(xué)分析 應(yīng)用 SPSS19.0分析軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,分析所得到的數(shù)據(jù)都用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,采用單因素方差分析(one way ANOVA)進(jìn)行組間比較,P<0.05表示差異具有統(tǒng)計(jì)學(xué)意義。
經(jīng)β-tubulin免疫熒光鑒定,原代神經(jīng)元細(xì)胞純度在90%以上,見圖1。
原代神經(jīng)元培養(yǎng)5 d后,造模 OGD 0 h(Control),OGD 1 h,OGD 2 h,OGD 3 h,OGD 4 h,分別采用CCK8測(cè)定神經(jīng)元細(xì)胞的活性,結(jié)果顯示,OGD 1、2、3、4 h神經(jīng)元存活率分別為71.6%±2.6%、59.9%±7.1%、53.9%±3.9%、45.0%±2.2%,隨著缺氧時(shí)間延長(zhǎng),神經(jīng)元細(xì)胞存活率逐漸下降,P值均<0.05??梢?,OGD 3 h神經(jīng)元存活率最接近50%,因此我們選用OGD 3 h作為后續(xù)實(shí)驗(yàn),見圖2。
圖1 原代神經(jīng)元的鑒定Fig.1 The identification of original generation neurons
圖2 OGD 不同時(shí)間后神經(jīng)元的活性情況(n=3)Fig.2 The relative cell viability of neurons after OGD Mean±SD, n=3. *P<0.05 vs Control
圖3 OGD/R后神經(jīng)元自噬相關(guān)蛋白的表達(dá)(n=3)Fig.3 The expression of Sirt1, P-Foxo1, Rab7, Beclin1, LC3 and p53 after OGD/R, n=3* P <0.05 vs R 6 h, *** P <0.001 vs R 6 h;C=control;OGD=OGD 3 h;R 6 h=OGD 3 h/R 6 h;R 12 h=OGD 3 h/R 12 h
常溫組,原代神經(jīng)元OGD 3 h/R 6 h、12 h后,western-blot檢測(cè)相關(guān)蛋白表達(dá),結(jié)果顯示:Sirt1、P-Foxo1、Rab7、Beclin1 和 LC3b/LC3a蛋白表達(dá)隨著時(shí)間延長(zhǎng)逐漸減少,12 h更明顯,與6 h相比,P<0.05;而p53蛋白表達(dá)明顯增加,P<0.05,見圖3。相對(duì)于常溫組,OGD 3 h/R 12 h,亞低溫組Sirt1,P-Foxo1,Rab7,Beclin1蛋白表達(dá)及LC3b/LC3a比值均高于常溫組,P<0.05;而p53蛋白表達(dá)低于常溫組,P<0.05,見圖4。
圖4 亞低溫對(duì)神經(jīng)元自噬相關(guān)蛋白表達(dá)的影響(n=3)Fig.4 The effect of mild hypothermia on expression of autophagy related proteinn=3, * P<0.05 vs R 12 h, *** P<0.001 vs R 12 h.C=control;R 12 h=OGD 3 h/R 12 h;R 12 h+MH=OGD 3 h/(R 12 h+MH intervention)
Control組、OGD 3 h常溫組、R 6 h常溫組、R 6 h亞低溫組,神經(jīng)元凋亡率分別10.2%±3.6%、56.8%±7.6%、20%±6.7%,可見,OGD/R后神經(jīng)元凋亡明顯增加,亞低溫干預(yù)組神經(jīng)元凋亡減少,P<0.05,見圖5。
mRFP-GFP-LC3雙標(biāo)腺病毒轉(zhuǎn)染神經(jīng)元細(xì)胞24、 48、72 h后,分別在熒光顯微鏡下觀察GFP熒光。轉(zhuǎn)染24 h后,在MOI值為0的空白對(duì)照組無綠色熒光,在MOI值為50、100、200、400時(shí),可見綠色熒光,隨著MOI值增加,綠色熒光強(qiáng)度增大。
圖5 OGD/R 后神經(jīng)元凋亡的情況(n=6)Fig.5 The neurons apoptosis after OGD/Rn=6,* P<0.05 vs Control, #P<0.05 vs R 6 h. Note:C=control;R 6 h=OGD 3 h/R 6 h;R 6 h+MH=OGD 3 h/(R 6 h+MH intervention)
圖6 腺病毒轉(zhuǎn)染率及對(duì)神經(jīng)元存活率的影響(n=6)Fig.6 A The transfecton efficiency of adenovirus.B The neurons viability exposed to different MOI of adenovirus by CCK8 assay Mean±SD, n=6. * P<0.05 vs Control (MOI=0)
轉(zhuǎn)染72 h后,轉(zhuǎn)染率分別為0、82%±6.2%、93%±5.4%、96%±3.2%、98%±1.2%,隨著MOI值的增加,轉(zhuǎn)染率逐漸升高,與對(duì)照組相比,差異均有統(tǒng)計(jì)學(xué)意義,P<0.05,見圖6A。CCK8檢測(cè)轉(zhuǎn)染腺病毒后對(duì)原代神經(jīng)元細(xì)胞存活率的影響,結(jié)果顯示 MOI 值為0、50、100、200、400時(shí),細(xì)胞存活率分別為98%±1.2%、95%±3.5%、94%±5.4%、78%±6.4%、74%±5.6%,MOI 為200和400時(shí),細(xì)胞存活率明顯下降,與對(duì)照組相比,差異有統(tǒng)計(jì)學(xué)意義,P<0.05,見圖6 B;結(jié)合不同MOI值腺病毒轉(zhuǎn)染率及對(duì)神經(jīng)元細(xì)胞存活率的影響,我們選用MOI 值為100進(jìn)行RFP -GFP-LC3自噬雙標(biāo)腺病毒轉(zhuǎn)染原代神經(jīng)元,觀察自噬流變化。
mRFP-GFP-LC3 自噬雙標(biāo)腺病毒轉(zhuǎn)染原代神經(jīng)元細(xì)胞,與Control組相比,OGD/R后自噬溶酶體減少,而自噬小體增加,P<0.05,說明OGD/R后自噬下游受阻,自噬不足;而與OGD常溫組相比,OGD后亞低溫組自噬小體減少,自噬溶酶體增加,P<0.05,說明亞低溫組自噬增多,見圖7。
自噬(autophagy)是由Ashford和 Porter 在1962年發(fā)現(xiàn)的細(xì)胞內(nèi) “自己吃自己(self eating)”的現(xiàn)象。自噬是細(xì)胞對(duì)營(yíng)養(yǎng)底物缺乏時(shí)的一種適應(yīng)性反應(yīng),在缺血/再灌注等各種因素刺激下,細(xì)胞提高自噬水平來提高對(duì)缺血缺氧的耐受性,對(duì)細(xì)胞起到一定的保護(hù)作用[6]。能量缺乏時(shí)調(diào)控自噬的主要信號(hào)通路有:①腺苷酸活化蛋白激酶(AMP- activated protein kinase,AMPK)- unc-51 like kinase (ULK1)- mTOR通路[7];②沉默信息轉(zhuǎn)錄調(diào)節(jié)因子1 (silent information regulator of transcription 1,Sirt1) -叉頭轉(zhuǎn)錄因子(forkhead transcription factor,F(xiàn)oxox)通路[8],兩條通路之間存在著交叉網(wǎng)絡(luò)聯(lián)系[9]。SIRTs 是一組組蛋白去乙?;福遣溉閯?dòng)物酵母 Sir2 (silent information regulator) 的同源類似物,共有7個(gè)成員,Sirt1-7。Sirt1是其中的重要一員,是細(xì)胞內(nèi)重要的能量感受器,Sirt1 大量存在于神經(jīng)系統(tǒng),具有重要的神經(jīng)保護(hù)作用,其保護(hù)機(jī)制的研究集中于Sirt1 脫乙酰化p53抑制神經(jīng)元的凋亡,或者脫乙?;骖^轉(zhuǎn)錄因子(forkhead transcription factor 1,F(xiàn)oxo1),從而保護(hù)神經(jīng)元[10]。Rab7有囊泡特異性定位的功能。Beclin1能誘導(dǎo)自噬相關(guān)蛋白在自噬體膜上定位。LC3是自噬標(biāo)記蛋白,LC3b/LC3a比值越高,意味著自噬水平越高??梢?,自噬和凋亡之間以及其調(diào)控的信號(hào)通路之間存在交叉網(wǎng)絡(luò)聯(lián)系[11]。
圖7 mRFP -GFP-LC3 雙標(biāo)腺病毒轉(zhuǎn)染觀察神經(jīng)元自噬情況(n=6)Fig.7 The autophagy after transfecton of mRFP -GFP-LC3 adenovirusn=6; * P<0.05 vs indicated group; Yellow dots represent autophagosomes; red dots represent autolysosomes;OGD=OGD 3 h/R 12 h;OGD+MH = OGD 3 h/(R 12 h+MH intervention)
我們的實(shí)驗(yàn)結(jié)果顯示神經(jīng)元OGD 3 h,復(fù)氧6 h和12 h后,Sirt1、P-Foxo1、Rab7、Beclin1、LC3b/LC3a蛋白表達(dá)隨著時(shí)間延長(zhǎng)逐漸減少,12 h更明顯,而p53蛋白表達(dá)明顯增加,P<0.05;TUNEL 結(jié)果顯示,OGD后神經(jīng)元凋亡明顯增加,可見,氧糖剝奪模型誘導(dǎo)神經(jīng)元自噬不足,凋亡增加,與我們既往的體內(nèi)結(jié)果一致[12],在成年雄性 Wistar大鼠室顫(ventricular fibrillation,VF)誘發(fā)的全腦缺血缺氧模型中,自主循環(huán)恢復(fù)(return of spontaneous circulation,ROSC)后2~4 h大腦Beclin-1、LC3b/LC3a表達(dá)下降。文獻(xiàn)報(bào)道,自噬可能是腦缺血預(yù)處理發(fā)揮保護(hù)作用的機(jī)制之一。在成年大鼠短暫性大腦中動(dòng)脈閉塞(middle cerebral artery occlusion,MCAO)前進(jìn)行高壓氧預(yù)處理[13]以及在永久性MCAO前進(jìn)行短暫性缺血預(yù)處理[14],可使缺血后LC3水平升高和自噬體數(shù)量增加,或使缺血缺氧后自噬持續(xù)時(shí)間延長(zhǎng),起到腦保護(hù)作用;給予自噬抑制劑3-MA可抑制缺血預(yù)處理誘導(dǎo)的自噬及保護(hù)作用,而給予自噬誘導(dǎo)劑雷帕霉素可以增加預(yù)處理的保護(hù)作用。同樣,體外實(shí)驗(yàn)也證明,預(yù)先短暫的非致死性氧-葡萄糖剝奪(OGD)可通過誘導(dǎo)自噬以減輕之后致死性O(shè)GD導(dǎo)致的神經(jīng)元細(xì)胞損傷[15]。
我們的實(shí)驗(yàn)發(fā)現(xiàn)亞低溫干預(yù)可以增加Sirt1、P-Foxo1、Rab7、Beclin1、LC3b/LC3a表達(dá),減少p53表達(dá)。應(yīng)用mRFP-GFP-LC3自噬雙標(biāo)腺病毒轉(zhuǎn)染原代神經(jīng)元細(xì)胞,發(fā)現(xiàn) OGD/R 后自噬溶酶體減少,自噬小體增加,說明OGD/R后自噬下游受阻,自噬不足;而亞低溫組自噬小體減少,自噬溶酶體增加,可見亞低溫可以促進(jìn)自噬,同時(shí)結(jié)果顯示亞低溫可以減少神經(jīng)元凋亡,因此我們推測(cè),亞低溫干預(yù)可能通過促進(jìn)神經(jīng)元自噬而減少凋亡。這也許是亞低溫保護(hù)神經(jīng)元的作用機(jī)制之一。亞低溫到底是如何調(diào)控自噬的呢?機(jī)體處于亞低溫時(shí),可以降低糖、脂肪的代謝速率,使細(xì)胞內(nèi)ATP水平適度降低,進(jìn)而激活A(yù)MPK,啟動(dòng)級(jí)聯(lián)反應(yīng),激活Sirt1,進(jìn)而促進(jìn)自噬,清除受損細(xì)胞器,為其他細(xì)胞提供能量;同時(shí)AMPK激活可以促進(jìn)葡萄糖生成,減少糖原合成,促進(jìn)葡萄糖轉(zhuǎn)運(yùn),增加脂肪酸氧化產(chǎn)生能量[16-17]。
綜上所述,原代神經(jīng)元細(xì)胞氧糖剝奪/復(fù)氧后,神經(jīng)元自噬明顯減少,凋亡增加;亞低溫干預(yù)可以上調(diào)Sirt1的活性,增加Foxo1、Rab7和自噬相關(guān)蛋白 Atg6(beclin1)、Atg8(LC3b/LC3a)的表達(dá),另一方面可能去乙?;痯53,即抑制p53,促進(jìn)神經(jīng)元自噬,減少凋亡,共同保護(hù)神經(jīng)元,為缺氧后神經(jīng)元損傷提供新的治療靶點(diǎn)及開拓新的方向,為亞低溫發(fā)揮腦保護(hù)作用提供有力的理論依據(jù)。
[1] ARRICH J, HOLZER M, HAVEL C, et al. Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation[J]. Cochrane Database of Systematic Reviews, 2016, 2:1-52.
[2] CARLONI S, GIRELLI S, SCOPA C, et al.Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia[J].Autophagy, 2010, 6(3): 366 -377.
[3] 曾小云,熊海霞,李欣,等. 激活自噬減輕心肺復(fù)蘇后Wistar大鼠腦損傷[J].中華急診醫(yī)學(xué)雜志, 2012, 12(22): 1327-1332.
ZENG Xiaoyun, XIONG Haixia, LI Xin, et al. Activation of autophagy improves neuron injury after the restoration of spontaneous circulation from ventricular fibrill[J]. Chinese Journal of Emergency Medicine, 2012, 12(22): 1327-1332.
[4] 王西富,魏紅艷,尹美嫻,等. 亞低溫對(duì)氧糖剝奪神經(jīng)元細(xì)胞自噬的影響 [J]. 嶺南急診醫(yī)學(xué)雜志, 2016, 21(4): 352-353.
WANG Xifu, WEI Hongyan, YIN Meixian, et al. The impact of therapeutic hypothermia on neurons autophagy after oxygen and glucose deprivation injury[J].Lingnan Journal of Emergency Medicine, 2016, 21(4): 352-353.
[5] 張祥云. 亞低溫通過Nrf2/Keap1/ARE通路減輕海馬神經(jīng)元細(xì)胞損傷的研究[D].廣州:廣東藥科大學(xué),2015.
ZHANG Xiangyun. The research of mild hypothermia reduce hippocampus neurons injury by Nrf2 / Keap1 / ARE pathways[D].Guangzhou:Guangdong Pharmaceutical University, 2015.
[6] ZHANG Wenliang, ZHANG Mingming, LIU Bin, et al. Optimal timing of autophagy occurrence induced by earle’s balanced salts solution in DLD-1, HCT-116, A2780, CHO, Hep G2 and SMMC7721 cancer cell lines[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2016, 55(4):108-117.
[7] SALMINEN A, KAARNIRANTA K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network[J]. Ageing Research Reviews, 2012, 11(2): 230-241.
[8] SALMINEN A, KAARNIRANTA K. SIRT1: regulation of longevity via autophagy[J]. Cellular Signalling, 2009, 21(9): 1356-1360.
[9] KIM J, KUNDU M, VIOLLET B, et al. AMPK and m TOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nature Cell Biology, 2011, 13(2): 132-141.
[10] ZHANG Feng, WANG Suping, GAN Li, et al. Protective effects and mechanisms of Sirtuins in the nervous system[J]. Progress Neurobiology, 2011, 95(3): 373-395.
[11] RUBINSTEIN A D, KIMCHI A. Life in the balance-a mechanistic view of the crosstalk between autophagy and apoptosis[J]. Journal of Cell Science, 2012, 125 (22):5259-5268.
[12] 魏紅艷,李恒杰,李芳,等. 硫化氫通過抑制自噬減輕心臟停搏后腦損傷[J]. 中國(guó)病理生理雜志, 2016, 32(2):284-289.
WEI Hongyan, LI Hengjie, LI Fang, et al. Neuroprotective effect of H2S by inhibiting autophagy after restoration of spontaneous circulation in rats with cardiac arrest[J]. Chinese Journal of Pathophysiology, 2016, 32(2):284-289.
[13] YAN Wenjun, ZHANG Haopeng, BAI Xiaoguang, et al. Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats[J]. Brain Research, 2011, 1402: 109-121.
[14] SHENG Rui, ZHANG Lisha, HAN Rong, et al. Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning[J].Autophagy, 2010, 6(4): 482-494.
[15] PARK H K, CHU K, JUNG K H, et al.Autophagy is involved in the ischemic preconditioning[J]. Neuroscience Letters, 2009, 45l(1):16-19.
[16] NOLAN J P, SOAR J, WENZEL V, et al. Cardiopulmonary resuscitation and management of cardiac arrest[J]. Nature Reviews Cardiology, 2012, 9(9): 499-511.
[17] PADRISSA-ALTéS S, ZAOUALM A, ROSELL?-CATAFAU J. AMP-activated protein kinase as a target for preconditioning in transplantation medicine[J].Transplantation, 2010, 90(11): 1241-1242.
MildhypothermiareducesneuronsapoptosisafterOGDbyup-regulatingSirt1
YINMeixian1,2,3,HUChunlin2,WEIHongyan2,LIAOXiaoxing2,LIHengjie2,YANGYan2,LIHui2,JINGXiaoli2,LIHaoming1
(1. School of Life Science and Biopharmacology, Guangdong Parmaceutical University, Guangzhou 510006, China;2. Department of Emergency Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;3. Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou 510080, China)
To investigate the primary neurons autophagy and apoptosis after Oxygen Glucose Deprivation/Re-oxygenation (OGD/R), and to explore the effect of mild hypothermia on autophagy and apoptosis, following methods were used: Primary neurons culture and OGD/R model was established; the neurons were divided into the normal temperature group (37 ℃) and the mild hypothermia group (MH, 34 ℃); The cells viability were measured by CCK8; cell apoptosis were measured by TUNEL; The protein expressions of Sirt1, Foxo1, p53, Rab7 and autophagy related genes such as Beclin1, LC3 were detected by western blot at each time point; The neurons autophagy flows were detected through transfection of adenovirus mRFP-GFP-LC3. The primary neuron cultures were successfully developed, and the OGD/R models were established; Western-blot showed that the expressions of Sirt1, P-Foxo1, Rab7, Beclin1 and LC3b/LC3a were gradually reduced, especially at 12 h after OGD/R,P<0.05; However, the expression of p53 was increased,P<0.05; In MH group, the expressions of Sirt1, P-Foxo1, Rab7, Beclin1, LC3b/LC3a were obviously higher than those in NT group,P<0.05; And the expression of p53 was obviously lower than that in NT group,P<0.05; in R6 h+MH group, the rate of neuron cells apoptosis were 20%±6.7%, lower than 56.8%±7.6% in R6 h+NT group,P<0.05; mRFP-GFP-LC3 adenovirus was transfected into primary neurons, the autophagy flow was detected by fluorescence microscopy. Compared with control group, the autolysosomes were reduced, but autophagosomes were increased after OGD/R,P<0.05; however, compared with NT group, the autophagosomes were reduced and the autolysosomes were increased in MH group,P<0.05. In conclusion, mild hypothermia therapy could increase the expression of Sirt1, Foxo1, beclin1 and LC3b/LC3a, but decrease the expression of p53, so as to promote autophagy and reduce apoptosis.
mild hypothermia; Sirt1; neurons
10.13471/j.cnki.acta.snus.2017.06.021
2017-01-05
國(guó)家自然科學(xué)基金(81372021,81571867);第四批中山一院青年人才項(xiàng)目(Y50152)
尹美嫻(1993年生),女;研究方向微生物藥學(xué)和基礎(chǔ)醫(yī)學(xué);E-mail:1574195935@qq.com
李浩明(1962年生),男;研究方向微生物藥學(xué);E-mail:lihaoming@aliyun.com
R329.21
A
0529-6579(2017)06-0134-07