曹逼力,張志煥,徐 坤
?
施硅提高干濕交替條件下番茄節(jié)水性及產(chǎn)量和品質(zhì)
曹逼力,張志煥,徐 坤※
(山東農(nóng)業(yè)大學(xué)園藝科學(xué)與工程學(xué)院,泰安 271018)
硅在提高作物抗旱性中具有重要作用。干濕交替灌溉是通過(guò)對(duì)植物根系施加干旱處理,來(lái)誘導(dǎo)自身的干旱調(diào)節(jié)潛能的一種節(jié)水增產(chǎn)技術(shù)。關(guān)于節(jié)水灌溉影響作物生理特性的研究,結(jié)論不盡相同。干濕交替的灌溉方式是否適應(yīng)于番茄栽培,且在該灌溉技術(shù)下施硅對(duì)番茄產(chǎn)量品質(zhì)有何影響,鮮見(jiàn)報(bào)道。為探討干濕交替條件下施硅對(duì)番茄的影響,采用潮汐式灌溉系統(tǒng)模擬干濕交替的灌溉方式,研究了干濕交替條件下硅對(duì)番茄植株硅質(zhì)量分?jǐn)?shù)、植株生長(zhǎng)、果實(shí)產(chǎn)量及品質(zhì)的影響。結(jié)果表明,營(yíng)養(yǎng)液加硅使番茄根、莖、葉、果的硅質(zhì)量分?jǐn)?shù)分別提高 494%、444%、246%、631%。在番茄幼苗期至開(kāi)花坐果期,采用干濕交替的灌溉方式利于控制長(zhǎng)勢(shì)、培育壯苗,但結(jié)果前期至結(jié)果后期,尤其盛果期,則不宜采用干濕交替的灌溉方式。干濕交替造成了番茄的嚴(yán)重減產(chǎn)及番茄紅素質(zhì)量分?jǐn)?shù)、維生素C質(zhì)量分?jǐn)?shù)、可滴定酸質(zhì)量分?jǐn)?shù)的下降,但顯著提高番茄果實(shí)的可溶性蛋白質(zhì)量分?jǐn)?shù)、游離氨基酸質(zhì)量分?jǐn)?shù)、可溶性固形物質(zhì)量分?jǐn)?shù)、可溶性糖質(zhì)量分?jǐn)?shù)、可滴定酸質(zhì)量分?jǐn)?shù)、果實(shí)硬度、糖酸比,尤其糖酸比提高了 30%,而施硅可緩解干濕交替對(duì)番茄生長(zhǎng)發(fā)育后期果實(shí)產(chǎn)量和品質(zhì)的不利影響??傊?,干濕交替下施硅,在促進(jìn)番茄穩(wěn)產(chǎn)優(yōu)質(zhì)協(xié)調(diào)形成的前提下,可節(jié)水23%。該研究探討了多變低水條件下硅的調(diào)控效應(yīng),豐富了硅提高植物抗旱性的理論內(nèi)容,研究結(jié)果對(duì)實(shí)現(xiàn)合理節(jié)水并提高番茄商品率具有重要的意義。
硅酸鹽;灌溉;果實(shí);干濕交替;產(chǎn)量;品質(zhì)
自然降水的不規(guī)律性與作物的關(guān)鍵需水期不一致,顯著影響作物的生長(zhǎng)發(fā)育[1]。通過(guò)調(diào)節(jié)和管理作物用水,開(kāi)展多變低水條件下作物產(chǎn)量品質(zhì)變化的研究,是探索穩(wěn)產(chǎn)、優(yōu)質(zhì)、節(jié)水栽培措施的有效途徑。其中,干濕交替灌溉,是指在作物生育過(guò)程中,進(jìn)行灌水、落干重復(fù)循環(huán)的灌溉方式。該技術(shù)是通過(guò)對(duì)植物根系施加干旱處理,來(lái)誘導(dǎo)自身的干旱調(diào)節(jié)潛能的一種節(jié)水增產(chǎn)技術(shù),已在水稻[2-3]、玉米[4-5]、小麥[6]栽培上進(jìn)行示范,且節(jié)水效果明顯。番茄()是中國(guó)設(shè)施栽培面積最大的蔬菜之一,關(guān)于干濕交替灌溉對(duì)番茄產(chǎn)量、品質(zhì)的影響,有待進(jìn)一步研究。
硅被認(rèn)定為植物的有益元素[7]。前人研究表明,施硅可促進(jìn)豇豆根系[8]及黃瓜幼苗[9]的生長(zhǎng)。硅不僅影響植物的生長(zhǎng),還可顯著影響其發(fā)育進(jìn)程和產(chǎn)量品質(zhì)。施硅可顯著提高甘蔗干物質(zhì)質(zhì)量分?jǐn)?shù)和產(chǎn)量[10],還可通過(guò)調(diào)節(jié)水稻植株C/N值,改善初級(jí)代謝,提高水稻產(chǎn)量[11]。玉米施硅后,硝酸鹽水平降低,產(chǎn)量品質(zhì)均顯著提高[12]。硅尚未被證實(shí)是植物生長(zhǎng)的必需營(yíng)養(yǎng)元素,但逆境條件下其調(diào)控植物抗逆性的能力已被廣泛報(bào)道[13]。Zhu等[14]提出,施硅可作為一種提高植物抗旱性從而減輕干旱脅迫的負(fù)面影響的有效策略。硅可提高番茄對(duì)鹽脅迫的耐受性[15-16],筆者前期試驗(yàn),也證實(shí)硅能顯著提高番茄的抗旱能力[17]。因此,逆境條件下,硅對(duì)番茄抗逆能力的調(diào)控較為顯著。
關(guān)于節(jié)水灌溉影響作物生理特性的研究,結(jié)論不盡相同[18-19]。一種觀點(diǎn)認(rèn)為,干旱脅迫可降低作物產(chǎn)量[20]。另一種觀點(diǎn)則認(rèn)為,適度干旱脅迫利于光合速率的提高,重度干旱脅迫才對(duì)光合不利[21]。光合作用是干物質(zhì)積累的核心,干物質(zhì)積累則是作物產(chǎn)量形成的基礎(chǔ)。盡管干濕交替灌溉可以充分發(fā)揮根區(qū)信號(hào)反饋控制,實(shí)現(xiàn)生理節(jié)水,但番茄對(duì)干濕交替的灌溉方式的響應(yīng)如何,且在該灌溉技術(shù)下施硅對(duì)番茄產(chǎn)量品質(zhì)有何影響,鮮見(jiàn)報(bào)道。由于硅在土壤中廣泛分布,為探明干濕交替條件下番茄的施硅效應(yīng),本課題組采用營(yíng)養(yǎng)液水培方式,以自行設(shè)計(jì)的一種潮汐式灌溉試驗(yàn)裝置模擬干濕交替的灌溉方式,研究干濕交替條件下施硅對(duì)番茄產(chǎn)量品質(zhì)形成的影響,為探索番茄灌溉新途徑及發(fā)展設(shè)施農(nóng)業(yè)高效節(jié)水栽培提供理論指導(dǎo)。
設(shè)計(jì)1種虹吸式水培裝置(圖1):包含具有儲(chǔ)存營(yíng)養(yǎng)液的水培殼的水培裝置本體、設(shè)置為與水培殼連通并且作用于水培殼的營(yíng)養(yǎng)液虹吸排出的虹吸管道,通過(guò)虹吸管道,使水培殼的營(yíng)養(yǎng)液進(jìn)行潮汐流動(dòng)。
注:1、2、3、4、5、6、7分別代表 PVC變徑管、“N”型虹吸管道、潛水泵、“U”型PVC管、定植孔方穴、定植孔、定植孔間隔。
潛水泵與安裝微電腦自動(dòng)控時(shí)開(kāi)關(guān)的電路相接,根據(jù)設(shè)定時(shí)間間歇通電供水。在出水口設(shè)計(jì)了“N”型虹吸管道(圖1b),當(dāng)U型PVC管栽培槽管道內(nèi)液位低于“N”型虹吸管道(圖2a),最高點(diǎn)時(shí),“N”型虹吸管道的液面低于最高點(diǎn),虹吸作用不發(fā)生,U型PVC管栽培槽管道內(nèi)可駐留液位較深的營(yíng)養(yǎng)液;如圖(圖2b),當(dāng)U型PVC管栽培槽管道內(nèi)液位高于“N”型虹吸管道最高點(diǎn)時(shí),“N”型虹吸管道的液面高于最高點(diǎn),虹吸作用發(fā)生,將U型栽培槽內(nèi)的營(yíng)養(yǎng)液逐漸排入貯液桶,實(shí)現(xiàn)植根部的水、氣相循環(huán),栽培槽管道末端設(shè)計(jì)了PVC變徑管,保持了管道底部有3~4 cm的淺液層,防止停電等短時(shí)性故障引起的供水不足,其工作原理是如圖(圖2c),在虹吸作用引起的栽培槽內(nèi)營(yíng)養(yǎng)液回流過(guò)程的后期,由于在出液口處的栽培槽末端連接PVC變徑管,減小栽培槽的口徑,使出水口管道的下液面高于栽培槽管道的上液面,從而保障栽培槽有3~4 cm的淺液層,防止斷電等短時(shí)性故障的供水不足。
圖2 “N”型虹吸管道工作原理
試驗(yàn)在在山東農(nóng)業(yè)大學(xué)蔬菜試驗(yàn)站日光溫室內(nèi)進(jìn)行。供試番茄品種為‘金棚1號(hào)’,用無(wú)硅水配制的Hoagland營(yíng)養(yǎng)液水培育苗,于種子播后40 d后,將幼苗定植于PVC栽培槽內(nèi)繼續(xù)以營(yíng)養(yǎng)液進(jìn)行水培,植株第4果穗坐果后打頂。試驗(yàn)設(shè)3個(gè)處理,分別為:充分供水對(duì)照(CK)、干濕交替處理(T1)、干濕交替條件下施硅處理(T2),具體措施如表1。試驗(yàn)用無(wú)硅水由廣東仟凈公司生產(chǎn),硅質(zhì)量分?jǐn)?shù)小于8.3×10-5mmol/L,所用硅源為Na2SiO3·9H2O,通過(guò)加入Na2SO4平衡不同處理營(yíng)養(yǎng)液的Na+質(zhì)量分?jǐn)?shù)和滲透勢(shì),營(yíng)養(yǎng)液pH值用0.01 mol/L的H2SO4和NaOH調(diào)節(jié)至6.0左右。
表1 試驗(yàn)設(shè)計(jì)
注:CK為充分供水對(duì)照;T1為干濕交替處理、T2為干濕交替條件下施硅處理,下同。
Note: CK represents well-watered control; T1 represents dry-wet alternate treatment; T2 represents silicon fertilizer under dry-wet alternate treatment, the same below.
分別于種子播后40 d(幼苗期)、70 d(開(kāi)花坐果期)、100 d(結(jié)果前期)、160 d(結(jié)果盛期)、190 d(結(jié)果后期)取樣,測(cè)定凈光合速率、蒸騰速率及植株耗水量,且每次取3~5株/小區(qū),將根、莖、葉、果分開(kāi),置干燥箱中105 ℃殺青30 min,75 ℃烘干至恒質(zhì)量稱量干質(zhì)量,并以Vorm法[22]測(cè)定其硅質(zhì)量分?jǐn)?shù)(以SiO2計(jì))。
每小區(qū)選取10株,自果實(shí)成熟采收始,分別計(jì)產(chǎn),直至拉秧。期間選取植株第2穗成熟果實(shí)各5個(gè),以GY-3 型果實(shí)硬度計(jì)測(cè)定果實(shí)硬度;用阿貝折射儀測(cè)定可溶性固形物;滴定法測(cè)定可滴定酸;苯酚硫酸法測(cè)定可溶性糖;紫外吸收法測(cè)定可溶性蛋白;鉬藍(lán)比色法測(cè)定維生素C;茚三酮比色法測(cè)定游離氨基酸[23];石油醚浸提法測(cè)定番茄紅素[24]。
采用Microsoft Excel 2010軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行處理和繪圖,采用DPS 7.5軟件進(jìn)行統(tǒng)計(jì)分析,Duncan新復(fù)極差法進(jìn)行處理間差異顯著性檢驗(yàn)。
圖3表明,即使CK、T1處理的各器官也含一定量的硅,這與配制營(yíng)養(yǎng)液的無(wú)硅水含少量硅有關(guān)。隨生長(zhǎng)的進(jìn)行,CK、T1處理番茄各器官硅質(zhì)量分?jǐn)?shù)基本穩(wěn)定,T2處理則均呈逐漸升高的趨勢(shì)。因此,隨生長(zhǎng)進(jìn)行,T2與CK、T1各器官中硅質(zhì)量分?jǐn)?shù)的差異逐漸加大,如幼苗期(40 d)T2根系硅質(zhì)量分?jǐn)?shù)分別較CK、T1高266%、309%,結(jié)果盛期(160 d)則分別高491%、539%。與CK相比,T2處理番茄根、莖、葉、果的硅質(zhì)量分?jǐn)?shù)的最大增幅分別可達(dá)494%、444%、246%、631%。同一處理番茄植株硅質(zhì)量分?jǐn)?shù)以果實(shí)和莖較低,根次之,葉片較高,這與蒸騰作用引起番茄植株體內(nèi)硅的末端集聚相關(guān)[25]。
注:不同字母表示處理間差異達(dá)5%顯著水平,下同。
從圖4可以看出,在開(kāi)花坐果期(70 d),T1處理的株高略低于CK,而T2處理的株高顯著高于CK;在結(jié)果前期至結(jié)果后期(100~190 d)T1、T2處理的株高均低于CK。T1處理的莖粗在開(kāi)花坐果期至結(jié)果前期(70~100 d)高于CK,但隨生長(zhǎng)的進(jìn)行,這種差異減弱,而T2處理的莖粗除幼苗期(40 d)一直顯著高于CK。T1、T2處理的根干質(zhì)量、莖干質(zhì)量、葉干質(zhì)量在開(kāi)花坐果期(70 d)較CK有所增加,且在結(jié)果前期(100 d)T1、T2處理的根干質(zhì)量、葉干質(zhì)量仍高于CK,但至結(jié)果盛期(160 d)及結(jié)果后期(190 d)T1、T2處理的根干質(zhì)量、葉干質(zhì)量、果干質(zhì)量則較CK有所降低。在株高、莖粗、根干質(zhì)量、莖干質(zhì)量、葉干質(zhì)量及果干質(zhì)量方面,盡管T1、T2處理與CK的差異呈現(xiàn)階段性變化,但從開(kāi)花坐果期(70 d)至結(jié)果后期(190 d),T2處理在一些指標(biāo)上顯著高于T1處理,在其他指標(biāo)也與T1處理無(wú)明顯差異。以上數(shù)據(jù)表明,在番茄生長(zhǎng)發(fā)育前期(0~70 d)干濕交替處理可降低番茄株高,卻促進(jìn)其莖粗加及各器官干質(zhì)量的增加,從而起到控制長(zhǎng)勢(shì),培育壯苗的作用,但在生長(zhǎng)發(fā)育后期(160~190 d)顯著抑制番茄植株生物量的增加。在生長(zhǎng)發(fā)育前期(0~70 d),干濕交替條件下施硅顯著促進(jìn)番茄生物量的增加;在生長(zhǎng)發(fā)育后期(160~190 d)則可以降低干濕交替對(duì)番茄植株生物量的抑制作用。
圖4 不同處理下番茄生物量
圖5表明,整個(gè)生育期各處理的凈光合速率(Pn)、蒸騰速率(Tr)和耗水量均先升高后降低,且以100 d和160 d時(shí)最高。在開(kāi)花坐果期(70 d),T2處理的Pn略高于CK,但之后T1、T2處理的Pn均較CK降低。開(kāi)花坐果期(70 d)至結(jié)果后期(190 d),T1、T2處理的Tr均顯著低于CK處理,但T2處理的Tr顯著高于T1處理。開(kāi)花坐果期(70 d)至結(jié)果后期(190 d),盡管T1、T2處理的耗水量也顯著低于CK處理(除了70 d T2處理),但開(kāi)花坐果期至結(jié)果前期(70~100 d)T1、T2間并無(wú)顯著差異,結(jié)果盛期至結(jié)果后期(160~190 d),T1、T2間差異顯著,并在結(jié)果后期(190 d)時(shí)T1、T2處理分別較CK節(jié)水51%、23%。
不同處理番茄坐果特性及產(chǎn)量有顯著差異。如圖6所示單株總果數(shù)以T2處理最高,T1處理次之,CK處理最低。由于T1處理的單果質(zhì)量低于CK,T1番茄單株產(chǎn)量較CK降低49%,差異顯著,盡管T2處理的單果質(zhì)量也低于CK,但由于其單株總果數(shù)顯著高于CK,其單株產(chǎn)量較CK降低僅15%。表明干濕交替促進(jìn)坐果數(shù)增加,但單果質(zhì)量較低,從而導(dǎo)致減產(chǎn),施硅可顯著減弱干濕交替條件下番茄的減產(chǎn)效應(yīng)。
不同處理番茄果實(shí)品質(zhì)也有顯著差異。從表2可以看出,與CK相比,T1、T2處理的果實(shí)品質(zhì)在可溶性固形物質(zhì)量分?jǐn)?shù)、可溶性蛋白質(zhì)量分?jǐn)?shù)、可溶性糖質(zhì)量分?jǐn)?shù)、糖酸比、果實(shí)硬度方面呈增高趨勢(shì),但在番茄紅素質(zhì)量分?jǐn)?shù)、維生素C質(zhì)量分?jǐn)?shù)方面卻呈現(xiàn)降低趨勢(shì)。此外,T2處理的的番茄紅素質(zhì)量分?jǐn)?shù)、可溶性蛋白質(zhì)量分?jǐn)?shù)、游離氨基酸顯著高于T1,但其糖酸比顯著低于T1。表明,干濕交替可引起番茄果實(shí)中部分營(yíng)養(yǎng)物質(zhì)的不同程度地增加或降低,如糖酸比提高了30%,番茄紅素則降低了32%,而施硅后可抑制干濕交替引起的部分品質(zhì)指標(biāo)的下降,甚至進(jìn)一步促進(jìn)番茄果實(shí)部分品質(zhì)指標(biāo)的增加。
圖5 不同處理下番茄的凈光合速率(Pn)、蒸騰速率(Tr)及耗水量
圖6 不同處理下番茄坐果特性及產(chǎn)量
表2 不同處理下番茄的果實(shí)品質(zhì)
由于番茄吸硅速率慢于吸水速率,且莖傷流液硅濃度低于外部培養(yǎng)液,因此認(rèn)為番茄屬硅排斥吸收類型。然而,Nikolic等[26]研究發(fā)現(xiàn),硅以被動(dòng)擴(kuò)散方式隨質(zhì)流進(jìn)入番茄根部皮層,通過(guò)運(yùn)載體介導(dǎo)進(jìn)入質(zhì)外體,故番茄能夠積累一定量的硅。本試驗(yàn)結(jié)果表明,隨營(yíng)養(yǎng)液加硅顯著促進(jìn)番茄植株根、莖、葉、果中硅質(zhì)量分?jǐn)?shù)的增加,且隨生長(zhǎng)進(jìn)行,各器官含硅量均呈增加的趨勢(shì),這與梁永超等[27]和Heine等[28]在番茄上的研究結(jié)果一致。此外,Jone s等[29]研究表明,禾谷類作物硅沉積量依次為花序>葉片>葉鞘>莖稈>地下部;與此不同,本研究證實(shí),番茄植株的硅質(zhì)量分?jǐn)?shù)以葉片及根系較高,果實(shí)及莖則較低。這與非洲草、生姜中各器官硅質(zhì)量分?jǐn)?shù)的分配特性相一致[30-31]。
根區(qū)控制性干濕交替灌溉的理論基礎(chǔ)是,當(dāng)植物根系遭受一定程度的干旱脅迫則產(chǎn)生根源信號(hào)ABA,進(jìn)行地上部氣孔調(diào)節(jié),從而降低蒸騰但不降低光合作用,實(shí)現(xiàn)節(jié)水的目的[32-34]。本試驗(yàn)研究的結(jié)果表明,生長(zhǎng)發(fā)育前期(0~70 d),干濕交替條件下番茄植株的蒸騰速率降低,但光合作用并未降低。這可解釋為干濕交替的方式使耗水過(guò)程趨于平緩,在番茄生長(zhǎng)發(fā)育前期(0~70 d),番茄需水量較小,有利于控制植株長(zhǎng)勢(shì)、壯大莖稈直徑,以及促進(jìn)根系的生長(zhǎng),從而維持較高的光合性能。在生長(zhǎng)發(fā)育中后期(100~190 d),盡管單純干旱交替處理的節(jié)水效果尤為顯著,但卻造成番茄植株的生物量及果實(shí)產(chǎn)量的顯著降低,為保證灌溉效果和效益,單純干濕交替的灌溉方式則不宜采用。筆者前期試驗(yàn)證實(shí),干旱脅迫條件下施硅能顯著提高番茄葉片水分,降低光合色素的降解,提高葉片色素光化學(xué)效率,減輕光抑制程度,從而維持較高的光合速率[35],且能提高根系葉片的氧化損傷[17]。本研究進(jìn)一步證實(shí),硅促進(jìn)番茄植株各器官硅質(zhì)量分?jǐn)?shù)的增加,緩解干濕交替條件下光合速率的下降,減弱干濕交替條件下番茄產(chǎn)量的降低,并實(shí)現(xiàn)節(jié)水23%的效果。
除了產(chǎn)量,品質(zhì)也是影響作物經(jīng)濟(jì)效益的關(guān)鍵指標(biāo)。張國(guó)芹等[36]研究表明,生姜施硅后,根莖中可溶性蛋白、可溶性糖、VC、游離氨基酸均高于對(duì)照。季明德等[37]研究證實(shí),硅可促進(jìn)甘蔗葉片蔗糖的合成和分解,有利于糖分的積累。Lee等[38]研究認(rèn)為,硅增強(qiáng)了番茄蔗糖合成酶和蔗糖磷酸合成酶的活性。此外,施硅還提高了番茄維生素C和可溶性固形物質(zhì)量分?jǐn)?shù)[39],增加了果實(shí)硬度和番茄紅素質(zhì)量分?jǐn)?shù)[40]。本試驗(yàn)研究表明,干濕交替造成了番茄的嚴(yán)重減產(chǎn)及部分品質(zhì)指標(biāo)的下降,但顯著提高番茄果實(shí)的其他品質(zhì)指標(biāo),尤其糖酸比最為顯著。施硅后可抑制干濕交替引起的部分品質(zhì)指標(biāo)的下降,甚至進(jìn)一步促進(jìn)番茄果實(shí)部分品質(zhì)指標(biāo)的增加,尤以番茄果實(shí)硬度及番茄紅素增加最為顯著,這可能與硅大多沉積于細(xì)胞壁,提高了細(xì)胞壁抵抗外力的作用[41],并通過(guò)紅外熱輻射防止高溫灼傷果實(shí),有利于番茄紅素的形成有關(guān)[42]。因此,盡管施硅并未完全逆轉(zhuǎn)干濕交替對(duì)番茄生長(zhǎng)發(fā)育中后期(100~190 d)的生長(zhǎng)及部分品質(zhì)指標(biāo)的抑制作用,但干旱交替下施硅可綜合干旱交替灌溉對(duì)作物本身抗旱節(jié)水能力的挖掘及硅提高作物抗旱性兩方面的優(yōu)勢(shì),在促進(jìn)番茄穩(wěn)產(chǎn)優(yōu)質(zhì)協(xié)調(diào)形成的前提下,節(jié)水效果較好。
干濕交替措施應(yīng)用于番茄栽培可行與否,須結(jié)合不同的生育期綜合考慮,不能一概而論。在番茄生長(zhǎng)發(fā)育前期(0~70 d),番茄生長(zhǎng)需水量相對(duì)較小,干濕交替的措施在實(shí)現(xiàn)節(jié)水的同時(shí),利于培育壯苗。但生長(zhǎng)發(fā)育后期(100~190 d),尤其盛果期,番茄生長(zhǎng)需水量較大,盡管干濕交替措施能可在一定程度上實(shí)現(xiàn)番茄品質(zhì)的改善,但易造成嚴(yán)重減產(chǎn)。而干濕交替條件下施硅可綜合干濕交替的節(jié)水效能和外源硅提高番茄抗性的調(diào)控效應(yīng),在實(shí)現(xiàn)節(jié)水23%的同時(shí),促進(jìn)番茄穩(wěn)產(chǎn)優(yōu)質(zhì)協(xié)調(diào)形成。
[1] Wang Y, Xie Z, Malhi S S, et al. Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China[J]. Agricultural water management, 2009, 96(3): 374-382.
[2] 張自常,李鴻偉,陳婷婷,等. 畦溝灌溉和干濕交替灌溉對(duì)水稻產(chǎn)量與品質(zhì)的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2011,44(24):4988-4998.
Zhang Zichang, Li Hongwei, Chen Tingting , et al. Effect of furrow irrigation and alternate wetting and drying irrigation on grain yield and quality of rice[J]. Scientia Agricultura Sinica, 2011, 44(24): 4988-4998. (in Chinese with English abstract)
[3] 陳婷婷,褚光,華小龍,等. 花后干濕交替灌溉對(duì)水稻強(qiáng)、弱勢(shì)粒蛋白質(zhì)表達(dá)的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2013,46(22):4665-4678.
Chen Tingting, Chu Guang, Hua Xiaolong, et al. Effect of post-anthesis alternate wetting and drying irrigation on protein expressions in superior and inferior spikelets of rice[J]. Scientia Agricultura Sinica, 2013, 46(22): 4665-4678. (in Chinese with English abstract)
[4] 梁宗鎖,康紹忠,邵明安,等. 土壤干濕交替對(duì)玉米生長(zhǎng)速度及其耗水量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2000,16(5):38-40.
Liang Zongsuo, Kang Shaozhong, Shao Ming’an, et al. Growth rate and water consumption of maize plant in soil alternate frying-wettings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(5): 38-40. (in Chinese with English abstract)
[5] 劉永紅,楊勤,楊文鈺,等. 花期干濕交替對(duì)玉米干物質(zhì)積累與再分配的影響[J]. 作物學(xué)報(bào),2006,32(11):1723-1727.
Liu Yonghong, Yang Qin, Yang Wenyu, et al. Effect of soil drying-wetting alternation on dry biomass accumulation and reallocation at maize flowering stage[J]. Acta Agronomica Sinica, 2006, 32(11): 1723-1727. (in Chinese with English abstract)
[6] 董寶娣,張正斌,徐萍,等. 小麥干濕交替條件下的水分利用效率與生物學(xué)性狀[J]. 干旱地區(qū)農(nóng)業(yè)研究,2005,23(3):28-32.
Dong Baodi, Zhang Zhengbin, Xu Ping, et al.Correlation analysis of water use efficiency and biological traits of wheat under alternate drying with wetting[J]. Agricultural Research in the Arid Areas, 2005, 23(3): 28-32. (in Chinese with English abstract)
[7] Liang Y, Sun W, Zhu Y G, et al. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review[J]. Environmental Pollution, 2007, 147(2): 422-428.
[8] Dakora F D, Nelwamondo A. Silicon nutrition promotes root growth and tissue mechanical strength in symbiotic cowpea[J]. Functional Plant Biology, 2003, 30(9): 947-953.
[9] 李清芳,馬成倉(cāng). 土壤有效硅對(duì)黃瓜種子萌發(fā)和幼苗生長(zhǎng)代謝的影響[J]. 園藝學(xué)報(bào),2002,29(5):433-437.
Li Qingfang, Ma Chengcang. Effect of available silicon in soil on cucumber seed germination and seedling growth metabolism[J]. Acta Horticulturae Sinica, 2002, 29(5): 433-437. (in Chinese with English abstract)
[10] Huang Hairong, Bokhtiar S M, Xu Lin, et al. Effect of silicon fertilization on yield and photosynthetic attributes in Sugarcane [J].Guangxi Agricultura Sciences, 2009, 40(12): 1564-1569.
[11] Detmann K C, Araújo W L, et al. Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice[J]. New Phytol, 2012, 196(3): 752-62.
[12] Gottardi S, Iacuzzo F, Tomasi N, et al. Beneficial effects of silicon on hydroponically grown corn salad (L.) Laterr plants [J]. Plant Physiol Bioch, 2012, 56(3): 14-23.
[13] Liang Y, Sun W, Zhu Y G, et al. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review[J]. Environmental Pollution, 2007, 147(2): 422-428.
[14] Zhu Y, Gong H. Beneficial effects of silicon on salt and drought tolerance in plants[J]. Agron Sustain Dev, 2014(2): 455-472.
[15] Al-aghabary K,Zhu Z,Shi Q. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and ant oxidative enzyme activities in tomato plants under salt stress[J]. Journal of plant nutrition, 2004, 27(12): 2101-2115.
[16] Romero-Aranda M R,Jurado O,Cuartero J. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status[J]. Journal of plant physiology, 2006, 163(8): 847-855.
[17] Cao B, Wang L, Gao S, et al. Silicon-mediated changes in radial hydraulic conductivity and cell wall stability are involved in silicon-induced drought resistance in tomato[J]. Protoplasma, 2017, 254(6): 2295-2304.
[18] 程建平,曹湊貴,蔡明歷,等. 不同灌溉方式對(duì)水稻生物學(xué)特性與水分利用效率的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2006,17(10):1859-1865.
Cheng Jianping, Cao Cougui, Cai Mingli, et al. Effects of different irrigation modes on biological characteristics and water use efficiency of paddy rice[J]. Chinese Journal of Applied Ecology, 2006, 17(10): 1859-1865. (in Chinese with English abstract)
[19] 邵璽文,劉紅丹,杜震宇,等. 不同時(shí)期水分處理對(duì)水稻生長(zhǎng)及產(chǎn)量的影響[J]. 水土保持學(xué)報(bào),2007,21(1):193-196.
Shao Xiwen, Liu Hongdan, Du Zhenyu, et al. Effects of water disposal on growth and yield of rice[J]. Journal of Soil & Water Conservation, 2007, 21(1): 193-196. (in Chinese with English abstract)
[20] Mahajan S, Tuteja N. Cold, salinity and drought stresses: An overview[J]. Archives of Biochemistry and Biophysics, 2005, 444(2): 139-158.
[21] Zhang H, Zhang S, Yang J, et al. Postanthesis moderate wetting drying improves both quality and quantity of rice yield[J]. Agronomy Journal, 2008, 100(3): 726-734.
[22] Van der Vorm. Dry ashing of plant material and dissolution of the ash in HF for the colorimatric determination of silicon[J]. Communications in Soil science and Plant Analysis, 1987, 18(11): 1181-1189.
[23] 高俊鳳. 植物生理學(xué)試驗(yàn)技術(shù)[M]. 西安:世界圖書(shū)出版公司,2007
[24] 張連富,丁宵霖. 番茄紅素簡(jiǎn)便測(cè)定方法的建立[J]. 食品與發(fā)酵工業(yè),2002,27(3):51-54. Zhang Lianfu, Ding Xiaolin. Establishment of a new lycopene determination method[J]. Food and Fermentation Industies, 2002, 27(3): 51-54. (in Chinese with English abstract)
[25] 孫立,吳良?xì)g,丁悌平等. 稻葉分段硅同位素組成及硅,鉀,鈉,鈣,鎂分布特征[J]. 中山大學(xué)學(xué)報(bào):自然科學(xué)版,2008,47(4):94-99.
Sun Li, Wu Lianghuan, Ding Tiping, et al. Silicon isotope compositions and distribution patterns of Si, K, Na, Ca, Mg in different parts of rice leaf[J]. Acta Scientiarum Naturalium Universities Sunyatseni, 2008, 47(4): 94-99. (in Chinese with English abstract)
[26] Nikolic M, Nikolic N, Liang Y, et al. Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species[J]. Plant physiology, 2007, 143(1): 495-503.
[27] 梁永超,陳興華,馬同生,等. 硅對(duì)番茄生長(zhǎng),產(chǎn)量與品質(zhì)的影響[J]. 江蘇農(nóng)業(yè)科學(xué),1993(4):48-50.
Liang Yongchao, Chen Xinghua, Ma Tongsheng, et al. Effect of silicon on growth, yield and quality of tomato[J]. Jiangsu Agricultural Science, 1993(4): 48-50. (in Chinese with English abstract)
[28] Heine G, Tikum G, Horst W J. Silicon nutrition of tomato and bitter gourd with special emphasis on silicon distribution in root fractions[J]. Journal of Plant Nutrition and Soil Science, 2005, 168(4): 600-606.
[29] Jones L H P, Handreck K A. Silica in soils,plants and animals[J]. Aadvances in agronomy, 1967, 19(1): 107-149.
[30] McNaughton S J, Tarrants J L. Grass leaf silicification:Natural selection for an inducible defense against herbivores[J]. Proceedings of the National Academy of Sciences, 1983, 80(3): 790-791.
[31] 張國(guó)芹,徐坤,王興翠,等. 硅對(duì)生姜葉片水,二氧化碳交換特性的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2008,19(8):1702-1707.
Zhang Guoqin, Xu Kun, Wang Xingcui, et al. Effects of silicon on exchange characteristics of H2O and CO2in ginger leaves[J]. Chinese Journal of Applied Ecology, 2008, 19(8): 1702-1707. (in Chinese with English abstract)
[32] Zhang J, Davies W J. Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil[J]. Plant Cell & Environment, 1989, 12(1): 73-81.
[33] Zhang J, Davies W J. Sequential response of whole plant water relations to prolonged soil drying and the involvement of xylem sap ABA in the regulation of stomatal behaviour of sunflower plants[J]. New Phytologist, 2010, 113(2): 167-174.
[34] Davies W J, Zhang J. Root signals and the regulation of growth and development of plants in drying soil[J]. Annual review of plant biology, 1991, 42(1): 55-76.
[35] 曹逼力,李煒?biāo)N,徐坤. 干旱脅迫下硅對(duì)番茄葉片光合熒光特性的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2016,22(2):495-501.
Cao Bili, Li Weiqiang, Xu Kun. Effects of silicon on photosynthetic and fluorescence characteristics of tomato leaves under drought stress[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 495-501. (in Chinese with English abstract)
[36] 張國(guó)芹. 硅對(duì)生姜生長(zhǎng)和某些生理特性的影響[D]. 泰安:山東農(nóng)業(yè)大學(xué),2008.
Zhang Guoqin. Effect of Silicon on the Growth and Some Physiological Characteristics of Ginger[D]. Tai’an: Shandong Agricultural University, 2008. (in Chinese with English abstract)
[37] 季明德,黃湘源,付美琴,等. 硅元素對(duì)甘蔗中蔗糖分積累的影響[J]. 江西化工,1994(1):13-15.
Ji Mingde, Huang Xiangyuan, Fu Meiqin, et al. The effect of silicon on sugar accumulation in sugar cane[J]. Jiangxi Chemical Industry, 1994(1): 13-15. (in Chinese with English abstract)
[38] Lee J W, Kim Y C, Yun H K et al. Influence of silicate application on the sucrose synthetic enzyme activity of tomato in perlite media culture[J]. Acta Horticulturae, 2002, 663: 259-262.
[39] Stamatakis A, Papadantonakis N, Savvas D, et al. Effects of silicon and salinity on fruit yield and quality of tomato grown hydroponically[J]. Acta Horticulturae, 2003, 609: 141-147.
[40] Toresano S F, Valverde G A, Camacho F F. Effect of the application of silicon hydroxide on yield and quality of cherry tomato[J]. Journal of Plant Nutrition, 2012, 35(4): 567-590.
[41] Raven J A. The transport and function of silicon in plants[J]. Biological Reviews, 1983, 58(2): 179-207.
[42] 王荔軍,李敏,李鐵津,等. 植物體內(nèi)的納米結(jié)構(gòu)SiO2[J]. 科學(xué)通報(bào),2001,46(8):625-632.
Wang Lijun, Li Min, Li Tiejin, et al. 2001 The nano structure of plants SiO2[J]. Chinese Science Bulletin, 2001, 46(8): 625-632. (in Chinese with English abstract)
曹逼力,張志煥,徐 坤. 施硅提高干濕交替條件下番茄節(jié)水性及產(chǎn)量和品質(zhì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(22):127-134. doi:10.11975/j.issn.1002-6819.2017.22.016 http://www.tcsae.org
Cao Bili, Zhang Zhihuan, Xu Kun. Silicon improving water conservation, yield and quality of tomato under alternate wetting and drying condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 127-134. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.016 http://www.tcsae.org
Silicon improving water conservation, yield and quality of tomato under alternate wetting and drying condition
Cao Bili, Zhang Zhihuan, Xu Kun※
(,,271018,)
Silicon plays an important role in improving crop drought resistance. The irrigation of alternate wetting and drying condition is a method that can achieve the goal of saving water resources and increasing production, through the inducement of the drought regulation potential by exposure of the plant roots to drought stress. Signal feedback control in the root zone can be performed adequately under alternate wetting and drying condition, and therefore physiological water conservation can be achieved. However, the conclusions on the effects of water-saving irrigation on the physiological characteristics of crops are different. With regard to the research about applicability of alternative irrigation method on tomato (.) cultivation. In order to investigate the impacts of application of exogenous silicon on tomato under alternate wetting and drying condition, the effects of silicon on the silicon mass fraction in plant, plant growth, fruit yield and quality of tomato under alternate wetting and drying condition simulated. The simulation system was achieved by the use of a self-designed ebb-and-flow irrigation system. The results showed that the application of exogenous silicon in culture solution resulted in the increase of silicon mass fraction in tomato plants. The silicon mass fraction of tomato roots, stems, leaves and fruits increased by 494%, 444%, 246% and 631%, respectively. During the period of seedling stage and the period of flowering and fruit bearing stage of tomato, the irrigation of alternate wetting and drying condition can be used to control the growth and nurture strong seedlings. From the period of early fruiting stage to the period of later fruiting stage of tomato, especially fruit flourish stage, it is not appropriate to use the irrigation of alternate wetting and drying condition. Dry and wet alternation resulted in a serious decline in tomato production and a decline in lycopene mass fraction, vitamine C mass fraction, titratable acid mass fraction, but significantly improved other quality indicators of tomato fruit, such as soluble protein mass fraction, free amino acids mass fraction, soluble solid mass fraction, soluble sugar mass fraction, titratable acid mass fraction, fruit rigidity, sugar-acid ratio. Especially, sugar and acid ratio increased by 30%. The application of exogenous silicon can alleviate the adverse effects of alternate wetting and drying condition on fruit yield and quality in the late growth and development period of tomato. To this end, the combination of the irrigation of alternate wetting and drying condition and the application of exogenous silicon, in the promotion of stable production of tomatoes under the premise of high quality, can cause water conservation up to 23%. Based on this study, how exogenous silicon regulated the yield and quality of tomato under the condition of alternate wetting and drying was investigated, and the role of exogenous silicon in mediating changes of some physiological parameters of tomato planted under variable water conditions was made a thorough inquiry. The theoretical contents that refer to how exogenous silicon improved plant drought resistance were expanded. Irrigation method of alternate wetting and drying condition in tomato water-saving cultivation was further optimized. The result of this paper is of great significance to a reasonable water saving and to the improvement of the commodity rate of tomato.
silicates; irrigation; furits; dry and wet alternate conditions; yield; quality
10.11975/j.issn.1002-6819.2017.22.016
S641.2; S606+.2
A
1002-6819(2017)-22-0127-08
2017-06-20
2017-10-14
山東果蔬優(yōu)質(zhì)高效生產(chǎn)協(xié)同創(chuàng)新中心引導(dǎo)性課題;山東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)創(chuàng)新體系專項(xiàng)資金(SDAIT05-05);“雙一流”獎(jiǎng)補(bǔ)資金資助(SYL2017YSTD06)。
曹逼力,講師,主要從事蔬菜栽培生理生態(tài)研究。 Email:bilicao@sdau.edu.cn.通信作者:徐 坤,教授,主要從事蔬菜栽培生理生態(tài)研究。 Email:xukun@sdau.edu.cn.