• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      梯度波阻板的地基振動(dòng)控制研究1)

      2017-12-18 13:24:03周鳳璽
      力學(xué)學(xué)報(bào) 2017年6期
      關(guān)鍵詞:力學(xué)梯度幅值

      馬 強(qiáng) 周鳳璽,2) 劉 杰

      *(蘭州理工大學(xué)土木工程學(xué)院,蘭州730050)

      ?(蘭州交通大學(xué)交通運(yùn)輸學(xué)院,蘭州730070)

      梯度波阻板的地基振動(dòng)控制研究1)

      馬 強(qiáng)*周鳳璽*,2)劉 杰?

      *(蘭州理工大學(xué)土木工程學(xué)院,蘭州730050)

      ?(蘭州交通大學(xué)交通運(yùn)輸學(xué)院,蘭州730070)

      波阻板(wave impeding block,WIB)隔振體系是一種有效的振動(dòng)污染治理措施,雖逐漸被應(yīng)用在工程實(shí)際中,但以往的研究多集中于單相固體均質(zhì)材料的情形,而對(duì)材料特性沿空間連續(xù)變化的非均勻固體材料的波阻板隔振性能的研究相對(duì)較少.基于功能梯度材料(functionally graded material,FGM)特點(diǎn),本文提出了以功能梯度波阻板作為隔振屏障的一類(lèi)新型的地基振動(dòng)控制體系.考慮在彈性地基內(nèi)部設(shè)置梯度波阻板,基于線(xiàn)彈性理論,利用傅里葉積分變換,根據(jù)Helmholtz矢量分解原理,建立了彈性地基在動(dòng)載荷作用下的回傳射線(xiàn)矩陣法(reverberation ray matrix method,RRMM)計(jì)算列式.假設(shè)梯度波阻板的物理力學(xué)性質(zhì)沿深度方向按冪函數(shù)連續(xù)變化,采用數(shù)值傅里葉逆變換獲得了彈性地基的位移和應(yīng)力等物理量的數(shù)值解.通過(guò)數(shù)值算例,與單相固體均質(zhì)波阻板進(jìn)行了對(duì)比,并分析討論了梯度波阻板的材料梯度因子、埋深以及梯度波阻板厚度等物理力學(xué)參數(shù)對(duì)地基隔振性能的影響規(guī)律.結(jié)果表明,梯度波阻板能有效降低振動(dòng)的振幅,與單相固體均質(zhì)波阻板相比,梯度波阻板具有更好的減振隔振效果.地基的位移幅值和應(yīng)力幅值隨著梯度因子的增大而減小.梯度波阻板的隔振效果隨著波阻板厚度的增大而提高,而隨著梯度波阻板埋深的增大而降低.

      地基振動(dòng)控制,彈性地基,動(dòng)力響應(yīng),梯度波阻板,回傳射線(xiàn)矩陣法

      引言

      隨著城鎮(zhèn)化建設(shè)和現(xiàn)代工業(yè)的迅速發(fā)展,各種環(huán)境振動(dòng)引起的環(huán)境污染問(wèn)題日益頻繁,導(dǎo)致環(huán)境振動(dòng)的因素越來(lái)越多,振源強(qiáng)度越來(lái)越大.另一方面,隨著人們生活水平的提高,人們對(duì)生活環(huán)境和工作環(huán)境的質(zhì)量要求越來(lái)越高,對(duì)振動(dòng)的限制越來(lái)越嚴(yán)格,環(huán)境振動(dòng)及其治理已經(jīng)成為巖土工程的研究熱點(diǎn)之一.因此,對(duì)環(huán)境振動(dòng)產(chǎn)生的原因、傳播過(guò)程和振動(dòng)規(guī)律進(jìn)行研究,找到減振隔振的有效方法,是環(huán)境振動(dòng)研究的根本目的,具有重要的工程意義和實(shí)用價(jià)值.

      地基振動(dòng)由于振源位置、振源類(lèi)型以及地基物理力學(xué)性質(zhì)的不同而產(chǎn)生不同的波場(chǎng)特性,其振動(dòng)的傳播過(guò)程和衰減規(guī)律也不相同.對(duì)于地基的動(dòng)力行為以及波的傳播特性問(wèn)題,國(guó)內(nèi)外學(xué)者從載荷類(lèi)型、地基特征(包括材料特性和邊界條件)等多方面進(jìn)行了分析并取得了一系列重要的研究成果[1-6].然而關(guān)于地基振動(dòng)的控制問(wèn)題則研究較少.自Woods[7]通過(guò)一些現(xiàn)場(chǎng)原位試驗(yàn),研究了近場(chǎng)主動(dòng)隔振和遠(yuǎn)場(chǎng)被動(dòng)隔振的效果,并且提出了一個(gè)評(píng)判屏障隔振效果的重要參數(shù) (振幅衰減系數(shù))以來(lái),國(guó)內(nèi)外學(xué)者對(duì)連續(xù)屏障和非連續(xù)屏障的減振隔振效果進(jìn)行了一系列的研究工作[8-16].除屏障隔振外,Chouw等[17]最先提出一種在地基中人為設(shè)置波阻板(wave impedance block,WIB)進(jìn)行減振隔振的方法,隨后他們采用二維頻域邊界元法,分析了WIB主動(dòng)隔振和被動(dòng)隔振效果,獲得了WIB的被動(dòng)隔振效果好于填充溝的結(jié)果.Peplow等[18]采用邊界積分方程法研究了二維雙層地基波阻板主動(dòng)隔振的效果.Takemiya等[19-20]對(duì)基巖上單一土層中群樁基礎(chǔ)激振時(shí)波阻板的隔振效果進(jìn)行研究,結(jié)果表明采用波阻板進(jìn)行隔振是有效的,并首次提出了一種蜂窩狀波阻板(honeycomb WIB,HWIB)隔振措施,對(duì)高架鐵路樁基的HWIB隔振效果進(jìn)行了現(xiàn)場(chǎng)試驗(yàn),得到了令人滿(mǎn)意的結(jié)果.高廣運(yùn)等[21-22]建立了層狀介質(zhì)中土與結(jié)構(gòu)動(dòng)力相互作用的半解析邊界元法模型,分析了二維和三維層狀地基中波阻板的隔振效果.針對(duì)三維豎向非均勻和飽和地基模型,在軌道交通載荷作用下,高廣運(yùn)等[23-24]分別對(duì)豎向非均勻地基和飽和地基中波阻板的隔振性能進(jìn)行了研究.基于含液飽和多孔介質(zhì)中的流--固耦合作用,周鳳璽等[25]研究了含液飽和多孔介質(zhì)波阻板的隔振性能,結(jié)果表明基于含液飽和多孔波阻板的地基隔振體系更具優(yōu)越性.基于改進(jìn)的三維邊界有限元模型,Gao等[26]研究了飽和土體中波阻板的隔振效果,分析了土--地基--波阻板相互作用的問(wèn)題.

      自功能梯度材料的概念被提出以來(lái)[27],對(duì)材料特性沿空間連續(xù)變化的非均勻固體材料力學(xué)行為的研究得到了廣泛的關(guān)注[28-33].功能梯度材料是一種新型復(fù)合材料,其具有空間連續(xù)梯度變化的微觀(guān)結(jié)構(gòu),可引起材料屬性的梯度變化,實(shí)現(xiàn)材料內(nèi)部功能的漸變,具有緩和熱應(yīng)力、避免或降低層間應(yīng)力集中和可設(shè)計(jì)性良好等優(yōu)點(diǎn)[34].以梯度材料作為隔振屏障,本文提出了一類(lèi)新型的波阻板地基隔振體系.文章的第1節(jié)建立了彈性地基內(nèi)部設(shè)置梯度波阻板的數(shù)學(xué)模型,并利用傅里葉(Fourier)積分變換,根據(jù)亥姆霍茲(Helmholtz)矢量分解原理,推導(dǎo)獲得了土體動(dòng)力問(wèn)題的位移、應(yīng)力在Fourier變換域中的通解.第2節(jié)采用回傳射線(xiàn)矩陣法獲得了地基表面受到條形荷載作用下地基中任一點(diǎn)處的位移和應(yīng)力的計(jì)算列式.第3節(jié)通過(guò)數(shù)值算例與單相固體均質(zhì)波阻板的隔振性能進(jìn)行了對(duì)比,并分析討論了梯度波阻板的材料梯度因子、埋深以及梯度波阻板厚度等物理力學(xué)參數(shù)對(duì)地基隔振性能的影響規(guī)律.第4節(jié)為結(jié)論.

      1 土體力學(xué)問(wèn)題的數(shù)學(xué)模型

      在二維彈性地基中設(shè)置一個(gè)單相固體梯度波阻板,如圖1所示.二維彈性地基厚度H=H1+hw+H2,其中梯度波阻板厚為hw,且波阻板上表面所處的位置在x3方向距離地基表面為H1,下表面所處的位置在x3方向距離基巖的下部土層的厚度為H2,載荷幅值為q0,分布長(zhǎng)度為2l.

      圖1 條形載荷下彈性地基示意圖Fig.1 The elastic foundation under strip harmonic load

      各向同性的線(xiàn)彈性單相連續(xù)固體介質(zhì)的基本方程如下:

      物理方程為

      幾何關(guān)系為

      運(yùn)動(dòng)方程為

      其中,σij為單相彈性固體介質(zhì)的總應(yīng)力分量(i,j=1,3);δij表示克羅內(nèi)克 (Kroeneker)符號(hào);e=ui,i;ui為固體位移;λ和μ為固體骨架拉姆(Lame)彈性常數(shù);εij為固體骨架的應(yīng)變;ρ為土體密度.

      由式(1)~式(3)可得各向同性的線(xiàn)彈性單相連續(xù)固體介質(zhì)的控制方程為

      考慮到簡(jiǎn)諧載荷作用,土體骨架位移可寫(xiě)成

      為了方便,后面的推導(dǎo)過(guò)程略去星號(hào).根據(jù)亥姆霍茲矢量分解定理,位移矢量u(x1,x3)可以用勢(shì)函數(shù)φ和ψ表示為

      對(duì)空間變量x1進(jìn)行Fourier變換

      將式(5)~式(7)代入方程(4)中,經(jīng)過(guò)Fourier變換整理可得

      因此,常微分方程(8)和方程(9)在傅里葉變換域中的表達(dá)式為

      在直角坐標(biāo)系(x1,x3)中,各位移分量可用位移勢(shì)函數(shù)φ和ψ表示為

      結(jié)合式(10)~式(13)以及式(1),最終可得到土體動(dòng)力問(wèn)題的位移、應(yīng)力在傅里葉變換域中的通解為

      2 回傳射線(xiàn)矩陣法求解

      對(duì)于在二維彈性地基中設(shè)置的單相梯度波阻板,由于單相梯度波阻板材料的非均勻性,導(dǎo)致土體動(dòng)力問(wèn)題的控制方程為變系數(shù)偏微分方程,一般情況下很難獲得解析解.為此,通常將非均勻材料沿材料特性變化方向簡(jiǎn)化為許多均勻材料薄層,如圖2所示,層數(shù)N由問(wèn)題所要求的精度決定.對(duì)于簡(jiǎn)化以后的層合模型,常用的分析方法是傳遞矩陣法[35],但基于傳遞矩陣列式的數(shù)值計(jì)算會(huì)出現(xiàn)數(shù)值不穩(wěn)定問(wèn)題.近年來(lái),Pao等[36]提出回傳射線(xiàn)矩陣法的波動(dòng)模型,并將其應(yīng)用到層狀介質(zhì)中,取得了很好的效果[37-38],該模型在穩(wěn)態(tài)和早期瞬態(tài)響應(yīng)計(jì)算中具有結(jié)果精確、數(shù)值穩(wěn)定、列式統(tǒng)一等優(yōu)點(diǎn),是一種有效的動(dòng)力學(xué)分析方法.周鳳璽等[39]建立了一維梯度非均勻飽和多孔土體在動(dòng)載荷作用下的回傳射線(xiàn)矩陣法計(jì)算列式,結(jié)果表明回傳射線(xiàn)矩陣法對(duì)梯度非均勻飽和土動(dòng)力響應(yīng)分析具有很好的適用性,其計(jì)算穩(wěn)定,有利于求解復(fù)雜的波動(dòng)問(wèn)題.回傳射線(xiàn)矩陣法的關(guān)鍵在于對(duì)每個(gè)單元/層建立兩個(gè)局部坐標(biāo)系(一對(duì)對(duì)偶坐標(biāo)系),一個(gè)位于該層頂面,另一個(gè)位于該層底面.圖3繪出了第i層的對(duì)偶坐標(biāo)系,表示局部坐標(biāo)系位于第i層,并且指向第i+1層.通過(guò)對(duì)偶坐標(biāo)系的變換,可以有效地避免計(jì)算過(guò)程中的數(shù)值問(wèn)題.

      圖2 層和模型示意圖Fig.2 The approximate laminate model

      圖3 局部坐標(biāo)示意圖Fig.3 Dual local coordinates at the interface

      2.1 散射關(guān)系

      根據(jù)回傳射線(xiàn)矩陣法的基本思路,在對(duì)偶局部坐標(biāo)系下的所有節(jié)點(diǎn)建立力的平衡和位移協(xié)調(diào)關(guān)系,以i(i?1)和i(i+1)的共同界面i為例,其連續(xù)條件為

      利用式(15)和式(16),整理后可得

      考慮彈性地基表面受條形均布荷載作用,底面固定的邊界條件為

      在x3=0處

      在x3=H處

      利用式(15)和式(18),整理后可得

      式中

      合并方程(17)和方程(19)可得

      其中

      向量A和B一共含有8N個(gè)未知量,而方程(20)只提供了4N個(gè)方程.為求得所有的未知量,須再補(bǔ)充一組方程.

      2.2 相位關(guān)系和回傳射線(xiàn)矩陣

      同一點(diǎn)處的物理量可以在一對(duì)對(duì)偶局部坐標(biāo)系下同時(shí)表示,因此,兩個(gè)表達(dá)式必須等價(jià).對(duì)于豎向位移?u3存在下述關(guān)系

      將式(15b)代入式(21)可得到

      引入新矢量

      結(jié)合式(20),式(22)~式(23)可得

      式中P為整體相位矩陣,定義為

      U為整體置換矩陣,定義為

      將式(24)代入式(20),最終可得

      式中R=SPU稱(chēng)為回傳射線(xiàn)矩陣,I為單位矩陣.

      利用式(27)求出A和B后,結(jié)合式(15),就可以獲得在頻域中地基中任一點(diǎn)處的位移和應(yīng)力等物理量,然后利用Fourier逆變換可以得到空間域上相應(yīng)的物理量.

      3 數(shù)值算例

      考慮梯度波阻板的材料特性沿厚度方向按冪函數(shù)變化,則有

      式中,G(x3)為在x3處的E,υ,ρ等物理力學(xué)參數(shù),其中,E為彈性模量,υ為泊松比;γ為梯度因子,不同的γ值代表非均勻程度不同的波阻板.可知當(dāng)γ=0時(shí)梯度材料即為均質(zhì)材料,其物理力學(xué)性質(zhì)為表面處的材料特性;當(dāng)γ→∞時(shí),此時(shí)梯度材料參數(shù)趨于梯度板底面的均勻材料.

      在數(shù)值計(jì)算中,選取彈性地基的物理力學(xué)參數(shù)如下:彈性模量E0=98MPa,泊松比ν=0.3,密度ρ0=1.884g/cm3.計(jì)算中取均布載荷幅值q0=1kPa,頻率ω=25rad/s,l=0.5m.梯度波阻板的物理力學(xué)參數(shù)為:在x3=H1處即梯度波阻板表面處E1=6.5MPa,ρ1=1.4g/cm3,ν=0.3. 在x3=H1+hw處即梯度波阻板底面處E2=650MPa,ρ2=2.458g/cm3,泊松比ν=0.33.為了簡(jiǎn)化起見(jiàn),假設(shè)梯度波阻板各物理力學(xué)參數(shù)具有相同的變化趨勢(shì),也就是說(shuō)各物理力學(xué)參數(shù)沿深度按同樣的梯度因子變化.由于被積函數(shù)表達(dá)式較為復(fù)雜,因此很難得出Fourier逆變換的封閉形式解,本文采用FFT方法完成Fourier逆變換,波數(shù)的離散點(diǎn)為2048,空間計(jì)算區(qū)間為200m.

      為了考慮不同分層數(shù)N對(duì)計(jì)算結(jié)果的影響,表1給出了當(dāng)γ=0和γ=1時(shí)不同分層數(shù)N的情形下地基表面條形荷載中點(diǎn)處的豎向位移值.從表1中可以看出,當(dāng)分層數(shù)N選取100時(shí)足以滿(mǎn)足計(jì)算精度要求.

      表1 不同層數(shù)N對(duì)豎向位移計(jì)算結(jié)果的影響Table 1 The vertical displacement calculated by RRMM with di ff erent numbers of layers N

      考慮上覆土厚度H1=4m,波阻板厚度hw=4m,下部土層厚度H1=10m,圖4給出了在地基表面(x3=0)處豎向位移沿水平方向的變化曲線(xiàn),比較了彈性地基中設(shè)置單相固體均質(zhì)波阻板(即γ=0時(shí))、梯度波阻板兩種不同情形.由圖4中可以看出,由于波阻板的設(shè)置改變了彈性地基中豎向位移的振動(dòng)相位,并且與單相固體均質(zhì)波阻板相比,梯度波阻板使豎向位移幅值降低顯著,具有更好的減振隔振效果.

      圖4 地基表面豎向位移變化曲線(xiàn)Fig.4 Variations of vertical displacement at the ground surface

      為了反映梯度因子對(duì)梯度波阻板隔振效果的影響,其他參數(shù)不變,圖5和圖6給出了在不同材料梯度因子的情形下,彈性地基表面(x3=0)處豎向位移u3的實(shí)部沿水平方向的變化曲線(xiàn)和彈性地基底面(x3=H)處正應(yīng)力σ33沿水平方向的變化曲線(xiàn).從圖5和圖6可以看出,當(dāng)γ=0即波阻板為彈性均質(zhì)材料時(shí),地基的位移幅值和應(yīng)力幅值最大.隨著γ的增大,條形荷載中點(diǎn)下位移幅值和應(yīng)力幅值都隨之減小,這主要是由于梯度因子γ的增大,意味著抵抗變形能力強(qiáng)的層底材料增多,從而引起位移幅值和應(yīng)力幅值的降低.從圖5和圖6中還可以看出,無(wú)論是位移分量還是應(yīng)力分量,在水平方向的振動(dòng)頻率隨著梯度因子γ的變化而變化.

      圖5 地基表面豎向位移隨γ的變化曲線(xiàn)Fig.5 Variations of vertical displacement at the ground surface with γ

      圖6 地基底面正應(yīng)力隨γ的變化曲線(xiàn)Fig.6 Variations of normal stress at the ground bottom surface with γ

      對(duì)同樣的梯度波阻板反向布置,即上表面彈性模量大于下表面,為了反映此種情況下梯度因子對(duì)梯度波阻板隔振效果的影響,其他參數(shù)不變,圖7給出了在不同材料梯度因子的情形下,彈性地基表面(x3=0)處豎向位移u3的實(shí)部沿水平方向的變化曲線(xiàn).從圖7可以發(fā)現(xiàn),與上表面彈性模量小于下表面的情況正好相反,隨著γ的增大,條形荷載中點(diǎn)下豎向位移幅值隨之增大,但是豎向位移在水平方向的振動(dòng)頻率依然隨著梯度因子γ的變化而變化.

      圖7 地基表面豎向位移隨γ的變化曲線(xiàn)Fig.7 Variations of vertical displacement at the ground surface with γ

      為了分析梯度波阻板的埋深對(duì)地基隔振效果的影響,圖8繪出了在hw=4m時(shí)梯度波阻板埋深從H1=0.5,1,2,3,4m逐漸增大時(shí),地基表面豎向位移沿水平方向的變化曲線(xiàn).

      從圖8可以看出,隨著梯度板埋深的增大,在施加載荷附近的豎向位移先減小后增大,表明不同梯度板埋深即不同上覆土層厚度的隔振效果差別很大;而遠(yuǎn)離載荷施加位置的豎向位移,隨著梯度板埋深的變化,僅當(dāng)梯度板埋深等于1m時(shí),豎向位移最大,其余梯度板埋深不同時(shí)豎向位移有一定的差異,但不顯著.以上現(xiàn)象與文獻(xiàn)[21,40]中波阻板埋深不同時(shí)的豎向位移的表現(xiàn)相似.因?yàn)椴ㄗ璋寰褪抢玫鼗嬖诮刂诡l率的原理隔振,而截止頻率的大小與上覆土層的厚度,即與波阻板的埋深成反比[21],所以要想取得理想的隔振效果,就必須使上覆土層的厚度較小,即波阻板的埋深必須較小.結(jié)合圖8,在梯度波阻板埋深H1按0.5,1,2,3,4m增大的情況下,綜合比較施加載荷附近和遠(yuǎn)離載荷施加位置的豎向位移的大小,只有在梯度板埋深H1=0.5m時(shí)會(huì)產(chǎn)生穩(wěn)定的隔振效果,這說(shuō)明盡可能選擇梯度波阻板較小的埋深其隔振效果越好.

      圖8 地基表面豎向位移隨梯度波阻板埋深的變化曲線(xiàn)Fig.8 Variations of vertical displacement at the ground surface with depth

      為了分析梯度波阻板的厚度對(duì)地基隔振效果的影響,在H1=4m時(shí)圖9繪出了梯度波阻板板厚hw分別為1,2,3,4m時(shí)對(duì)地基表面豎向位移的影響.從圖9可以看出,無(wú)論是施加載荷附近的豎向位移還是遠(yuǎn)離載荷施加位置的豎向位移,梯度波阻板的隔振減振效果都隨著波阻板厚度的增大而增大.當(dāng)梯度波阻板厚度hw6 2m時(shí),隨著梯度波阻板厚度的增大,其隔振效果迅速增大;當(dāng)波阻板厚度hw>2m時(shí),隨著梯度波阻板厚度的增大,梯度波阻板隔振體系的隔振效果雖然也增大,但是豎向位移幅值提高的幅度卻逐漸減小.

      圖9 地基表面豎向位移隨板厚的變化曲線(xiàn)Fig.9 Variations of vertical displacement at the ground surface with thickness

      4 結(jié)論

      基于功能梯度材料,本文提出了以梯度波阻板作為隔振屏障的新型地基隔振體系.利用Fourier積分變換,通過(guò)Helmholtz矢量分解原理,推導(dǎo)獲得了土體動(dòng)力問(wèn)題的位移、應(yīng)力在Fourier變換域中的通解.采用回傳射線(xiàn)矩陣法和快速傅里葉逆變換獲得了時(shí)域中地基中任一點(diǎn)處的位移和應(yīng)力的計(jì)算.通過(guò)大量的數(shù)值結(jié)果,研究了梯度波阻板的材料梯度因子、埋深以及梯度波阻板厚度等物理力學(xué)參數(shù)對(duì)地基隔振性能的影響規(guī)律,得到了以下結(jié)論:(1)梯度材料的地基隔振屏障相對(duì)于單相固體均質(zhì)波阻板是一類(lèi)更具有可設(shè)計(jì)性的隔振體系,具有更好的減振隔振效果;(2)當(dāng)梯度波阻板上表面彈性模量小于下表面時(shí),地基的位移幅值和應(yīng)力幅值隨著梯度因子的增大而減小,反之則增大;(3)梯度波阻板的隔振效果隨著波阻板厚度的增大而增大,此外應(yīng)保證梯度波阻板具有較小的埋深,才能得到理想的隔振效果.

      1 Sneddon IN.The stress produced by a pulse of pressure moving along the surface of a semi-in fi nite solid.Rendiconti del Circolo Matematico di Palermo,1952,2:57-62

      2 Zienkiewicz OC,Chang CT,Beettss P.Drained,undrained,consolidation and dynamic behavior assumptions in soils.Geotechnqiue,1980,30:385-395

      3 陳遠(yuǎn)國(guó),金波.移動(dòng)簡(jiǎn)諧荷載作用下多孔地基的動(dòng)力響應(yīng).中國(guó)科學(xué)G輯,2008,38(3):250-259(Chen Yuanguo,Jin Bo.Dynamic response of a poroelastic stratum to moving oscillating load.Science in China.Series G,2008,38(3):250-259(in Chinese))

      4 周鳳璽,曹永春,趙王剛.移動(dòng)荷載作用下非均勻地基的動(dòng)力響應(yīng)分析.巖土力學(xué),2015,36(7):2027-2033(Zhou Fengxi,Cao Yongchun,Zhao Wanggang.Analysis of dynamic response of inhomogeneoussubgradeundermovingloads.RockandSoilMechanics,2015,36(7):2027-2033(in Chinese))

      5 胡安峰,李怡君,賈玉帥等.埋置移動(dòng)荷載作用下成層飽和地基的動(dòng)力響應(yīng).工程力學(xué),2016,33(12):44-62(Hu Anfeng,Li Yijun,Jia Yushuai,et al.Dynamic response of a layered saturated ground subjected to a buried moving load.Engineering Mechanics,2016,33(12):44-62(in Chinese))

      6 Bagno AM.Wave propagation in an elastic layer interacting with a viscous liquid layer.International Applied Mechanics,2016,52(2):133-139

      7 Woods RD.Screening of surface waves in soils.Journal of the Soil Mechanics and Foundations Division,1968,94(4):95l-979

      8 Ahmad S,Al-Huasaini TM,Fishman KL.Investigation on active isolation of machine foundations by open trenches.Journal of Geotechnical Engineering,1996,122(6):454-461

      9 Kattis SE,Polyzos D,Brjkos DE.Vibration isolation by a row of piles using a 3-D frequency domain BEM.International Joumal for Numerical Methods in Engineering,1999,46(5):713-728

      10 Huang JH,Xiao XZ,Dong XH,et al.Barrier vibration isolation to work-place vibration and its in fl uence on uneven subsidence of pillar foundation.Wuhan University Journal of Natural Sciences,2002,7(4):445-450

      11 高廣運(yùn),李志毅,邱暢.填充溝屏障遠(yuǎn)場(chǎng)被動(dòng)隔振三維分析.巖土力學(xué),2005,26(8):1184-1188(Gao Guangyun,Li Zhiyi,Qiu Chang.Three-dimensional analysis of in- fi lled trench as barriers for isolating vibration in far fi led.Rock and Soil Mechanics,2005,26(8):1184-1188(in Chinese))

      12 With C,Bahrekazemi M,Bodare A.Wave barrier of lime-cement columns against train-induced ground-borne vibrations.Soil Dynamics and Earthquake Engineering,2009,29:1027-1033

      13 Katsuya I,Ryota S,Tomihiro H et al.Systematic analyses of vibration noise of a vibration isolation system for high-resolution scanning tunneling microscopes.Review of Scienti fi c Instruments,2011,82(8):702-707

      14 徐平,周新民,夏唐代.應(yīng)用屏障進(jìn)行被動(dòng)隔振的研究綜述.地震工程學(xué)報(bào),2015,37(1):88-93(Xu Ping,Zhou Xinmin,Xia Tangdai.Review on passive vibration isolation using barriers.Chinese Earthquake Engineering Journal,2015,37(1):88-93(in Chinese))

      15 巴振寧,王靖雅,梁建文.層狀地基中隔振溝對(duì)移動(dòng)列車(chē)荷載隔振研究——2.5維IBEM方法.振動(dòng)工程學(xué)報(bào),2016,29(5):860-873(Ba Zhenning,Wang Jingya,Liang Jianwen.Reduction of train induced vibrations by using a trenchin a layered foundation.Journal of Vibration Engineering,2016,29(5):860-873(in Chinese))

      16 劉中憲,王少杰.非連續(xù)群樁屏障對(duì)平面P、SV波的隔離效應(yīng):二維寬頻帶間接邊界積分方程法模擬.巖土力學(xué),2016,37(4):1195-1207(Liu Zhongxian,Wang Shaojie.Isolation e ff ect of discontinuous pile-group barriers on plane P and SV waves:Simulation based on 2D broadband indirect boundary integration equation method.Rock and Mechanics,2016,37(4):1195-1207(in Chinese))

      17 Chouw N,Le R,Schmid G.An approach to reduce foundation vibrations and soil waves using dynamic transmitting behavior of a soil layer.Bauingenieur,1991,66:215-221

      18 Peplow AT,Jones CJC,Petyt M.Surface vibration propagation over a layered elastic half-space with an inclusion.Applied Acoustics,1999,56:283-296

      19 Takemiya H,F(xiàn)ujiwara A.Wave propagation/impediment in a stratum and wave impeding block(WIB)measured for SSI response reduction.Soil Dynamics and Earthquake Engineering,1994,13:49-61

      20 Takemiya H.Field vibration mitigation by honeycomb WIB for pile foundations of a high-speed train viaduct.Soil Dynamics and Earthquake Engineering,2004,24:69-87

      21 高廣運(yùn),李偉.二維地基波阻板隔振分析.地震工程與工程振動(dòng),2005,24(2):130-135(Gao Guangyun,Li Wei.2D analysis of ground vibration isolation using wave impeding block.Earthquake Engineering and Engineering Vibration,2005,24(2):130-135(in Chinese))

      22 高廣運(yùn),張博,李偉.層狀和豎向非均勻地基中水平--搖擺耦合激振波阻板三維隔振分析.巖土力學(xué),2012,33(2):349-353(Gao Guangyun,Zhang Bo,Li Wei.3D analysis of vibration isolation using wave impeding block in layered and vertical heterogeneous foundation under horizontal-rocking coupled excitation.Rock and Soil Mechanics,2012,33(2):349-353(in Chinese))

      23 高廣運(yùn),陳功奇,張博.列車(chē)荷載下豎向非均勻地基波阻板主動(dòng)隔振分析.振動(dòng)與沖擊,2013,32(22):57-62(Gao Guangyun,Chen Gongqi,Zhang Bo.Active vibration isolation using WIB in nonuniform ground under train loadings.Journal of Vibration and shock,2013,32(22):57-62(in Chinese))

      24 高廣運(yùn),王非,陳功奇.軌道交通荷載下飽和地基中波阻板主動(dòng)隔振研究.振動(dòng)工程學(xué)報(bào),2014,27(3):433-440(Gao Guangyun,Wang Fei,Chen Gongqi.Active vibration isolation of the saturated ground with wave impedence block inside and under the load of the travelling train.Journal of Vibration Engineering,2014,27(3):433-440(in Chinese))

      25 周鳳璽,馬強(qiáng),賴(lài)遠(yuǎn)明.含液飽和多孔波阻板的地基振動(dòng)控制研究.振動(dòng)與沖擊,2016,35(1):96-105(Zhou Fengxi,Ma Qiang,Lai Yuanming.Ground vibration control with fl uid-saturated porous wave impeding blocks.Journal of Vibration and Shock,2016,35(1):96-105(in Chinese))

      26 Gao GY,Chen J,Gu XQ,et al.Numerical study on the active vibration isolation by wave impeding block in saturated soils under vertical loading.Soil Dynamics and Earthquaake Engineering,2017,93:99-112

      27 Hirai H,Chen L.Recent and prospective development of FGM in Japan.Materials Science Frames,1999,308:509-514

      28 仲政,吳林志,陳偉球.功能梯度材料與結(jié)構(gòu)的若干力學(xué)問(wèn)題研究進(jìn)展.力學(xué)進(jìn)展,2010,40(5):528-541(Zhong Zheng,Wu Linzhi,Chen Weiqiu.Progress in the study on mechanics problems of functionally graded materials and structures.Advances in Mechanics,2010,40(5):528-541(in Chinese))

      29 雷鳴,廖紅建,黃理興等.應(yīng)力波在功能梯度土介質(zhì)中傳播的特性研究.巖石力學(xué)與工程學(xué)報(bào),2005,24(s1):4798-4804(Lei Ming,Liao Hongjian,Huang Lixing,et al.Study on characters of stress wave propagation in functionally graded soil.Chinese Journal of Rock Mechanics and Engineering,2005,24(s1):4798-4804(in Chinese))

      30 程站起,劉建.基于近場(chǎng)動(dòng)力學(xué)的功能梯度材料動(dòng)態(tài)斷裂分析.應(yīng)用力學(xué)學(xué)報(bào),2016,33(4):634-639(Cheng Zhanqi,Liu Jian.Fracture analysis of functionally graded materials under impact loading based on peridynamics.Chinese Journal of Applied Mechanics,2016,33(4):634-639(in Chinese))

      31 許新,李世榮.功能梯度材料微梁的熱彈性阻尼研究.力學(xué)學(xué)報(bào),2017,49(2):308-316(Xu Xin,Li Shirong.Analysis of thermoelastic damping for functionally graded material micro-beam.Chinese Journal of Theoretical and Applied Mechanics,2017,49(2):308-316(in Chinese))

      32 夏巍,馮浩成.熱過(guò)屈曲功能梯度壁板的氣動(dòng)彈性顫振.力學(xué)學(xué)報(bào),2016,48(3):609-614(Xia Wei,Feng Haocheng.Aeroelastic flutter of post-buckled functionally graded panels.Chinese Journal of Theoretical and Applied Mechanics,2016,48(3):609-614(in Chinese))

      33 高效偉,鄭保敬,劉健.功能梯度材料動(dòng)態(tài)斷裂力學(xué)的徑向積分邊界元法.力學(xué)學(xué)報(bào),2015,47(5):868-873(Gao Xiaowei,Zheng Baojing,Liu Jian.Dynamic fracture analysis of functionally graded materials by radial integration BEM.Chinese Journal of Theoretical and Applied Mechanics,2015,47(5):868-873(in Chinese))

      34 徐坤,陳美霞,謝坤.正交各向異性功能梯度材料平板振動(dòng)分析.噪聲與振動(dòng)控制,2016,36(4):14-20(Xu Kun,Chen Meixia,Xie Kun.Vibration analysis of orthotropic functionally graded plates.Noise and Vibration Control,2016,36(4):14-20(in Chinese))

      35 趙宇昕,陳少林.關(guān)于傳遞矩陣法分析飽和成層介質(zhì)響應(yīng)問(wèn)題的討論.力學(xué)學(xué)報(bào),2016,48(5):1145-1158(Zhao Yuxin,Chen Shaolin.Discussion on the matrix propagator method to analyze the response of saturated layered media.Chinese Journal of Theoretical and Applied Mechanics,2016,48(5):1145-1158(in Chinese))

      36 Pao H,Ken DC,Howard SM.Dynamic response and wave propaga-tion in plane trusses and frames.American Institute of Aeronautics and Astronautics,1999,37:594-603

      37 Pao YH,Su XY,Tian JY.Reverberation matrix method for propagation of sound in a multilayered liquid.Journal of Sound and Vibration,2000,230:743-760

      38 SuXY,TianJY,PaoYH.Applicationofthereverberation-raymatrix to the propagation of elastic waves in a layered solid.International Journal of Solids and Structures,2002,39:5447-5463

      39 周鳳璽,賴(lài)遠(yuǎn)明.梯度飽和土瞬態(tài)響應(yīng)分析.力學(xué)學(xué)報(bào),2012,44(5):943-947(Zhou Fengxi,Lai Yuanming.Transient dynamic analysis of grandient fl uid-saturated soil.Chinese Journal of Theoretical and Applied Mechanics,2012,44(5):943-947(in Chinese))

      40 高廣運(yùn),馮世進(jìn),李偉等.二維層狀地基波阻板隔振分析.振動(dòng)工程學(xué)報(bào),2007,20(2):175-179(Gao Guangyun,Feng Shijin,Li Wei,et al.2-D analysis of vibration isolation by wave impeding block in layered ground.Journal of Vibration Engineering,2007,20(2):175-179(in Chinese))

      ANALYSIS OF GROUND VIBRATION CONTROL BY GRADED WAVE IMPEDING BLOCK1)

      Ma Qiang*Zhou Fengxi*,2)Liu Jie?
      *(School of Civil Engeering,Lanzhou University of Technology,Lanzhou730050,China)
      ?(School of Traffic and Transportation,Lanzhou JiaoTong University,Lanzhou730070,China)

      Wave impeding block(WIB)vibration isolation system as an e ff ective measure for vibration pollution control is applied in practical engineering gradually,but the previous studies mostly focused on the single-phase solid homogenous materials,few research have been on the vibration isolation performance of wave impeding block with materials properties that have a continuous variation along space relatively.Based on the functionally graded material,a new type of foundation vibration isolation system is proposed.Considering setting the graded wave impeding block in the elastic foundation which subjected to surface strip harmonic load,using the Fourier transform and Helmholtz vector decomposition,the calculation formula of reverberation ray matrix method(RRMM)is established for two-dimensional transient response of elastic foundation based on the line elastic theory.Assuming that the material properties of graded wave impeding block have an exponential law distribution along the thickness-coordinate,by using numerical inverse Fourier transformation,the displacement and the stress are obtained.Via numerical examples,the e ff ectiveness of vibration isolation of graded wave impeding block is compared to conventional single phase solid homogenous wave impeding block,and the in fl uences of physical and mechanical parameters including the gradient factor,the depth and the thickness of graded wave impeding block are analyzed.The results show that the graded wave impeding block can e ff ectively reduce the vibration amplitude,and compared with the single phase solid homogenous wave impeding block isolation system,graded wave impeding block isolation system has better e ff ect.The amplitude of displacement and stress is decreased with the increase of gradient factor.The e ff ect of vibration isolation of graded wave impeding block improved with the increased of the thickness,but reduced with the increasing of the embedded depths.

      ground vibration control,elastic foundation,dynamic response,graded wave impeding block,reverberation ray matrix method

      TU 45

      A doi:10.6052/0459-1879-17-221

      2017–06–12 收稿,2017–09–06 錄用,2017–09–06 網(wǎng)絡(luò)版發(fā)表.

      1)國(guó)家自然科學(xué)基金資助項(xiàng)目(51368038).

      2)周鳳璽,教授,主要研究方向:巖土力學(xué)、復(fù)合材料結(jié)構(gòu)力學(xué).E-mail:geolut@163.com

      馬強(qiáng),周鳳璽,劉杰.梯度波阻板的地基振動(dòng)控制研究.力學(xué)學(xué)報(bào),2017,49(6):1360-1369

      Ma Qiang,Zhou Fengxi,Liu Jie.Analysis of ground vibration control by graded wave impeding block.Chinese Journal of Theoretical and Applied Mechanics,2017,49(6):1360-1369

      猜你喜歡
      力學(xué)梯度幅值
      力學(xué)
      一個(gè)改進(jìn)的WYL型三項(xiàng)共軛梯度法
      弟子規(guī)·余力學(xué)文(十)
      弟子規(guī)·余力學(xué)文(四)
      一種自適應(yīng)Dai-Liao共軛梯度法
      一類(lèi)扭積形式的梯度近Ricci孤立子
      基于S變換的交流電網(wǎng)幅值檢測(cè)系統(tǒng)計(jì)算機(jī)仿真研究
      電子制作(2017年7期)2017-06-05 09:36:13
      力學(xué) 等
      正序電壓幅值檢測(cè)及諧波抑制的改進(jìn)
      低壓電力線(xiàn)信道脈沖噪聲的幅值與寬度特征
      扎赉特旗| 凌云县| 焦作市| 玛多县| 阜南县| 衢州市| 新晃| 常熟市| 安宁市| 成安县| 浦江县| 三河市| 舞阳县| 高青县| 嘉定区| 阿城市| 亳州市| 岳普湖县| 资中县| 霍林郭勒市| 临沭县| 宿迁市| 芷江| 湾仔区| 习水县| 杨浦区| 曲阳县| 南雄市| 霍城县| 双辽市| 淮滨县| 惠州市| 搜索| 锦州市| 四子王旗| 察隅县| 临沂市| 昌平区| 邛崃市| 阜康市| 龙门县|