江曉東,陳惠玲,姜琳琳,楊曉亞,呂 潤,華夢飛,吳可人
?
弱光條件下散射輻射比例增加對冬小麥籽粒灌漿進程的影響*
江曉東1,2,陳惠玲1,姜琳琳1,楊曉亞1,呂 潤1,華夢飛1,吳可人1
(1.南京信息工程大學氣象災害預報預警與評估協(xié)同創(chuàng)新中心/江蘇省農(nóng)業(yè)氣象重點實驗室,南京 210044;2.中國氣象局農(nóng)業(yè)氣象保障與應用技術重點開放實驗室,鄭州 450003)
長江中下游地區(qū)太陽輻射呈現(xiàn)總輻射降低并伴隨散射輻射比例升高的特點,到達地表的太陽輻射強度及其成分變化影響冬小麥的生長和發(fā)育。為闡明太陽總輻射減弱條件下散射輻射比例增加對冬小麥籽粒灌漿進程的影響,于冬小麥三葉期-成熟期在田間設置相同遮光率下散射輻射比例不同的2個處理,T1:遮光率14.10%,遮陰環(huán)境中散射輻射占總輻射比例31.09%;T2:遮光率14.42%,遮陰環(huán)境中散射輻射占總輻射比例39.98%,以不遮光為對照(CK)。小麥開花后每隔7d采樣一次,至收獲期共采樣5次,測量其千粒重,并采用Logistic模型擬合籽粒灌漿過程,分析粒重增長動態(tài)和灌漿參數(shù)。結果表明:太陽輻射變化對籽粒灌漿時間無顯著影響,主要通過影響小麥籽粒的灌漿速率從而影響千粒重。弱光下(T1處理)小麥籽粒灌漿過程中最大灌漿速率、平均灌漿速率以及漸增期、快增期和緩增期灌漿速率均減小,千粒重降低。弱光條件下散射輻射比例增加(T2處理),提高了籽粒最大灌漿速率、平均灌漿速率以及漸增期、快增期和緩增期灌漿速率,促進籽粒粒重增加。本研究的結果表明散射輻射比例增加能部分抵消太陽總輻射降低對籽粒粒重的負面影響。
散射輻射;冬小麥;Logistic模型;灌漿參數(shù);千粒重
20世紀50年代以來,工業(yè)和科技的飛速發(fā)展導致大氣中氣溶膠含量發(fā)生明顯變化[1],影響了到達地球表面的太陽總輻射。研究表明,1960-1990年,全球地表太陽輻射平均降幅為6~9W·m-2[2-4]。盡管90年代以來,很多地區(qū)地面太陽輻射開始回升,但回升后的太陽輻射總量還遠未達到50年代的水平[4-5]。對中國地表太陽輻射變化的研究也有相似的結論,陳志華等[6-8]分析了1957-2003年中國地面總輻射、直接輻射和散射輻射的變化特征,發(fā)現(xiàn)中國地面太陽總輻射和直接輻射在90年代前下降趨勢明顯,從90年代開始呈上升趨勢,但均未恢復到1960-1990年的平均值;散射輻射總體上并未呈現(xiàn)出明顯變化,但沿海地區(qū)、黃河中下游地區(qū)和南方的散射輻射呈上升趨勢。
太陽輻射是光合作用的能量來源。遮光條件下小麥光合能力降低[9-10],導致各發(fā)育期內(nèi)植株的干物質(zhì)積累量下降[11-12]。灌漿期是影響小麥產(chǎn)量的關鍵時期,小麥籽粒的干物質(zhì)積累大部分來自開花后的光合產(chǎn)物,花后弱光處理降低了小麥籽粒的灌漿速率,造成籽粒粒重下降、產(chǎn)量降低[13-18]。但也有研究指出遮光條件下小麥產(chǎn)量增加[19-21],袁玉欣等[22]曾明確指出遮光25%條件下小麥產(chǎn)量幾乎不受影響。散射輻射是太陽輻射的主要組分之一,與直接輻射不同,散射輻射可以均勻分布于植物群體內(nèi)部,散射輻射比例升高可促進作物的光合作用[23-25],提高植物的光能利用率[26-29]。Alton等[28]指出,散射輻射條件下的冠層光利用率增加6%~33%。遮光條件下小麥產(chǎn)量研究結果的差異是否與遮光環(huán)境中散射輻射比例的變化有關,需要進一步研究。
小麥是中國主要糧食作物,長江中下游是中國小麥主產(chǎn)區(qū)之一,該地區(qū)表現(xiàn)出明顯的太陽總輻射降低和散射輻射比例升高的趨勢[30-31]。太陽輻射減弱會降低作物的光合作用,而散射輻射比例增加可促進作物的光能利用效率,兩種因素同時變化對小麥產(chǎn)量有何影響鮮見研究報道?;诖耍狙芯吭谀暇┑貐^(qū)開展大田試驗,模擬太陽總輻射減弱條件下散射輻射比例增加的環(huán)境條件,研究冬小麥籽粒灌漿和粒重的變化,以期為氣候變化條件下長江中下游小麥生產(chǎn)對策提供理論依據(jù)。
試驗于2015年11月-2016年5月在南京信息工程大學農(nóng)業(yè)氣象試驗站(32.2°N,118.7°E)進行。試驗站所在地年最高氣溫39.7℃,最低氣溫-13.1℃,年平均氣溫15.6℃,年平均降水量約1100mm,年平均日照時數(shù)約1900h。試驗期間主要氣象要素變化情況見圖1。
試驗設置兩個遮光處理T1和T2,分別采用兩種透明遮光材料對冬小麥進行遮光處理,模擬弱光環(huán)境中散射輻射增加的情景,以不遮光為對照(CK)。遮光材料參數(shù)見表1,其中輻射數(shù)據(jù)的測定位置在遮光材料下方0.5m處,根據(jù)測定結果,將兩個處理定義為T1(遮光率14.10%,散射輻射占比31.09%)和T2(14.42%,39.98%)。遮光處理從小麥冬三葉期開始進行,將遮光材料架設在小麥植株冠層頂部,其水平高度隨著冬小麥植株的生長不斷升高,與冬小麥冠層頂部的距離始終保持在0.5m左右,保證群體內(nèi)的通風狀況不受遮光材料的影響,陰雨天不進行遮光處理,使試驗處理盡可能只改變輻射這一單因子。試驗小區(qū)面積為4m×4m,其中有效遮光面積2.5m×2.5m,小區(qū)之間有間隔4m的保護區(qū),以確保每個試驗小區(qū)不受其它小區(qū)的影響。試驗供試小麥品種為揚麥13,播種密度為2.7×106基本苗·hm-2,小麥行距25cm。試驗采用隨機區(qū)組設計,每處理重復3次。
圖1 試驗期間田間氣象要素逐日變化
表1 不同輻射處理遮光材料參數(shù)
試驗地前茬作物為水稻,施行水稻秸稈還田。耕層土壤質(zhì)地為壤質(zhì)黏土,有機碳、全氮含量分別為19.4g·kg-1、11.5g·kg-1,土壤pH(H2O)6.2,黏粒含量為26.1%。試驗地施用氮肥為尿素,折合純N為168kg·hm-2;使用磷肥為過磷酸鈣,折合P2O5為105kg·hm-2;施用鉀肥為KCl,折合K2O為135kg·hm-2。磷肥和鉀肥作為基肥一次性施入,氮肥分底施(1/2用量)和拔節(jié)肥(1/2用量),其它栽培措施同當?shù)馗弋a(chǎn)田。
1.2.1 輻射觀測
使用散射輻射計(SPN1-MS1,Dalta-T,Inc.UK)進行太陽總輻射與散射輻射觀測。
1.2.2 籽粒灌漿動態(tài)
于冬小麥開花期在每個處理中選取同天開花、大小以及長勢基本相同的麥穗100個做標記,以當天標記作為0d,在花后7、14、21、28和35d(收獲時)分別取各處理20個穗樣品,剝出籽粒并記錄粒數(shù),置于烘箱105℃殺青30min,然后80℃烘干至恒重,稱量干重,計算千粒重。
1.2.3 籽粒灌漿過程擬合
采用Logistic方程對冬小麥籽粒灌漿過程進行擬合,并計算相應的灌漿特征參數(shù),分析籽粒灌漿特性。以千粒重W為因變量,開花后天數(shù)t為自變量,進行Logistic方程擬合,即
式中,W為各個時期冬小麥籽粒千粒重(g·1000-grain-1),K為理論最大千粒重(g·1000-grain-1),t為開花后天數(shù)(d),A、B為方程回歸參數(shù)[31]。
式(1)中W達到99%K的時間為有效灌漿時間(T99, d),計算式為
最大千粒重K除以有效灌漿時間T99的結果為平均灌漿速率(Rave, g·1000-grain-1·d-1),即
W達到最大千粒重K的5%至95%所經(jīng)歷的時間,即W取值為0.9K時對應的t值為灌漿活躍期(D, d),計算式為
在式(1)中對t進行一階求導得到籽粒灌漿速率R,即
對式(5)求極值得到最大灌漿速率(Rmax, g·1000-grain-1·d-1),即
Rmax所對應的t值即為到達最大灌漿速率的時間(Tmax, d),即
求式(5)對t的二階導數(shù),當其為零時得到t的兩個值t1和t2。結合灌漿速率曲線可將灌漿過程分為漸增期、快增期和緩增期3個階段[29],漸增期以t=0時作為起始時間,則t1和t2分別為快增期起始時間(t1, d)和緩增期起始時間(t2, d),計算式分別為
有效灌漿時間T99即是灌漿終期(t3,d),即
由t1、t2和t3可以分別求出漸增期持續(xù)時間(?t1, d)、快增期持續(xù)時間(?t2, d)和緩增期持續(xù)時間(?t3, d),即
?t1=t1(11)
?t2=t2-t2(12)
?t3=t3-t2(13)
漸增期(快增期、緩增期)累積的千粒重除以該時期持續(xù)時間即為該期平均灌漿速率(R1、R2、R3,g·1000-grain-1·d-1),即
1.2.4 數(shù)據(jù)處理
運用Excel 2015和SPSS22.0軟件進行統(tǒng)計分析。
由圖2可以看出,在整個灌漿過程中各處理籽粒灌漿速率均呈現(xiàn)單峰拋物曲線變化特點。表現(xiàn)為花后灌漿始期各處理灌漿速率逐漸增加,并于21d左右達到峰值,之后逐漸減小,直至成熟期(花后35d)。但是,從灌漿速率的數(shù)值看,各處理間有一定差別。在灌漿速率增加階段,兩個遮光處理中小麥灌漿速率均低于不遮光處理(CK),其中,T1處理(散射輻射比例為31.09%)的灌漿速率最小,與CK和T2差異顯著(P<0.05),而T2處理(散射輻射比例為39.98%)與CK無顯著差異;在灌漿速率減小階段,各處理間差異均不顯著??梢?,弱光下散射輻射比例為31.09%(T1)的光照條件會明顯減慢灌漿前中期(花后21d內(nèi))的灌漿速率,阻礙小麥籽粒灌漿;而遮光條件下散射輻射比例為39.98%(T2)對小麥籽粒灌漿速率無顯著影響。兩個遮光處理在灌漿后期(花后21~35d)對籽粒灌漿均影響不大。說明遮光會降低灌漿前中期(花后21d內(nèi))籽粒灌漿速率,但遮光下散射輻射比例增加有利于促進籽粒灌漿。
圖2 不同輻射處理小麥籽粒灌漿速率的變化過程
注:圖中豎直排列的小寫字母表示處理間在0.05水平上的差異顯著性,從上至下依次為CK、T2、T1。圖中的誤差線為標準偏差(n=3)。下同
Note: Lowercase letters that vertically arranged according to the numerical value of the different treatments indicates the difference significance among treatments at 0.05 level. The bar shows standard deviation(n=3). The same as below
由圖3可知,不同處理下冬小麥千粒重變化均呈現(xiàn)“慢-快-慢”的規(guī)律,粒重的增加符合“S”型增長曲線。在籽粒不同的灌漿階段,各處理的籽粒千粒重存在一定差異。在籽粒灌漿初始階段(開花-花后14 d),籽粒千粒重雖然增加緩慢,但處理間開始出現(xiàn)差異。T1和T2兩個遮光處理的千粒重分別為8.12和8.92g,均低于CK的9.06g,其中T2處理與CK差異不顯著,T1處理的千粒重則顯著低于T2和CK(P<0.05)。籽粒灌漿快速增加階段(花后14~28 d),為各處理在整個灌漿期間千粒重差異最為顯著的階段,其中T1處理的籽粒干物質(zhì)增加量(20.54g·1000- grain-1)顯著低于CK(22.73g·1000-grain-1)和T2處理(22.77g·1000-grain-1)(P<0.05),T2處理的籽粒干物質(zhì)增加量與CK相比則無顯著差異。至花后28d,T1和T2兩個遮光處理的千粒重分別為31.69和28.66g,均低于CK的31.79g,其中T2處理與CK差異不顯著,而T1處理的千粒重顯著低于CK(P<0.05)。在籽粒灌漿最后階段(花后28~35d),各處理的千粒重增長漸趨緩慢,T1、T2處理的籽粒干物質(zhì)增長量分別為12.83和12.67g·1000-grain-1,與CK處理(12.63g·1000-grain-1)相比均無顯著差異。在花后35d,T1的千粒重為33.37g,顯著小于CK(35.38g)和T2處理(35.44g)(P<0.05),T2處理與CK無顯著差異。
以上表明,遮光并不影響籽粒千粒重在各個灌漿階段的總體增長趨勢。但相較于CK(不遮光)而言,遮光下散射輻射比例為31.09%(T1)的光照條件會明顯降低籽粒灌漿初始階段(開花-花后14d)和快速增加階段(花后14~28d)的籽粒干物質(zhì)增長量,盡管對灌漿最后階段(花后28~35d)的影響不大,但前兩個階段的籽粒干物質(zhì)積累量的降低導致籽粒千粒重顯著降低;而遮光下散射輻射比例39.98%(T2)對各灌漿階段小麥籽粒干物質(zhì)增長量和千粒重均無顯著影響。說明遮光能夠降低灌漿期籽粒干物質(zhì)積累量和千粒重,但遮光下增加散射輻射比例有利于緩解這種情況。
圖3 不同輻射處理小麥籽粒千粒重的變化過程
以開花后天數(shù)(t)為自變量,對應千粒重(W)為因變量,用Logistic模型對不同處理下籽粒灌漿進程進行擬合,模擬結果見表2,由表可見,各方程的擬合度(R2)在0.990~0.991,F(xiàn)檢驗結果表明方程達到極顯著水平(P<0.01),說明該Logistic模型能夠客觀反映籽粒的灌漿情況。
表2 不同輻射處理籽粒灌漿過程的Logistic擬合方程
Table 1 Logistic stimulation equations of grain-filling process under different radiation conditions
注:**表示P<0.01。
Note:**represents P<0.01.
表3為表2中各Logistic模型計算的各項灌漿參數(shù)。從表3可以看出,T1和T2兩個遮光處理的灌漿漸增期持續(xù)時間(?t1)、快增期持續(xù)時間(?t2)和緩增期持續(xù)時間(?t3)這3項參數(shù)與CK無顯著差異,因而與這3項參數(shù)有關的灌漿活躍期(D)、有效灌漿時間(T99)和達到最大灌漿速率的時間(Tmax)也無顯著差異,可見,籽粒灌漿過程中與灌漿時間有關的參數(shù)不是影響本試驗條件下小麥粒重的主要因素。在與灌漿速率有關的參數(shù)中,T2和CK兩處理與T1處理出現(xiàn)顯著差異。T1和T2處理的漸增期灌漿速率(R1)、快增期灌漿速率(R2)和緩增期灌漿速率(R3)這3項參數(shù)在數(shù)值上均低于CK,其中T1處理顯著低于CK和T2(P<0.05),T2處理與CK差異不顯著。最大灌漿速率(Rmax)與之類似,T1處理比CK和T2處理分別低0.10g·1000-grain-1·d-1和0.09g·1000-grain-1·d-1。各灌漿階段籽粒灌漿速率的差異決定了籽粒的平均灌漿速率的不同(Rave),T1處理的Rave為0.78g·1000-grain-1·d-1,顯著低于T2(0.84g·1000-grain-1·d-1)和CK(0.85g·1000-grain-1·d-1)(P<0.05)。各處理籽粒灌漿速率的差異最終表現(xiàn)為千粒重的差異,理論最大千粒重K表現(xiàn)為T1處理顯著低于CK和T2(P<0.05),分別比CK和T2低2.07g·1000-grain-1和2.36g·1000-grain-1,CK與T2則無顯著差異。這說明遮光會降低冬小麥的理論千粒重,但在遮光且散射輻射比例增加的條件下則有利于改善這種情況。
表3 不同輻射處理的籽粒灌漿參數(shù)
注:表中數(shù)據(jù)為平均值±標準差(n=3)。同一行的數(shù)據(jù)后不同字母表示在0.05水平上差異顯著。
Note: Data are mean±standard deviation(n=3). Different letters in each line are significantly different at the 0.05 probability level. K means maximum 1000-grain weight, Rmaxmeans maximum filling rate, Ravemeans average filling rate, Tmaxmeans the time to reach the maximum filling rate, T99means effective filling time, D means grain filling active period, ?t1means duration of gradual increasing period, ?t2means duration of rapid increasing period, ?t3means duration of slow increasing period, R1means filling rate of gradual increasing period, R2means filling rate of rapid increasing period, R3means filling rate of slow increasing period.
粒重是影響小麥產(chǎn)量的主要因素,灌漿速率和灌漿持續(xù)時間共同決定了小麥籽粒的粒重。本研究對小麥籽粒灌漿參數(shù)和千粒重的分析表明,遮光環(huán)境中散射輻射比例改變主要影響的是與籽粒灌漿速率有關的籽粒的平均灌漿速率、最大灌漿速率、漸增期灌漿速率、快增期灌漿速率和緩增期灌漿速率等參數(shù),而對達到最大灌漿速率的時間、有效灌漿時間、灌漿活躍期、灌漿漸增期持續(xù)時間、灌漿快增期持續(xù)時間和灌漿緩增期持續(xù)時間等參數(shù)影響較小,這與喬旭等[17-18]的研究結果相同,說明在遮光條件下,籽粒粒重的變化主要是由于籽粒的灌漿速率變化引起的,提高籽粒的灌漿速率是遮光條件下小麥增產(chǎn)的關鍵。
光照條件是影響小麥籽粒的灌漿過程和粒重的主要外界環(huán)境因素之一。賀明榮等[13]研究發(fā)現(xiàn),不論是對弱光適應力較強的品種還是對弱光適應力較弱的品種,遮光都使籽粒灌漿速率降低、千粒重減??;閆素輝等[15]研究表明,遮光90%的弱光脅迫處理導致灌漿前期、中期及后期的小麥籽粒重下降,下降幅度在3.6%~14.9%。弱光導致花后小麥光合同化產(chǎn)物不能滿足灌漿需求,使籽粒灌漿速率降低,最終導致千粒重減小[13-18]。本試驗研究表明,遮光降低了冬小麥籽粒的灌漿速率,導致籽粒千粒重降低,T1處理小麥的最終千粒重比CK顯著降低5.7%。值得注意的是,T2處理與T1遮光程度相似,但T2處理冬小麥籽粒的灌漿速率和千粒重與CK差異不顯著,與前人的研究結果不一致。T2處理散射輻射比例比T1提高了28.60%,這是兩個處理間的唯一差異,因此可以推斷,這種結果差異是因為環(huán)境中散射輻射比例的增加所導致的。在遮光強度相似的條件下,散射輻射增加并沒有改變到達冬小麥冠層頂部的輻射總量,但可以使冬小麥冠層中、下部的葉片接受更多的散射輻射進行光合作用,從而提高群體的光合速率,進而提高籽粒的灌漿速率和千粒重,這也可能是遮光條件下小麥產(chǎn)量不降低或提高[19-22]的主要原因。
(1)遮光和散射輻射比例改變主要通過影響籽粒的灌漿速率從而影響千粒重。
(2)遮光導致小麥千粒重降低,使籽粒最大灌漿速率、平均灌漿速率、漸增期灌漿速率和快增期灌漿速率減小。在遮光條件下散射輻射比例增加可顯著提高籽粒最大灌漿速率、平均灌漿速率以及漸增期、快增期和緩增期灌漿速率,從而提高籽粒的千粒重。
[1]Alpert P,Kishcha P,Kaufman Y J,et al.Global dimming or local dimming:effect of urbanization on sunlight availability[J]. Geophysical Research Letters,2005,321(17):317-330.
[2]Liepert B G.Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990[J].Geophysical Research Letters,2010,29(10): 61-1-61-4.
[3]Stanhill G,Cohen S.Global dimming:a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences[J].Agricultural and Forest Meteorology,2001,107(4): 255-278.
[4]Wild M,Gilgen H,Roesch A,et al.From dimming to brightening: decadal changes in solar radiation at earth’s surface[J].Science, 2005,308:847-850.
[5]Mishchenko M I,Geogdzhayev I V,Rossow W B,et al.Long term satellite record reveals likely recent aerosol trend[J].Science, 2007,315:1543.
[6]陳志華.1957-2000年中國地面太陽輻射狀況的研究[D].北京:中國科學院研究生院,2005.
Chen Z H.Study on the status of surface solar radiation in China during 1957-2000[D].Beijing:Master's thesis of Graduate University of Chinese Academy of Sciences,2005.(in Chinese)
[7]文小航,尚可政,王式功,等.1961-2000年中國太陽輻射區(qū)域特征的初步研究[J].中國沙漠,2008,28(3):554-561.
Wen X H,Shang K Z,Wang S G,et al.Primary study on regional characteristics of solar radiation in China during 1961-2000[J].Journal of Desert Research,2008,28(3):554-561.(in Chinese)
[8]王雅捷,黃耀,張穩(wěn).1961-2003年中國大陸地表太陽總輻射變化趨勢[J].氣候與環(huán)境研究,2009,14(4):405-413.
Wang Y J,Huang Y,Zhang W.Changes in surface solar radiationin mainland China over the period from 1961 to 2003[J]. Climatic & Environmental Research,2009,14(4):405-413.(in Chinese)
[9]Mu H,Jiang D,Wollenweber B,et al.Long-term low radiation decreases leaf photosynthesis, photochemical efficiency and grain yield in winter wheat[J].Journal of Agronomy and Crop Science,2010,196:38-47.
[10]Li H W,Jiang D,Wollenweber B,et al.Effects of shading on morphology,physiology and grain yield of winter wheat[J]. European Journal of Agronomy,2010,33:267-275.
[11]鄭有飛,徐靜馨,吳榮軍,等.太陽輻射減弱條件下冬小麥光合作用和干物質(zhì)生產(chǎn)的模擬[J].生態(tài)學雜志,2012,31(3):583-593.
Zheng Y F,Xu J X,Wu R J,et al.Simulation of photosynthesis and dry matter production of winter wheat under the condition of low solar radiation[J].Chinese Journal of Ecology,2012,31 (3):583-593.(in Chinese)
[12]張元燕,季永華,賈恒,等.遮光處理對不同生育期小麥生物量分配和葉片葉綠素含量的影響[J].植物資源與環(huán)境學報,2009,18(4):39-45.
Zhang Y Y,Ji Y H,Jia H.Effect of shading on biomass allocation and chlorophyll content in leaf of Triticumaestivum at different developmental stages[J].Journal of Plant Resources & Environment,2009,18(4):39-45.(in Chinese)
[13]賀明榮,王振林,高淑萍.不同小麥品種千粒重對灌漿期弱光的適應性分析[J].作物學報,2001,27(5):640-644.
He M R,Wang Z L,Gao S P.Analysis on adapability of wheat cultivars to low light intensity during grain filling[J].Acta Agronomica Sinica,2001,27(5):640-644.(in Chinese)
[14]易喬旭,雷鈞杰,陳興武,等.核麥間作系統(tǒng)小氣候效應及其對小麥產(chǎn)量的影響[J].中國農(nóng)業(yè)氣象,2012,33(4):540-544.
Yi Q X,Lei J J,Chen X W,et al.Effect of microclimate in walnut-wheat intercropping system on wheat yield[J].Chinese Journal of Agrometeorology,2012,33(4):540-545.(in Chinese)
[15]閆素輝,李文陽,楊安中,等.弱光對小麥花后旗葉光合及籽粒灌漿的影響[J].麥類作物學報,2011,31(1):77-81.
Yan S H,Li W Y,Yang A Z,et al.Effect of weak light on the wheat flag leaf photosynthesis and grain filling[J].Journal of Triticeae Crops,2011,31(1):77-81.(in Chinese)
[16]郭翠花,高志強,苗果園.花后遮蔭對小麥旗葉光合特性及籽粒產(chǎn)量和品質(zhì)的影響[J].作物學報,2010,36(4):673-679.
Guo C H,Gao Z Q,Miao G Y.Effect of shading at post flowering on photosynthetic characteristics of flag leaf and response of grain yield and quality to shading in wheat[J].Acta Agronomica Sinica,2010,36(4):673-679.(in Chinese)
[17]喬旭,張宏芝,雷鈞杰,等.遮蔭強度對小麥光合及籽粒灌漿特性的影響[J].西北農(nóng)業(yè)學報,2013,22(8):9-14.
Qiao X,Zhang H Z,Lei J J,et al.Effect of shading onphotosynthesis and grain-filling characteristics of wheat[J].Acta Agriculturae Boreali-Occidentalis Sinica,2013,22(8):9-14. (in Chinese)
[18]劉霞,尹燕秤,姜春明,等.花后不同時期弱光和高溫脅迫對小麥旗葉熒光特性及籽粒灌漿進程的影響[J].應用生態(tài)學報,2005,16(11):211-212.
Liu X,Yin Y P,Jiang C M,et al.Effects of weak light and high temperature stress after anthesis on flag leaf chlorophyll fluorescence and grain fill of wheat[J].Chinese Journal of Applied Ecology,2005,16(11):211-212.(in Chinese)
[19]Li H,Jiang D,Wollenweber B,et al.Effects of shading on morphology,physiology and grain yield of winter wheat[J]. European Journal of Agronomy,2010,33:267-275.
[20]Rodrigo V H L,Stirling C M,Teklehaimanot Z,et al.Intercropping with banana to improve fractional interception and radiation- use efficiency of immature rubber plantations[J].Field Crops Research,2001,69:237-249.
[21]Samarajeewa K,Kojima N,Sakagami J I,et al.The effect of different timing of top dressing of nitrogen application under low light intensity on the yield of rice(L)[J].Journalof Agronomy and Crop Science,2005,191:99-105.
[22]袁玉欣,王穎,裴保華.模擬林木遮蔭對小麥生長和產(chǎn)量的影響[J].華北農(nóng)學報,1999,14(S):54-59.
Yuan Y X,Wang Y,Pei B H.Effect of simulating tree shading on wheat development and output[J].Acta Agriculturae Boreali-sinica,1999,14(Supple):54-59.(in Chinese)
[23]Farquhar G D,Roderick M L,Pinatubo.Diffuse light and the carbon cycle[J].Science,2003,229:1997-1998.
[24]Roderick M L,Farquhar G D,Berry S L,et al.On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation[J].Oecologia,2001,129:21-30.
[25]Gu L,Baldocchi D D,Wofsy S C,et al.Response of a deciduous forest to the Mount Pinatubo eruption:enhanced photosynthesis[J].Science,2003,299:2035-2038.
[26]Sinclair T R,Shiraiwa T.Soybean radiation-use efficiency as influenced by nonuniform specific leaf nitrogen distribution and diffuse radiation[J].Crop Science,1993,33:808-812.
[27]Healey K D,Rickert K G,Hammer G L,et al.Radiation use efficiency increases when the diffuse component of incident radiation is enhanced under shade[J].Australian Journal of Agricultural Research,1998,49:665-672.
[28]Alton P B,North P R,Los S O.The impact of diffuse sunlight on canopy light-use efficiency,gross photosynthetic product and net ecosystem exchange in three forest biomes[J].Global Change Biology,2007,13(4):776-787.
[29]任義方,王春乙,趙艷霞.氣溶膠輻射效應對作物及生態(tài)系統(tǒng)的影響綜述[J].中國農(nóng)業(yè)氣象,2010,31(4):533-540.Ren Y F,Wang C Y,Zhao Y X.A review of the effects of aerosol radiation effects on crops and ecosystems[J].Chinese Journal of Agrometeorology,2010,31(4):533-540.(in Chinese)
[30]蔡子穎,鄭有飛,劉建軍,等.長江三角洲地面太陽輻射變化和相關因素分析[J].氣象科學,2009,29(4):447-453.
Cai Z Y,Zheng Y F,Liu J J,et al.Analysis of solar radiation and relative factors in Yangtze River Delta of China[J].Scientia Meteorologica Sinica,2009,29(4):447-453.(in Chinese)
[31]宣守麗,石春林,金之慶,等.長江中下游地區(qū)太陽輻射變化及其對光合有效輻射的影響[J].江蘇農(nóng)業(yè)學報,2012,28(6): 1444-1450.
Xuan S L,Shi C L,Jin Z Q,et al.Variation of solar radiation over the middle and lower reaches of the Yangtze River and its influence on photosynthetically active radiation[J].Jiangsu Journal of Agricultural Sciences,2012,28(6):1444-1450.(in Chinese)
Effect of Increasing Diffuse Radiation Fraction under Low Light Condition on the Grain-filling Process of Winter Wheat (L)
JIANG Xiao-dong1,2, CHEN Hui-ling1, JIANG Lin-lin1, YANG Xiao-ya1, LV Run1, HUA Meng-fei1, WU Ke-ren1
(1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044,China; 2.Key Laboratory ofAgrometeoro- logicalSupport and Applied Technique, CMA, Zhengzhou 450003)
The solar radiation reduction along with increasing diffuse radiation fraction has been observed across the middle and lower reaches of Yangtze river in recent half century. Wheat growth and production would be influenced by the changes of solar radiation reaching the surface and its composition. In order to investigate the effect of increasing diffuse radiation fraction under decreased solar radiation condition on the grain filling process of the winter wheat (L), two treatments with different reduction ratio of diffuse radiation fraction and similar shading rate were set in the field experiment: T1, total solar radiation shading rate was 14.10% and diffuse radiation fraction was 31.09%; T2, total solar radiation shading rate was 14.42% and diffuse radiation fraction was 39.98%, respectively; CK, no shading as control. The experiment was conducted from three leaves stage to mature stage of winter wheat. The 1000-grain weight was measured every 7 days from anthesis to mature period for 5 times totally. The Logistic model was used to simulate the grain filling process, the grain weight growing and the filling parameters. The results indicated that the grain filling time was not significantly affected by solar radiation reduction, but the 1000-grain weight was affected through decreasing grain filling rate. Under T1 treatment, the maximum filling rate, the average filling rate, the filling rate during the gradual increasing period , rapid increasing period and slow increasing period decreased, and the 1000-grain weight also decreased. Under the treatment of higher diffuse solar radiation fraction (T2 treatment), the maximum grain filling rate, the average grain filling rate, the filling rate during gradual, rapid and slow growth periods were increased, and the grain weight was increased. This study indicated that the negative effect of solar radiation reduction on grain weight was offset by the effect of increased diffuse radiation fraction.
Diffuse solar radiation; Winter wheat; Logistic model; Grain filling parameter; 1000-grain weight
10.3969/j.issn.1000-6362.2017.12.001
江曉東,陳惠玲,姜琳琳,等.弱光條件下散射輻射比例增加對冬小麥籽粒灌漿進程的影響[J].中國農(nóng)業(yè)氣象,2017,38(12):753-760
2017-03-24
國家自然科學基金(41105078;31400416);公益性行業(yè)(氣象)科研專項經(jīng)費(GYHY201506018);江蘇省自然科學基金(BK20140988);江蘇高校優(yōu)勢學科建設工程項目(PAPD);中國氣象局農(nóng)業(yè)氣象保障與應用技術重點開放實驗室開放研究基金(AMF201602);南京信息工程大學大學生實踐創(chuàng)新訓練計劃項目(201610300165)
江曉東(1976-),博士,副教授,研究方向為農(nóng)業(yè)氣象、作物生理生態(tài)。E-mail:jiangxd@nuist.edu.cn