• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于行駛工況分類的混合動(dòng)力車輛速度預(yù)測(cè)方法與能量管理策略?

      2017-12-18 11:59:00王偉達(dá)項(xiàng)昌樂(lè)齊蘊(yùn)龍
      汽車工程 2017年11期
      關(guān)鍵詞:馬爾科夫車速時(shí)域

      丁 峰,王偉達(dá),項(xiàng)昌樂(lè),何 韡,齊蘊(yùn)龍

      基于行駛工況分類的混合動(dòng)力車輛速度預(yù)測(cè)方法與能量管理策略?

      丁 峰,王偉達(dá),項(xiàng)昌樂(lè),何 韡,齊蘊(yùn)龍

      (北京理工大學(xué),車輛傳動(dòng)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100081)

      為有效地改善雙模式混合動(dòng)力車輛的性能,設(shè)計(jì)了基于預(yù)測(cè)控制的能量管理策略,通過(guò)實(shí)時(shí)優(yōu)化進(jìn)行功率在線分配,提出了未來(lái)車速預(yù)測(cè)方法。通過(guò)K均值聚類算法將工況分為平穩(wěn)工況與快變工況兩類,實(shí)時(shí)判斷車輛當(dāng)前所處工況類別,并在平穩(wěn)工況下,基于馬爾科夫鏈預(yù)測(cè)車速,在快變工況下,基于徑向基神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)車速,以獲得最優(yōu)的預(yù)測(cè)精度。仿真結(jié)果的對(duì)比驗(yàn)證了所提出的車速預(yù)測(cè)方法的準(zhǔn)確性和能量管理策略的有效性。

      混合動(dòng)力車輛;能量管理策略;車速預(yù)測(cè);K均值聚類

      前言

      混合動(dòng)力車輛是目前解決車輛能源消耗過(guò)度和空氣污染的有效途徑之一[1]。其中雙模式傳動(dòng)系統(tǒng)比其他形式的混合動(dòng)力傳動(dòng)方案能更好地滿足重型非道路車輛調(diào)速范圍廣和驅(qū)動(dòng)功率大等特殊需求,但該方案結(jié)構(gòu)較為復(fù)雜,對(duì)能量管理策略的要求更高,設(shè)計(jì)出可實(shí)時(shí)使用的最優(yōu)能量管理策略將成為保證雙模式混合動(dòng)力車輛能正常高效運(yùn)行的核心內(nèi)容[2-4]。

      目前,在工業(yè)界使用最多的是基于規(guī)則的能量管理策略,規(guī)則的設(shè)計(jì)大都來(lái)源于啟發(fā)式發(fā)現(xiàn)和工程師經(jīng)驗(yàn),雖其設(shè)計(jì)簡(jiǎn)單,易于實(shí)現(xiàn),但對(duì)不同工況適應(yīng)性差,無(wú)法得到最優(yōu)的控制效果[5-6]。為追求更好的控制效果,學(xué)術(shù)界做了大量的研究,探索基于優(yōu)化的能量管理策略,其主要思路是建立系統(tǒng)目標(biāo)成本函數(shù)和約束條件,通過(guò)優(yōu)化算法求解得到最優(yōu)控制量[7-10]。其中動(dòng)態(tài)規(guī)劃算法應(yīng)用最為廣泛,但它須預(yù)先知曉全局工況,故只能用于仿真[11]。等效燃油消耗策略可實(shí)時(shí)在線運(yùn)用,但卻有著難以針對(duì)不同工況設(shè)定等效因子的弊端[12]。而近年來(lái)發(fā)展起來(lái)的預(yù)測(cè)控制算法(model predictive control,MPC)采用多步測(cè)試、滾動(dòng)優(yōu)化和反饋校正的思路,得到了良好的實(shí)時(shí)控制效果[13]。該方法很大程度上依賴于對(duì)未來(lái)車速的有效預(yù)測(cè)。文獻(xiàn)[14]中假設(shè)未來(lái)車速保持不變;文獻(xiàn)[15]中假設(shè)車速按指數(shù)規(guī)律變化,這些方法簡(jiǎn)單卻并不準(zhǔn)確;文獻(xiàn)[16]中借助車載導(dǎo)航系統(tǒng)獲得車輛未來(lái)行駛車速;文獻(xiàn)[17]中通過(guò)識(shí)別特種工作車輛的重復(fù)工況來(lái)預(yù)測(cè)未來(lái)車速。這些方法需要借助GPS系統(tǒng)或先驗(yàn)工況信息,不適用于沒(méi)有定位系統(tǒng)和感知雷達(dá)的非道路車輛。

      針對(duì)以上問(wèn)題,本文中提出了一種基于預(yù)測(cè)控制的能量管理策略,采用K均值(K-means)聚類算法將工況分類,并針對(duì)不同類型的工況采用馬爾科夫鏈或徑向基神經(jīng)網(wǎng)絡(luò)的方法對(duì)未來(lái)車速進(jìn)行預(yù)測(cè),實(shí)現(xiàn)非道路雙模式混合動(dòng)力車輛性能的改善。

      1 雙模式混合動(dòng)力車輛建模

      1.1 雙模式混合動(dòng)力車輛系統(tǒng)結(jié)構(gòu)與參數(shù)

      本文中以某型雙模式混合動(dòng)力車輛為研究對(duì)象,其系統(tǒng)結(jié)構(gòu)如圖1所示,主要參數(shù)如表1所示。系統(tǒng)兩種混合動(dòng)力工作模式EVT(electronically controlled continuously variable transmission, EVT)1和模式EVT2的切換可通過(guò)操縱離合器和制動(dòng)器來(lái)實(shí)現(xiàn),當(dāng)離合器分離,制動(dòng)器接合時(shí)為模式EVT1;當(dāng)離合器接合,制動(dòng)器分離時(shí)為模式EVT2。

      圖1 雙模式混合動(dòng)力車輛系統(tǒng)結(jié)構(gòu)

      表1 雙模式混合動(dòng)力車輛主要參數(shù)

      1.2 面向控制的建模

      面向控制的建模中,忽略行星輪的慣量和各元件之間的摩擦,并假設(shè)連接都是剛性的,可得傳動(dòng)系統(tǒng)模型。

      EVT1模式:

      式中:k1,k2和k3分別為3個(gè)行星排的固有參數(shù);ωA和ωB為電機(jī)A和B的轉(zhuǎn)速;TA和TB為電機(jī)A和B的轉(zhuǎn)矩;ωi和ωo為耦合機(jī)構(gòu)輸入端和輸出端角速度,rad/s;Ti和To分別為耦合機(jī)構(gòu)輸入端和輸出端轉(zhuǎn)矩,N.m。

      同時(shí)由于部件之間的機(jī)械連接,系統(tǒng)還滿足以下關(guān)系式:

      式中:ωe為發(fā)動(dòng)機(jī)角速度,rad/s;Te為發(fā)動(dòng)機(jī)轉(zhuǎn)矩,N.m;v為車速,m/s;Tw為車輪上輸出轉(zhuǎn)矩,N.m;iq為前傳動(dòng)傳動(dòng)比;rw為車輪半徑,m;if為后傳動(dòng)傳動(dòng)比。

      發(fā)動(dòng)機(jī)模型采用由試驗(yàn)數(shù)據(jù)構(gòu)造的MAP圖模型,假設(shè)發(fā)動(dòng)機(jī)已經(jīng)完全預(yù)熱,其燃油消耗率為角速度和轉(zhuǎn)矩的靜態(tài)函數(shù):

      式中:mf為發(fā)動(dòng)機(jī)燃油消耗率;fe為MAP圖。

      電池的荷電狀態(tài)SOC是混合動(dòng)力車輛能量管理策略中的一個(gè)重要變量,這里采用內(nèi)阻模型建模,并忽略溫度的影響,得到如下SOC表達(dá)式:

      式中:Uoc為電池開(kāi)路電壓;Rbatt為電池內(nèi)阻;Cbatt為電池容量;ηA和ηB分別為電機(jī)A和B的效率;指數(shù)kA和kB當(dāng)電機(jī)給電池充電時(shí),等于1,當(dāng)電池給電機(jī)供電時(shí),等于-1。

      不考慮車輛橫向和垂向的運(yùn)動(dòng),忽略坡度,則根據(jù)車輛行駛平衡方程可得整車動(dòng)力學(xué)模型:

      式中:m為整車質(zhì)量,kg;ρ為空氣密度;Cd為空氣阻力系數(shù);Af為車輛迎風(fēng)面積,m2;μ為車輪滾動(dòng)阻力系數(shù);g 為重力加速度,g=9.8m/s2。

      2 基于預(yù)測(cè)控制的能量管理策略

      2.1 預(yù)測(cè)控制

      雙模式混合動(dòng)力車輛能量管理策略的主要目的是在滿足行駛需求和系統(tǒng)約束的條件下,在線合理分配需求功率,調(diào)整發(fā)動(dòng)機(jī)工作點(diǎn),以求獲得最佳的燃油經(jīng)濟(jì)性,并維持電池SOC。本文中基于預(yù)測(cè)控制算法在線進(jìn)行功率分配的實(shí)時(shí)優(yōu)化,選取發(fā)動(dòng)機(jī)轉(zhuǎn)速與轉(zhuǎn)矩為系統(tǒng)控制量u,定義系統(tǒng)狀態(tài)量為x,系統(tǒng)觀測(cè)輸入量為v,系統(tǒng)輸出量為y,則可將面向控制系統(tǒng)模型表述為

      其中:x=[SOC];u=[Teωe]T

      v=[v Tw]T;y=[SOC]T

      在每一個(gè)采樣時(shí)刻k,預(yù)測(cè)時(shí)域內(nèi)的優(yōu)化目標(biāo)函數(shù)為

      式中:ws和wm分別為對(duì)應(yīng)項(xiàng)的權(quán)重系數(shù);SOCr為電池SOC參考值;P為預(yù)測(cè)時(shí)域。同時(shí)須滿足以下物理約束:

      式中:下標(biāo)?_max和?_min分別為對(duì)應(yīng)項(xiàng)的上下界。

      求解優(yōu)化問(wèn)題時(shí)將系統(tǒng)模型離散化,由于預(yù)測(cè)時(shí)域較短,且電池SOC每一時(shí)刻可行域范圍小,所以動(dòng)態(tài)規(guī)劃算法可被用來(lái)在線實(shí)時(shí)求解優(yōu)化問(wèn)題,假設(shè) U?(k)= [u?(k),…,u?(k+P-1)]為預(yù)測(cè)時(shí)域內(nèi)的最優(yōu)控制量序列,則當(dāng)前時(shí)刻系統(tǒng)所采用的控制量為

      2.2 能量管理策略

      預(yù)測(cè)控制的核心思想是在每一個(gè)采樣時(shí)刻對(duì)有限預(yù)測(cè)時(shí)域內(nèi)求解一個(gè)優(yōu)化問(wèn)題,計(jì)算出預(yù)測(cè)時(shí)域內(nèi)的最優(yōu)控制序列,但只實(shí)施該采樣時(shí)刻的最優(yōu)控制并舍棄其他控制量,再在下一采樣時(shí)刻重復(fù)這一過(guò)程。將預(yù)測(cè)控制用于雙模式混合動(dòng)力車輛能量管理策略中,即可根據(jù)當(dāng)前駕駛員踏板信息,并結(jié)合車速、電池SOC和發(fā)動(dòng)機(jī)轉(zhuǎn)速轉(zhuǎn)矩等車輛信息,通過(guò)實(shí)時(shí)優(yōu)化進(jìn)行功率分配,提高車輛燃油經(jīng)濟(jì)性。由于無(wú)法預(yù)知整個(gè)循環(huán)工況,所以該策略無(wú)法得到全局最優(yōu)解,但它能在線實(shí)施,并通過(guò)滾動(dòng)優(yōu)化的方式得到全局近似最優(yōu)解,同時(shí)能顧及由于模型失配、干擾等因素引起的不確定性,使控制保持實(shí)際最優(yōu)。在每一個(gè)采樣時(shí)刻k,能量管理策略流程圖如圖2所示,具體步驟如下:

      (1)觀測(cè)當(dāng)前系統(tǒng)狀態(tài),包括車輛行駛速度、駕駛員踏板信息和電池SOC等;

      (2)假設(shè)在預(yù)測(cè)時(shí)域內(nèi)EVT模式狀態(tài)保持不變,依據(jù)車輛行駛速度和駕駛員踏板信息判斷當(dāng)前EVT模式狀態(tài),更新當(dāng)前系統(tǒng)模型和系統(tǒng)約束;

      (3)對(duì)預(yù)測(cè)時(shí)域內(nèi)的未來(lái)車速進(jìn)行預(yù)測(cè),得到預(yù)測(cè)時(shí)域內(nèi)系統(tǒng)觀測(cè)輸入量v;

      (4)在預(yù)測(cè)時(shí)域內(nèi)構(gòu)造預(yù)測(cè)控制優(yōu)化問(wèn)題,并通過(guò)動(dòng)態(tài)規(guī)劃算法在線進(jìn)行數(shù)值求解;

      (5)計(jì)算得到預(yù)測(cè)時(shí)域內(nèi)的最優(yōu)控制序列;

      (6)僅采用第一組最優(yōu)控制量,在該采樣時(shí)刻作用于系統(tǒng),舍棄其余控制量;

      (7)在下一時(shí)刻重復(fù)這一過(guò)程。

      圖2 能量管理策略流程圖

      3 車速預(yù)測(cè)

      在沒(méi)有任何行駛工況先驗(yàn)信息的情況下,如何利用車輛歷史和當(dāng)前數(shù)據(jù)合理精確地預(yù)測(cè)車輛未來(lái)車速,將很大程度上影響能量管理策略的優(yōu)化效果。本文中利用K均值聚類算法在離線狀態(tài)下將工況分為平穩(wěn)工況和快變工況兩類,并在在線階段實(shí)時(shí)判斷車輛當(dāng)前所處工況類別。針對(duì)平穩(wěn)工況,采用基于馬爾科夫鏈的車速預(yù)測(cè)方法,而針對(duì)快變工況,采用基于徑向基神經(jīng)網(wǎng)絡(luò)的車速預(yù)測(cè)方法,如此綜合利用兩種方法的優(yōu)點(diǎn)以達(dá)到最優(yōu)的預(yù)測(cè)效果。同時(shí),將預(yù)測(cè)的車速代入式(11)即可計(jì)算得到預(yù)測(cè)時(shí)域內(nèi)的需求轉(zhuǎn)矩。

      3.1 行駛工況判斷

      平穩(wěn)工況與快變工況的主要差別在于工況內(nèi)速度的波動(dòng)和加速度的大小,為了區(qū)別兩種工況類型,需要依據(jù)工況內(nèi)的特征參數(shù)將兩種工況分類,表2為選取的工況特征參數(shù)。

      表2 工況特征參數(shù)

      采用K均值聚類算法,通過(guò)計(jì)算樣本間的親疏程度來(lái)進(jìn)行數(shù)據(jù)分類,最終實(shí)現(xiàn)同一類中的數(shù)據(jù)具有較大的特征相似性,不同類之間則差異較大,具體工況判斷步驟如下。

      1)離線階段

      (1)組合多個(gè)標(biāo)準(zhǔn)循環(huán)工況構(gòu)成樣本,如圖3所示。

      圖3 組合的循環(huán)工況

      (2)在循環(huán)工況中每一采樣時(shí)刻計(jì)算過(guò)去10s的工況特征參數(shù),得到特征參數(shù)樣本數(shù)據(jù)[x11,x12,…,x1m],[x21,x22,…,x2m],…,[xn1,xn2,…,xnm],其中m為特征參數(shù)數(shù)目,n為循環(huán)工況長(zhǎng)度。

      (3)應(yīng)用K均值聚類算法,隨機(jī)選取聚類中心c1=[c11,c12,…,c1m],c2=[c21,c22,…,c2m],計(jì)算所有樣本與聚類中心的距離,并將樣本按照最近鄰規(guī)則分組,歸屬不同θm(k)聚類域,其中k為迭代次數(shù),再按下式調(diào)整聚類中心:

      如果cm(k+1)≠cm(k),則繼續(xù)調(diào)整聚類中心,直至聚類中心的變化小于預(yù)測(cè)閾值,則認(rèn)為分類穩(wěn)定,最終得到平穩(wěn)工況的聚類中心c1和快變工況的聚類中心c2。

      2)在線階段

      (1)車輛實(shí)際行駛過(guò)程中,在當(dāng)前采樣時(shí)刻計(jì)算出過(guò)去10s的工況特征參數(shù)值[x1,x1,…,xm]。

      (2)依據(jù)下式計(jì)算特征參數(shù)值[x1,x1,…,xm]到兩個(gè)聚類中心c1和c2的距離d:

      式中:j=1,2對(duì)應(yīng)著兩類工況。

      (3)若d1≤d2,則判斷當(dāng)前時(shí)刻為平穩(wěn)工況,若d1>d2,則判斷當(dāng)前時(shí)刻為快變工況。

      3.2 平穩(wěn)工況下的車速預(yù)測(cè)

      假設(shè)車輛在每一時(shí)刻的加速度與歷史信息無(wú)關(guān),只由當(dāng)前信息決定,則認(rèn)為車輛的加速度變化是一種馬爾科夫過(guò)程,此時(shí)即可使用馬爾科夫鏈模型來(lái)模擬車速與加速度的變化規(guī)律,并在平穩(wěn)工況下對(duì)未來(lái)車速進(jìn)行預(yù)測(cè)[18-19]。

      依據(jù)不同的駕駛員踏板歸一化行程α≤0,0<α≤0.2,0.2<α≤0.4,0.4<α≤0.6,0.6<α≤0.8 和0.8<α≤1,建立6組相應(yīng)的1階馬爾科夫鏈模型。每一組馬爾科夫鏈模型均由車速v(0-30m/s)和加速度a(-1.5-1.5m/s2)構(gòu)成離散的網(wǎng)格空間,定義車輛速度為當(dāng)前狀態(tài)量,將其劃分為p個(gè)區(qū)間,由i∈{1,…,p}索引;定義車輛加速度為下一時(shí)刻輸出量,將其劃分為q個(gè)區(qū)間,由j∈{1,…,q}索引。則每一組馬爾科夫鏈模型的轉(zhuǎn)移概率矩陣為

      式中:n∈{1,…,Np}為預(yù)測(cè)時(shí)域內(nèi)所需要預(yù)測(cè)車速的目標(biāo)時(shí)刻;Tij為在當(dāng)前時(shí)刻車速vk+n=vi的情況下,車輛加速度在下一時(shí)刻演變至aj的概率。

      在初始狀態(tài)下,選擇典型平穩(wěn)工況,根據(jù)下式計(jì)算得出馬爾科夫鏈模型轉(zhuǎn)移概率矩陣:

      式中:Nij為當(dāng)前時(shí)刻為i下一時(shí)刻為j出現(xiàn)的次數(shù)。圖4示出在駕駛員踏板歸一化行程0<α≤0.2時(shí),馬爾科夫鏈模型轉(zhuǎn)移概率矩陣。

      圖4 馬爾科夫鏈模型轉(zhuǎn)移概率矩陣

      在實(shí)時(shí)運(yùn)行中,馬爾科夫鏈模型需要在線自我修正以適應(yīng)工況的變化,在當(dāng)前時(shí)刻k,若前一時(shí)刻車速vk-1=vi,這一時(shí)刻發(fā)生 ak=aj,則這一事件下馬爾科夫鏈轉(zhuǎn)移概率矩陣自適應(yīng)修正為

      式中:s∈{1,…,q},s≠j;λ 為自適應(yīng)系數(shù)。 式(20)觀測(cè)到當(dāng)前時(shí)刻發(fā)生的這一事件,并將馬爾科夫鏈轉(zhuǎn)移概率矩陣中這一事件的概率修正,式(21)修正這一事件發(fā)生時(shí)該狀態(tài)下其他輸出值的概率??梢宰⒁獾?,實(shí)際自適應(yīng)修正過(guò)程中,當(dāng)前時(shí)刻轉(zhuǎn)移概率矩陣中僅有一列概率數(shù)據(jù)被更新,其他概率均保持不變。

      根據(jù)以上馬爾科夫鏈模型,即可在當(dāng)前時(shí)刻k預(yù)測(cè)出下一時(shí)刻車輛加速度,并求出下一時(shí)刻車速:

      同理,預(yù)測(cè)時(shí)域內(nèi)各時(shí)刻的車速均可由上一時(shí)刻車速計(jì)算得到:

      式中n≤P為預(yù)測(cè)時(shí)域內(nèi)各目標(biāo)時(shí)刻。

      3.3 快變工況下的車速預(yù)測(cè)

      基于馬爾科夫鏈的預(yù)測(cè)方法在平穩(wěn)工況下能有效預(yù)測(cè)未來(lái)車速,但在快變工況下這種預(yù)測(cè)方法無(wú)效。因此,針對(duì)快變工況,本文中運(yùn)用徑向基神經(jīng)網(wǎng)絡(luò)理論,通過(guò)在線對(duì)駕駛員駕駛行為的學(xué)習(xí)進(jìn)行未來(lái)車速的預(yù)測(cè)。

      徑向基神經(jīng)網(wǎng)絡(luò)是一種局部逼近網(wǎng)絡(luò),與其他形式的神經(jīng)網(wǎng)絡(luò)相比,其收斂速度快且計(jì)算量小,最適合于混合動(dòng)力車輛在線車速預(yù)測(cè)[20]。這里,定義神經(jīng)網(wǎng)絡(luò)模型的輸入Nin為駕駛員踏板信息和過(guò)去一段時(shí)間的車速:

      式中:Hh為過(guò)去車速向量長(zhǎng)度。模型的輸出Nout為未來(lái)一段時(shí)間的預(yù)測(cè)車速:

      隱藏層中神經(jīng)元采用高斯函數(shù)作為徑向基函數(shù):

      式中:yj為神經(jīng)網(wǎng)絡(luò)輸出;wij為輸出權(quán)值;bf為開(kāi)發(fā)者預(yù)設(shè)的神經(jīng)元閾值;x為神經(jīng)網(wǎng)絡(luò)輸入;ci為神經(jīng)元節(jié)點(diǎn)中心;σ為神經(jīng)元徑向基函數(shù)擴(kuò)散寬度;h為隱藏層節(jié)點(diǎn)數(shù)。如此,即可得到車速預(yù)測(cè)的非線性神經(jīng)網(wǎng)絡(luò)模型為

      式中fn為徑向基神經(jīng)網(wǎng)絡(luò)映射,其結(jié)構(gòu)如圖5所示。

      圖5 徑向基神經(jīng)網(wǎng)絡(luò)車速預(yù)測(cè)結(jié)構(gòu)圖

      設(shè)定Hh為9,即歷史車速為過(guò)去10個(gè)車速量,則該徑向基神經(jīng)網(wǎng)絡(luò)輸入量為11個(gè),預(yù)測(cè)車速為未來(lái)5s的車速,則神經(jīng)網(wǎng)絡(luò)輸出量為5個(gè),神經(jīng)元個(gè)數(shù)與輸入量個(gè)數(shù)相等,即h=10。在車輛行駛過(guò)程中,徑向基神經(jīng)網(wǎng)絡(luò)模型依據(jù)歷史車速和當(dāng)前駕駛員踏板信息,預(yù)測(cè)出未來(lái)車速,同時(shí),當(dāng)前產(chǎn)生的車輛信息即作為新的歷史信息,通過(guò)自組織中心選取和偽逆法確定權(quán)值的方法實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)的自適應(yīng)在線學(xué)習(xí)[21]。

      4 仿真結(jié)果與分析

      為驗(yàn)證本文中提出的能量管理策略的有效性,在Matlab環(huán)境下進(jìn)行了仿真。仿真中設(shè)定能量管理策略采樣時(shí)間間隔為1s,這既可保證系統(tǒng)動(dòng)態(tài)過(guò)程的穩(wěn)定控制,又可容許較大的控制計(jì)算量。同時(shí)設(shè)定預(yù)測(cè)時(shí)域?yàn)镻=5s,電池SOC初始值與參考值皆為0.65,仿真結(jié)果如下。

      4.1 車速預(yù)測(cè)精度結(jié)果分析

      圖6為仿真在線過(guò)程中,針對(duì)一典型綜合循環(huán)工況判斷出的工況類別結(jié)果。由圖可見(jiàn):在車輛速度急劇變化時(shí),如370-440s,980-1 030s和1 160-1 220s之間,工況判斷為快變工況;而在車速小范圍波動(dòng)或是車輛緩慢加減速時(shí),如600-700s和1 220-1 900s之間,工況判斷為平穩(wěn)工況,可見(jiàn)工況類別判斷方法是有效的。

      圖6 在線工況判斷結(jié)果

      圖7 為車速預(yù)測(cè)結(jié)果的直觀展示。由圖可見(jiàn),本文中提出的車速預(yù)測(cè)方法能較為準(zhǔn)確地預(yù)測(cè)車速。

      圖7 車速預(yù)測(cè)結(jié)果圖

      為進(jìn)一步合理地通過(guò)數(shù)據(jù)對(duì)比評(píng)價(jià)預(yù)測(cè)結(jié)果,引入均方根誤差(root mean square error,RMSE)作為評(píng)價(jià)指標(biāo)。RMSE通過(guò)計(jì)算樣本值與真實(shí)值之間差值的標(biāo)準(zhǔn)差表征樣本精度,適用于對(duì)比預(yù)測(cè)值與真實(shí)值,其計(jì)算公式如下:

      式中:RMSE(k)為循環(huán)工況中第k個(gè)采樣點(diǎn)在預(yù)測(cè)時(shí)域內(nèi)的均方根誤差值;RMSE為整個(gè)循環(huán)工況的均方根誤差值;Nc為整個(gè)循環(huán)工況采樣點(diǎn)個(gè)數(shù);vc(k+i)為循環(huán)工況中第k個(gè)采樣點(diǎn)后第i個(gè)采樣點(diǎn)的真實(shí)車速。

      在同一循環(huán)工況下,參與對(duì)比的預(yù)測(cè)方法有:保持預(yù)測(cè),即預(yù)測(cè)車速保持不變;馬爾科夫鏈預(yù)測(cè),即全程基于馬爾科夫鏈進(jìn)行車速預(yù)測(cè);神經(jīng)網(wǎng)絡(luò)預(yù)測(cè),即全程基于徑向基神經(jīng)網(wǎng)絡(luò)進(jìn)行車速預(yù)測(cè);綜合預(yù)測(cè),即本文提出的綜合車速預(yù)測(cè)方法。仿真結(jié)果的對(duì)比如表3所示。

      表3 不同預(yù)測(cè)方法結(jié)果比較

      由表中可以看出,作為基準(zhǔn)的保持預(yù)測(cè)RMSE較高,預(yù)測(cè)精度較差,綜合預(yù)測(cè)結(jié)合了馬爾科夫鏈預(yù)測(cè)與神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)的優(yōu)點(diǎn),其RMSE最小,預(yù)測(cè)精度最佳,較基準(zhǔn)提升了近32%。

      圖8為部分循環(huán)工況中,綜合預(yù)測(cè)與馬爾科夫鏈預(yù)測(cè)和神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)在每一采樣時(shí)刻預(yù)測(cè)時(shí)域內(nèi)未來(lái)第5s的預(yù)測(cè)誤差對(duì)比,圖中左側(cè)為循環(huán)工況980-1 030s之間的預(yù)測(cè),可以看出此時(shí)工況被判斷為快變工況,綜合預(yù)測(cè)采用神經(jīng)網(wǎng)絡(luò)預(yù)測(cè),其結(jié)果明顯優(yōu)于馬爾科夫鏈預(yù)測(cè)。圖中右側(cè)為循環(huán)工況600-700s之間的預(yù)測(cè),此時(shí)車速波動(dòng)較小,工況判斷為平穩(wěn)工況,綜合預(yù)測(cè)采用馬爾科夫鏈預(yù)測(cè),其結(jié)果明顯優(yōu)于神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)。

      4.2 車輛燃油經(jīng)濟(jì)性結(jié)果分析

      圖8 部分循環(huán)工況預(yù)測(cè)誤差對(duì)比

      圖9 仿真結(jié)果:車速,EVT模式,電池SOC

      圖9 為車速、EVT模式和電池SOC的仿真結(jié)果。由圖中可以看出,實(shí)際車速基本與目標(biāo)車速相一致,電池SOC能維持在0.65附近上下波動(dòng),說(shuō)明能量管理策略能在首先滿足駕駛員需求的情況下,很好地維持住電池SOC,并在一定程度上通過(guò)電能的消耗補(bǔ)充發(fā)動(dòng)機(jī)少提供的能量,以更好地調(diào)整發(fā)動(dòng)機(jī)工作點(diǎn)。

      圖10為該工況下發(fā)動(dòng)機(jī)、電機(jī)A和電機(jī)B的轉(zhuǎn)速和轉(zhuǎn)矩。由圖中可以看出:發(fā)動(dòng)機(jī)轉(zhuǎn)速波動(dòng)較小,這是由于路面與發(fā)動(dòng)機(jī)解耦,電機(jī)的調(diào)速性能又遠(yuǎn)優(yōu)于發(fā)動(dòng)機(jī),使車速的波動(dòng)主要由兩個(gè)電機(jī)的轉(zhuǎn)速變化來(lái)彌補(bǔ);而電機(jī)的轉(zhuǎn)矩由于相對(duì)較小,所以由路面變化而引發(fā)的發(fā)動(dòng)機(jī)轉(zhuǎn)矩波動(dòng)只能在一定程度上被電機(jī)所彌補(bǔ)。

      圖11為該工況下發(fā)動(dòng)機(jī)工作點(diǎn)分布圖。可以看出,能量管理策略能較好地調(diào)整發(fā)動(dòng)機(jī)工作點(diǎn),使發(fā)動(dòng)機(jī)在絕大多數(shù)情況下能工作在最優(yōu)燃油經(jīng)濟(jì)曲線附近,發(fā)動(dòng)機(jī)工作效率較高,車輛經(jīng)濟(jì)性更優(yōu)。

      圖10 仿真結(jié)果:發(fā)動(dòng)機(jī)、電機(jī)A和電機(jī)B的轉(zhuǎn)速轉(zhuǎn)矩

      圖11 仿真結(jié)果:發(fā)動(dòng)機(jī)工作點(diǎn)分布

      為進(jìn)一步驗(yàn)證本文中提出的基于預(yù)測(cè)控制的能量管理策略對(duì)車輛性能的改善,對(duì)比多種能量管理策略在不同工況下的仿真結(jié)果,參與對(duì)比的策略有:預(yù)測(cè)控制,即本文提出的能量管理策略;保持控制,即假設(shè)車速保持不變并采用預(yù)測(cè)控制的能量管理策略;動(dòng)態(tài)規(guī)劃,即假設(shè)工況已知,能夠得到全局最優(yōu)解;規(guī)則策略,即基于規(guī)則的能量管理策略,用于作為對(duì)比的基準(zhǔn)。

      圖12為發(fā)動(dòng)機(jī)工作點(diǎn)分布的仿真結(jié)果對(duì)比。由圖可以看出,預(yù)測(cè)控制與保持控制所得到的結(jié)果與動(dòng)態(tài)規(guī)劃相似,而預(yù)測(cè)控制的發(fā)動(dòng)機(jī)工作點(diǎn)分布比保持控制更集中于高效區(qū),而規(guī)則策略所得到的結(jié)果則較差,發(fā)動(dòng)機(jī)常工作在低效區(qū)。

      圖13為電池SOC的仿真結(jié)果對(duì)比。由圖中可以看出,預(yù)測(cè)控制與保持控制是一種實(shí)時(shí)優(yōu)化,得到的是局部最優(yōu)解,其結(jié)果與動(dòng)態(tài)規(guī)則所得到的全局最優(yōu)解類似,而規(guī)則策略的結(jié)果SOC過(guò)于穩(wěn)定,與動(dòng)態(tài)規(guī)劃的結(jié)果差別很大,未能有效地通過(guò)電池SOC的波動(dòng)來(lái)調(diào)節(jié)發(fā)動(dòng)機(jī),控制效果較差。

      圖13 電池SOC仿真結(jié)果對(duì)比

      表4為不同能量管理策略在不同循環(huán)工況下的仿真結(jié)果對(duì)比。由于基于預(yù)測(cè)控制的能量管理策略是一種實(shí)時(shí)優(yōu)化,無(wú)法確保循環(huán)工況終止時(shí)刻的電池SOC與初始時(shí)刻相同,所以為了公平比較,需要同時(shí)考慮電能的消耗,這里依據(jù)能源價(jià)格將終止時(shí)刻電池SOC轉(zhuǎn)化而得到等效燃油消耗:

      式中:Ec,s,F(xiàn)c,s和 ΔSOCc,s分別為對(duì)應(yīng)循環(huán)工況和優(yōu)化方法的等效燃油消耗、燃油消耗和電池SOC變化值;φ為通過(guò)能源價(jià)格將電能轉(zhuǎn)化為燃油的轉(zhuǎn)化因子,當(dāng)前柴油的價(jià)格為5.54元/L,電能的價(jià)格為0.9元/(kW.h)。由表中可以看出,車輛經(jīng)濟(jì)性的改善,從等效油耗看,兩種循環(huán)工況的趨勢(shì)相同:動(dòng)態(tài)規(guī)劃最低,預(yù)測(cè)控制次之,保持控制更次,但都比規(guī)劃策略低。本文中提出的預(yù)測(cè)控制的油耗比作為對(duì)比基準(zhǔn)的規(guī)則策略最大可降低近19%。

      表4 不同能量管理策略仿真結(jié)果對(duì)比

      5 結(jié)論

      (1)針對(duì)雙模式混合動(dòng)力車輛,建立了面向控制的數(shù)學(xué)模型,并提出了基于預(yù)測(cè)控制的能量管理策略,通過(guò)實(shí)時(shí)優(yōu)化在線進(jìn)行功率分配。

      (2)提出了未來(lái)車速預(yù)測(cè)方法,通過(guò)K均值聚類算法將工況分類為平穩(wěn)工況和快變工況兩類,并實(shí)時(shí)判斷車輛當(dāng)前所處工況類別。針對(duì)平穩(wěn)工況,采用了基于馬爾科夫鏈的車速預(yù)測(cè)方法,針對(duì)快變工況,采用了基于徑向基神經(jīng)網(wǎng)絡(luò)的車速預(yù)測(cè)方法。

      (3)通過(guò)對(duì)仿真結(jié)果的分析對(duì)比,驗(yàn)證了車速預(yù)測(cè)方法的有效性,精確度提升了近32%,同時(shí)也驗(yàn)證了基于預(yù)測(cè)控制能量管理策略的有效性,等效能耗比規(guī)則策略最大可降低近19%。

      [1] SCIARRETTA A,GUZZELLA L.Control of hybrid electric vehicles[J].IEEE Control Systems Magazine,2007,27(2):60-70.

      [2] BAYINDIR K C,GOZUKUCUK M A,Teke A.A comprehensive overview of hybrid electric vehicle: Powertrain configurations,powertrain control techniques and electronic control units[J].Energy Conversion and Management,2011,52(2):1305-1313.

      [3] 王偉達(dá),劉輝,韓立金,等.雙模式機(jī)電復(fù)合無(wú)級(jí)傳動(dòng)動(dòng)態(tài)功率控制策略研究[J].機(jī)械工程學(xué)報(bào),2015,51(12):101-109.

      [4] MASHADI B,EMADI SAM.Dual-mode power-split transmission for hybrid electric vehicles[J].IEEE Transactions on Vehicular Technology,2010,59(7):3223-3232.

      [5] SONG Z, HOFMANN H, LI J, et al.Energy management strategies comparison for electric vehicles with hybrid energy storage system[J].Applied Energy,2014,134:321-331.

      [6] CASTAINGSA,LHOMME W,TRIGUI R,et al.Comparison of energy management strategies of a battery/supercapacitors system for electric vehicle under real-time constraints[J].Applied Energy,2016,163:190-200.

      [7] HE W,XIANG C,ZHANG D,et al.Modelling and control of a two-mode power-split hybrid powertrain[J].International Journal of Electric and Hybrid Vehicles,2015,7(2):139-158.

      [8] 林歆悠,孫冬野,尹燕莉,等.基于隨機(jī)動(dòng)態(tài)規(guī)劃的混聯(lián)式混合動(dòng)力客車能量管理策略[J].汽車工程,2012,34(9):830-836.

      [9] PARK J,CHEN ZH,KILIARISL,et al.Intelligent vehicle power control based on machine learning of optimal control parameters and prediction of road type and traffic congestion[J].IEEE Transactions on Vehicular Technology,2009,58(9):4741-4756.

      [10] 張東好,韓立金,項(xiàng)昌樂(lè),等.機(jī)電復(fù)合傳動(dòng)最優(yōu)功率分配策略研究[J].汽車工程,2014,36(11):1392-1398.

      [11] 鄒淵,侯仕杰,韓爾樑,等.基于動(dòng)態(tài)規(guī)劃的混合動(dòng)力商用車能量管理策略優(yōu)化[J].汽車工程,2012,34(8):663-668.

      [12] BORHAN H,VAHIDI A,PHILLIPSA M,et al.MPC-based energy management of a power-split hybrid electric vehicle[J].IEEE Transactions on Control Systems Technology,2012,20(3):593-603.

      [13] LALDIN O,MOSHIRVAZIRI M,TRESCASESO.Predictive algorithm for optimizing power flow in hybrid ultracapacitor/battery storage systems for light electric vehicles[J].IEEE Transactions on Power Electronics,2013,28(8):3882-3895.

      [14] ZHANG J,SHEN T.Real-time fuel economy optimization with nonlinear MPCfor PHEVs[J].IEEE Transactions on Control Systems Technology,2016,24(6):2167-2175.

      [15] 曾祥瑞,黃開(kāi)勝,孟凡博.具有實(shí)時(shí)運(yùn)算潛力的并聯(lián)混合動(dòng)力汽車模型預(yù)測(cè)控制[J].汽車安全與節(jié)能學(xué)報(bào),2012,3(2):165-172.

      [16] 舒紅,蔣勇,高銀平.中度混合動(dòng)力汽車模型預(yù)測(cè)控制策略[J].重慶大學(xué)學(xué)報(bào)(自然科學(xué)版),2010,33(1):36-41.

      [17] UNGER J,KOZEK M,JAKUBEK S.Nonlinear model predictive energy management controller with load and cycle prediction for nonroad HEV[J].Control Engineering Practice,2015,36:120-132.

      [18] CAIRANO S D,BERNARDINI D,BEMPORAD A,et al.Stochastic MPCwith learning for driver-predictive vehicle control and its application to HEV energy management[J].IEEE Transactions on Control Systems Technology,2014,22(3):1018-1031.

      [19] LI L,YOU S,YANG C,et al.Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses[J].Applied Energy,2016,162:868-879.

      [20] CHAO S,XIAOSONGH,MOURA SJ,et al.Velocity predictors for predictive energy management in hybrid electric vehicles[J].IEEE Transactions on Control Systems Technology,2015,23(3):1197-1204.

      [21] 徐麗娜.神經(jīng)網(wǎng)絡(luò)控制[M].北京:電子工業(yè)出版社,2009.

      Speed Prediction Method and Energy Management Strategy for a Hybrid Electric Vehicle Based on Driving Condition Classification

      Ding Feng,Wang Weida,Xiang Changle,He Wei& Qi Yunlong

      Beijing Institute of Technology, National Key Lab of Vehicular Transmission, Beijing 100081

      In order to effectively improve the performance of a dual-mode hybrid electric vehicle,a predictive-control-based energy management strategy is devised to conduct online power distribution through real-time optimization,and a vehicle upcoming speed prediction method is proposed.Driving conditions are classified into stationary condition and quickly-changing condition though K-means clustering algorithm.Then current vehicle driving condition is determined real-time, and for obtaining best prediction accuracy, vehicle speed is predicted based on Markov-chain for stationary condition,while vehicle speed is predicted based on radial basis neural network for quickly-changing condition,.The comparison of simulation results verifies the correctness of vehicle speed prediction method proposed and the effectiveness of energy management strategy.

      HEV;energy management strategy;vehicle speed prediction;K-means clustering

      10.19562/j.chinasae.qcgc.2017.11.001

      ?國(guó)家自然科學(xué)基金(51005017,51575043和U1564210)資助。

      原稿收到日期為2016年10月21日,修改稿收到日期為2016年12月19日。

      王偉達(dá),副教授,E-mail:wangwd0430@ 163.com。

      猜你喜歡
      馬爾科夫車速時(shí)域
      基于疊加馬爾科夫鏈的邊坡位移預(yù)測(cè)研究
      基于改進(jìn)的灰色-馬爾科夫模型在風(fēng)機(jī)沉降中的應(yīng)用
      基于時(shí)域信號(hào)的三電平逆變器復(fù)合故障診斷
      2012款奔馳R300車修改最高車速限制
      基于極大似然準(zhǔn)則與滾動(dòng)時(shí)域估計(jì)的自適應(yīng)UKF算法
      基于時(shí)域逆濾波的寬帶脈沖聲生成技術(shù)
      馬爾科夫鏈在教學(xué)評(píng)價(jià)中的應(yīng)用
      基于時(shí)域波形特征的輸電線雷擊識(shí)別
      北京現(xiàn)代途勝車車速表不工作
      兩車直角碰撞車速計(jì)算方法及應(yīng)用
      彭州市| 溆浦县| 章丘市| 宜宾市| 佛冈县| 丰县| 古田县| 兴山县| 突泉县| 房山区| 二连浩特市| 舞钢市| 当雄县| 阿拉尔市| 广安市| 潜山县| 永丰县| 马鞍山市| 漳州市| 万荣县| 金秀| 瓮安县| 合肥市| 穆棱市| 柯坪县| 常德市| 龙川县| 新丰县| 西平县| 襄樊市| 绥德县| 无棣县| 舟山市| 宝坻区| 甘泉县| 东乡族自治县| 西畴县| 徐汇区| 富蕴县| 天镇县| 樟树市|