• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Eisenstein series generated from twisting of the geometric series

    2017-11-24 09:04:26SHENLichien
    關(guān)鍵詞:斯維爾逆定理數(shù)學(xué)系

    SHEN Li-chien

    (Department of Mathematics,University of Florida,Gainesville FL 32611-8105,USA)

    沈力健

    (佛羅里達(dá)大學(xué) 數(shù)學(xué)系,蓋恩斯維爾 佛羅里達(dá)32611-8105,美國(guó))

    On Eisenstein series generated from twisting of the geometric series

    SHEN Li-chien

    (Department of Mathematics,University of Florida,Gainesville FL 32611-8105,USA)

    In this paper,we will be dealing with the twisting of geometric series by the Dirichlet characters.In conjunction with the basic tool of Fourier transform,it can be used to generate all the Eisenstein series with respect to a family arithmetic groups.

    Dirichlet character;conductor;Eisenstein series;Gaussian sum;Kronecker symbol;Mellin transform;modular form;Poisson summation formula;Weil’s converse theorem

    沈力健

    (佛羅里達(dá)大學(xué) 數(shù)學(xué)系,蓋恩斯維爾 佛羅里達(dá)32611-8105,美國(guó))

    The paper is organized as follows.

    The relevant properties of the Dirichlet characters and the geometric series twisted by the primitive characters are given in Sections 0 and 1.Sections 2 and 3 consist of the Mellin transform of the twisted geometric series,the derivation of the associated Fourier transform and a family of functions invariant under the Fourier transform.The Eisenstein series of weight k≥3 generated by the twisted Poisson summation formula are derived in Sections 4,5,6 and 7.In Sections 8 and 9,we provide the statement of Weil’s Converse Theorem as well as the needed background materials and the proof of the modularity of the weight on Eisenstein with respect to certain arithmetic groups.In Section 10,we consider a twisted Weierstrass η function and examine its relevancy in the context of the late work of Kronecker on the theory of elliptic functions.

    0 Basic properties of χ-twisted geometric series

    Let N be a positive integer.Let χ be a Dirichlet character modulo N.Extend it to the set Z so that,for all integers m and n,

    (1)χ(1)=1;

    (2)χ(n+N)= χ(n);

    (3)χ(mn)= χ(m)χ(n);

    (4)χ(n)=0 if gcd(n,N)> 1.

    Let N′be a positive integer which is divisible by N.For any character χ modulo N,we can form a character χ′modulo N′as follows:

    We say that χ′is induced by the character χ.Let χ be a character modulo N.If there is a proper divisor d of N and a character modulo d which induces χ,then the character χ is said to be non-primitive,otherwise it is called primitive;and we say N is the conductor of χ if it is primitive modulo N.We note that if N is the conductor of a character,then either N=1 or N≥3.

    We shall assume N≥3 unless indicated otherwise.

    The Gaussian sum gk(χ)associated with the character χ is defined as

    We denote g(χ)=g1(χ).We need a lemma(cf.[1,p.5]).

    Lemma 0.1 Let χ be a primitive character modulo N.Then for any integer k,

    We remark for gcd(k,N)=1,the above equality holds without χ being primitive;the primitiveness of χ is needed in showing that the left hand side of the identity is zero when gcd(k,N)>1.

    Let χ be a Dirichlet character.The series∑nχ(n)anis said to be the χ-twisted series of∑

    nan.

    Consider

    The function ? is generated by twisting the geometric serieswith the character χ:

    where|t|<1.

    We observe that,although ? is derived from the geometric series under the assumption:|t|<1,it is() defined for all t∈C except possibly at the zeros of 1?tN.

    Let χd(n)=denote the Kronecker’s extension of Jacobi symbol(cf.[2,p.35]).It is well-known that χdis primitive modulo|d|(cf.[3,p.347,Theorem 5]).For d=1,we define χ1(n)=1 for all n.

    We have

    It is easy to verify the following lemma.

    Lemma 0.2 Let N be the conductor of χ.

    and ?(1,χ)=0 if χ(?1)=1.

    We now derive the partial fraction expansion for ?(t,χ).We see that all the poles of ? are simple and,from(3),located at:zk=e2ikπ/N,k=1,2,...,N ? 1.In fact,we have

    Theorem 0.3 Suppose N is the conductor of χ.Then

    where

    Alternatively,

    ProofFix k.We have

    For the second identity,we note that

    Since ak=0 if gcd(k,N)/=1,we deduce

    Corollary 0.4 Suppose χ is primitive modulo N.Then the denominator of the rational function ?(t,χ),after canceling the common factors of its numerator and denominator,is the cyclotomic polynomial formed from the primitive roots of 1?zN=0.

    From Lemma 0.2(3)and Theorem 0.3,we have

    Corollary 0.5 Suppose χ is primitive modulo N.Then

    1 Partial fraction expansion of e2πxz?(e2πz/N,χ), χ-twisted Bernoulli polynomials and Bernoulli numbers

    We will derive

    Proof From Theorem 0.3,

    where zk=e2iπk/N.Therefore all the poles{pk,n:k=1,2,...,N ? 1,n ∈ Z}of ?N(e2πz/N,χ)are simple and pk,n=i(k+nN).

    We first compute the residue of e2πxz?(e2πz/N,χ)at pk,n:

    We now establish the partial fraction expansion of e2πxz?(e2πz/N,χ).Let

    We note that the infinite sum converges for all z/=pk,nand G(z)is an entire function of exponential type.We will show G(z)=0.Consider the sector S(δ)={z:z=reiθ,r ≥where δ is an arbitrary positive number less thanG(z)→ 0 as z → ∞ along the boundary of the sector S(δ).Since G is of exponential type and bounded on the boundary of S(δ),by Phragman-Lindelof theorem,G(z)is bounded in S(δ)as well its complement.Thus G is bounded on C.The claim is established by observing that G(z)tends to zero along the ray θ=

    We note that

    Corollary 1.2 Let N be the conductor of χ.Suppose.Then

    In particular,if χ(?1)=1,

    and if χ(?1)= ?1,

    We recall the definition of the Bernoulli polynomials Bχ,k(x)associated with the Dirichlet character χ:

    For x=0,it gives the Bernoulli numbers Bχ,kassociated with the character χ:

    and Bχ,0=0.

    From the above corollary,we deduce the trigonometric series expansion for Bχ,k(x),k≥1 and?1<x<1:

    Setting x=0,we have,for k≥1

    We add that since χ(0)=0,the term n=0 is not present in the sums.The Dirichlet L-series associated with the character χ is defined as

    Choose χ = χd,where d is the discriminant of a quadratic field.We recall a famous theorem of Gauss:

    Then,from(1.3),the values of L-series for χdare given as follows.(1)For?d<0,

    and Bχ?d,2k=0;

    (2)For d>0,

    and Bχd,2k+1=0.

    For N=1,the analogue of(1.1)is

    where 0<x<1.For x=0,

    Here,the sum is interpreted as

    Let z=τ∈H,where H denotes the set of the upper half plane:{τ=x+iy:y>0}.We have

    and

    2 Fourier transform of ?(e2iπτx,χ)

    Let N ≥ 3 be the conductor of χ.

    The Mellin transform of ?(t,χ)is proved in[4,Theorem 1]:

    where ζs=e2iπs/N,?1 < Re s < 1.

    The Fourier transform offis by definition

    Define

    We now derive

    where Re α>0.

    Proof Assume α >0.We will remove this restriction by appealing to analytic continuation.

    From(2.1),with t=e?2παxand s=iy/α,y ∈ R,

    We note that,as functions of α,both sides of the above identity are analytic on the right half plane:Re α>0.Since they coincide on the positive real axis,they are equal on the right half plane.

    Using the well-known fact

    we have the following generalization(2.2).For Re α>0,

    We now replace α by ?iτ,τ∈ H and we obtain

    Theorem 2.1 Suppose τ∈H.Then

    3 A family of functions invariant under Fourier transform

    Define

    We have

    and

    We now derive the Fourier transform(F(·,χ))∧(t)of F(x,χ).

    Theorem 3.1 Let N ≥ 3 be the conductor of χ.Then

    We obtain a family of functions which are invariant under the Fourier transform.Corollary 3.2 Let?d be the discriminant of an imaginary quadratic field.Then

    4 Applications of Poisson summation formula

    Recall the Poisson summation formula:

    Lemma 4.1 Suppose τ∈ H and χ is primitive modulo N.Then

    Proof Assume χ(?1)= ?1.Then Φ(2k)(z,χ)is an even function of z.From Poisson summation formula,for Re α>0,

    We note that when k is an odd integer,then Φ(k)(z,χ)is odd and the Poisson summation leads to a trivial identity:0=0.

    Suppose Re z>0.Then

    and

    From(1.2),

    Thus

    Replacing α by ?iτ,τ∈ H,we obtain from(4.1)and(4.2)

    We omit the proof for the case χ(?1)=1,since it is identical.Let ψ be primitive modulo N.For ψ(?1)= ?1,define

    and

    For ψ(?1)=1,define

    and

    where q=e2iπτ.

    We note that,for ψ(?1)=(?1)k,

    From above lemma,we have

    Corollary 4.2 Suppose N ≥ 3 is the conductor of ψ and ψ(?1)=(?1)k.Then

    5 Eisenstein series of weight k≥3

    The following lemma plays a crucial role in the construction of the modular forms of weight k≥3.

    Lemma 5.1 Let χ be a character of conductor N ≥ 3 and k ≥ 1.Then

    Proof Choosing x=0 in Theorem 1.1,we have

    Choose z=iNτ,τ∈ H,we derive from(0.1)with t=e2iπτ,

    Hence

    Differentiating k?1 times gives the desired result.

    We now derive the following representations of f2k+1(τ;χ1,ψ)and g2k+1(τ;χ1,ψ)as Eisenstein series.

    Corollary 5.2 Suppose N ≥ 3 is the conductor of ψ and ψ(?1)= ?1.Then,for k ≥ 1,

    and

    ProofWe recall that

    From the lemma above,we have

    We note that,since ψ(?1)= ?1,

    We add that since χ(0)=0,the term n=0 is not present in the sums.

    The first identity clearly follows these three identities.The second identity follows readily from Corollary 4.2,

    the fact

    and the first identity.

    We state that the identical set of results also exist for the case ψ(?1)=1 and k even.We leave the details to an interested reader.

    6 Applications of the twisted Poisson summation formula

    Recall the χ-twisted Poisson summation formula(cf.[1,p.8]).Let χ be a primitive character modulo N.Then

    We caution the reader that in[1,p.7],due to the fact that author defines Fourier transform as

    the twisted Poisson summation formula takes the form

    Let ? and ψ be primitive characters modulo M and N and ?ψ(?1)=(?1)k.

    Since the case M=1,which corresponds to ? = χ1,has been dealt with in the previous sections,we will assume M≥3.

    Define,for k≥1,

    and

    We note that f1(τ;φ,ψ)=f1(τ;ψ,φ)=g1(τ;φ,ψ);for k > 1,fk(τ;φ,ψ)/=fk(τ;ψ,φ)and gk(τ;φ,ψ)=fk(τ;ψ,φ).

    Corollary 6.1 Suppose φ and ψ are primitive modulo M and N and φψ(?1)=(?1)k.Then

    Proof The assumption that φψ(?1)=(?1)kimplies that φ(m)Φ(k?1)(mα,ψ)is an even function of m.Applying the twisted Poisson summation formula to(2.3),for Re α>0,we obtain for k≥1,

    We now express fk(τ;φ,ψ)and gk(τ;φ,ψ)in terms of Eisenstein series.

    Theorem 6.2 Suppose φ and ψ are primitive modulo M and N and φψ(?1)=(?1)k.Then,for k≥3,

    and

    Proof We remark that the assumption k≥3 is to ensure that the above double sums converge absolutely.

    From Lemma 5.1,

    and,using the fact ?ψ(?1)=(?1)k,

    This establishes the first identity.

    Since

    the second identity follows easily from the first one.

    7 A family of Eisenstein series of weight k≥3

    Let k be a non-negative integer,ψ a character modulo N and let Mk(Γ0(N),ψ)denote the space of functions f on H satisfying

    (1)f is analytic on H;

    (2)f is analytic at all cusps of Γ0(N);

    (3)Thus,iff∈ Mk(Γ0(N),ψ),then f ∈ Mk(Γ1(N)),that is,

    wher

    We now obtain a family of modular forms of weight k≥3 from the Eisenstein series expansions of fk(τ;?,ψ)and gk(τ;?,ψ)for k ≥ 3.

    Theorem 7.1 Suppose ? and ψ are primitive characters of modulo M and N,respectively,and ?ψ(?1)=(?1)k.Then

    for k≥3.

    Proof We now prove the case M≥3.

    The property(1)is trivial and the prove of property(2)is standard and can be found in any book in modular forms.We need to establish

    First we observe that since ψ has conductor N,

    since MN|c and φ has conductor M,

    We note that since k≥3,the double sums on the right hand sides of the identities in Theorem 6.2 converge absolutely and from which we derive

    The identical argument gives

    for Γ0(MN).

    For the case M=1,we need to establish

    for k≥3.We again appeal to their representations as Eisenstein series,since the proof is identical to an case above,we leave it to an interested reader.

    Using the same method,we can construct a family of non-holomorphic Eisenstein series:

    We remark that for the case M=1,the Eisenstein series

    for k=1 or 2,formally satisfies property(3).However,the double sum does not converge and cannot be used to define f1(τ;χ1,ψ)or f2(τ;χ1,ψ).In next two sections,we will circumvent the issue of convergence by appealing to Weil’s Converse Theorem to prove that Theorem 7.1 is still valid for the case k=1.The method is equally applicable to the cases k≥2,we leave the details to an interested reader.

    8 Functional equations for products of two Dirichlet series

    Let q=e2iπτ,τ∈ H,and let φ and ψ be characters modulo M and N,respectively,and φψ(?1)= ?1.

    We now consider the twist of f1(τ;φ,ψ)by a character χ modulo D.To simplify the notation,we let

    Let fχ(τ;φ,ψ)denote the twist of f(τ;φ,ψ)by χ.

    Recall that,for τ∈H,

    Then,from Corollaries 4.2 and 6.1 with k=1,we have

    Corollary 8.1 Suppose ? and ψ are primitive characters modulo M and N,respectively,?ψ(?1)= ?1.Then

    and

    for M≥3,

    where q=e2iπτ,τ∈ H.

    From(8.2)and(8.3),we have

    Lemma 8.2 Suppose χ(0)=0.Then

    For

    define the Mellin transform of fas

    Then

    The L-series associated with f is defined as

    and we call Λ(s,f)the completed L-series of L(s,f).It is perhaps helpful to observe that

    and

    From above lemma,we have

    Lemma 8.3

    and

    The main goal of this section is to establish a functional equation for Λ(fχ,s).To this end,we recall the duplication formula for the gamma function:

    and the following well-known result(cf.[1,p.10]).

    Suppose χ is a primitive character modulo N.Let ?=0 or 1 so that χ(?1)=(?1)?and let

    Then

    We now consider the twist of f(τ;φ,ψ)by a primitive character χ modulo D,where gcd(D,MN)=1.We first prove

    Lemma 8.4 Suppose gcd(D,MN)=1,χ,φ and ψ are primitive characters modulo D,M and N,respectively and φψ(?1)= ?1.Then

    and

    Proof We note first that since gcd(D,MN)=1,χφ and χψ are primitive modulo DM and DN,respectively.Assume χ is odd.Since φψ(?1)= ?1,if ψ is odd,χφ is odd and χψ is even,

    and

    From the duplication formula of gamma function,

    The proofs for even ψ and for even χ are identical,we omit them.

    We now state the functional equation for Λ(s,fχ(·;φ,ψ)).

    Lemma 8.5 Suppose gcd(D,MN)=1,χ,φ and ψ are primitive characters modulo D,M and N,respectively and φψ(?1)= ?1.Then

    and

    The proof follows immediately from the functional equations of Λ(s,χ)and Λ(s,χ)and the fact(cf.[1,p.111]):If gcd(D,N)=1,then

    9 A family of weight one Eisenstein series

    The goal of this section is to establish the following result.

    Theorem 9.1 Suppose φ and ψ are primitive characters modulo M and N,respectively,and φψ(?1)= ?1.Then f1(τ;φ,ψ)∈ M1(Γ0(MN),φψ).

    The proof is based on Weil’s Converse Theorem for modular forms.To state the result,we shall introduce certain quantities as follows.

    Let q=e2iπτ,τ∈ H and f be an analytic function defined on H.Define

    Suppose f and g have the series expansions:

    and

    It is well-known(cf.[1,p.58]):Iff∈ Mk(Γ0(N),χ),then g ∈ Mk(Γ0(N),

    χ)and

    However,the converse is not true in general.

    To obtain a version of converse result due to Weil,we introduce the following notation.Let χ be a Dirichlet character and let

    The L-series and the completed L-series associated with fχand g

    χare,respectively,

    We state Weil’s Converse Theorem for the modular forms(cf.[1,p.61]).

    Suppose

    (i)ψ is a Dirichlet character modulo N,not necessary assumed to be primitive;

    (ii)A(n),B(n)=O(nK)for some K>0;

    (iii) Λ(s,fχ)and Λ(s,gχ)have analytic continuation to all s∈ C except possibly with simple poles at s=0 and s=k;are bounded at infinity in every vertical strip σ1≤ Re s ≤ σ2;and satisfy the functional equation

    for D=1,all gcd(D,N)=1 and χ primitive modulo D,where D is a prime.

    Then f(τ)= ∑∞n=0A(n)qnis a modular form in Mk(Γ0(N),ψ).

    For our purpose,only the case k=1 is needed.We now prove Theorem 9.1.

    Proof Let f(τ):=f(τ,;φ,ψ):=f1(τ,;φ,ψ).

    From(9.1)and Corollary 8.1,we have,

    Caution!The same g carries two different meanings.

    Hence

    From Theorem 8.5,and the identity(cf.[1,p.81]):

    and

    we obtain

    Clearly Λ(s,fχ)and Λ(s,gχ)satisfy all the requirements of Weil’s theorem,the desired assertion follows.

    Corollary 9.2 Suppose φ and ψ are primitive characters modulo M and N,respectively, φψ(?1)=(?1)kand χ is a primitive character modulo D. Then fkχ(τ;φ,ψ) ∈Mk(Γ0(MND2),χ2φψ).

    Here fkχmeans the twist of fkby χ.

    The conclusion of the corollary follows immediately from[6,p.127,Proposition 17(b)].Here we do not require gcd(D,MN)=1.

    We also derive the following theorem of Hecke.

    Corollary 9.3 If?d is the discriminant of an imaginary quadratic field,then f(τ;χ1,χ?d)∈ M1(Γ0(d),χ?d).

    It is interesting to note that,since(cf.[2,p.171(8)])

    we have,from(8.2),

    and furthermore(cf.[5,Theorem 4])where h is the class number of the quadratic fieldw the number of roots of unity in it and Qi(x,y),i=1,2,...,h,the inequivalent quadratic forms of discriminant?d.

    For example,

    An alternative proof of Theorem 9.1 using the properties of the η function of Weierstrass can be found in[7,p.138]and a proof of a version of Weil’s theorem is given in[1,p.60].

    The relevance of Theorem 7.1 is that,modulo some details,all Eisenstein series associated with the group Γ1(N)can be constructed from the linear combinations of these modular forms.We refer the details to[7,Theorem 4.8.1].

    10 Kronecker’s double series and a generating function for fk(τ;φ,ψ)

    It seems relevant and appropriate to start this section quoting Andre Weil(cf.[8,p.69]).In 1890 and 1891,Kronecker began to give special emphasis to the series which he appeared to have regarded at that time as the cornerstone of the whole theory of elliptic functions.In dealing with it,Kronecker tried various methods of summation,including the method

    and even a variant of Kronecker summation based on the strange series

    Eventually he found Eisenstein summation to be the most appropriate procedure.This is the method we shall follow here.

    Here W={mμ +nν :m,n ∈ Z}and χ(mμ +nν)=e2iπ(mμ+nν)denotes a character of the additive group W,where 0≤ μ,ν< 1.

    We will consider the following twisted Kronecker sum:

    and,for now,we ignore the issue of convergence.

    Suppose χ is primitive modulo N,from Lemma 0.1,

    Thus,for M,N ≥ 3,which corresponds to that case 0< μ,ν< 1,formally,we can rewrite the left hand side of(10.1)in terms Kronecker’s double series:

    When M=1,which corresponds to the caseμ=0,the series clearly diverges and we avoided the difficulty by appealing to the Weil’s Converse Theorem.

    We note that since M,N≥3,the term corresponding to the index(m,n)=(0,0)is not present in the sum(10.1)and Replacing τ by Nτ,we can regard the above sum as the generating function for fk(τ;?,ψ)modulo the constants.

    We now introduce the method of Eisenstein summation mentioned earlier.

    Replacing z by i(z+mτ)/N in(1.1),we have,

    From the definition of ?(t,χ),

    We will establish the following theorem.

    Theorem 10.1 Suppose φ and ψ are primitive characters modulo M and N,respectively,φψ(?1)= ?1 and M,N ≥ 3.Then

    First we need to recall an identity(cf.[4,p.1101,(1.1)]):

    For basic properties of the Jacobi theta functions,we refer readers to[9,Chapter XXI].ProofFrom Lemma 0.1,since φ is primitive modulo M,

    Putting all above together,

    The first identity follows by setting x=0 and replacing πz by z.

    Set x=0 in(10.3),the second identity follows easily from(0.1).

    Lemma 10.2We have

    Substituting the series expansion at z=0 withand b=2iπn/N,into the identity in Theorem 10.1 and comparing the coefficients,we obtain

    Corollary 10.3 If ?ψ(?1)= ?1.Then

    Theorem 10.4 Suppose ω,ω ∈ C andand ψ are primitive characters

    12modulo,respectively,M ≥ 3 and N ≥ 3 with φψ(?1)= ?1.Then ζφ,ψ(z;ω1,ω2)is an even function of z and

    Then

    This clearly implies the conclusion.

    Acknowledgements This paper is from a part of the lecture series given by the author during his visit to the East China Normal University from June 22 to June 28,2017.The author would like to take this opportunity to thank Professor Zhi-Guo Liu and his graduate students for their hospitality and enthusiasm.A particular gratitude goes to Dr.Min-Jie Luo for his excellent assistance in converting the original manuscript to the official format of the journal.

    [1]BUMP D.Automorphic Forms and Representations[M].Cambridge:Cambridge University Press,1997.

    [2]COHN H.Advanced Number Theory[M].New York:Dover,1980.

    [3]BOREVICH Z I,SHAFAREVICH I R.Number Theory[M].New York:Academic Press,1966.

    [4]SHEN L C.On the modular equations of degree 3[J].Proceedings of AMS,1994,122(4):1101-1114.

    [5]SHEN L C.On a class of q-series related to quadratic forms[J].Bulletin of the Institute of Mathematics Academia Sinica,1998,26(2):111-126.

    [6] KOBLITZ N.Introduction to Elliptic Curves and Modular Forms[M].2nd ed.New York:Springer-Verlag,1993.

    [7] DIAMOND F,SHURMAN J.A First Course in Modular Forms[M].Berlin:Springer,2005.

    [8] WEIL A.Elliptic Functions According to Eisenstein and Kronecker[M].Berlin:Springer-Verlag,1976.

    [9]WHITTAKER E T,WATSON G N.A Curse of Modern Analysis[M].4th ed.Cambridge:Cambridge University Press,1958.

    (責(zé)任編輯:林 磊)

    由幾何級(jí)數(shù)的扭曲生成的艾森斯坦級(jí)數(shù)

    本文借助狄利克雷特征處理了幾何級(jí)數(shù)的扭曲.結(jié)合傅里葉變換的基本工具,生成了一族算術(shù)群的所有艾森斯坦級(jí)數(shù).

    狄利克雷特征; 導(dǎo)子;艾森斯坦級(jí)數(shù);高斯和;克羅內(nèi)克符號(hào);梅林變換;模形式; 泊松求和公式; 韋伊逆定理

    2017-03-29

    沈力健,男,教授,研究方向?yàn)楹瘮?shù)論.E-mail:shen@uf l.edu.

    O174 Document code:A

    10.3969/j.issn.1000-5641.2017.06.001

    1000-5641(2017)06-0001-24

    猜你喜歡
    斯維爾逆定理數(shù)學(xué)系
    一個(gè)人就是一個(gè)數(shù)學(xué)系
    ——丘成桐
    勾股定理及其逆定理
    北京師范大學(xué)數(shù)學(xué)系教授葛建全
    你相信有UFO嗎?
    美國(guó)被隱藏的另一面
    勾股定理的逆定理及其應(yīng)用
    論Gross曲線的二次扭
    勾股定理逆定理生活館
    《勾股定理的逆定理》測(cè)試題
    Constructing DHCP Using Electronic Archetypes
    日本黄大片高清| 午夜精品久久久久久毛片777| 床上黄色一级片| 丰满的人妻完整版| 成人国产一区最新在线观看| 欧美最新免费一区二区三区 | 成年人黄色毛片网站| 国产精品自产拍在线观看55亚洲| 久久久成人免费电影| 亚洲自拍偷在线| 国产99白浆流出| 久久精品国产亚洲av涩爱 | 88av欧美| 一进一出好大好爽视频| 搡老岳熟女国产| 日韩精品青青久久久久久| 国产视频一区二区在线看| 欧美+日韩+精品| 99热这里只有是精品50| 中出人妻视频一区二区| 亚洲人与动物交配视频| 一边摸一边抽搐一进一小说| 国产av不卡久久| 国产伦精品一区二区三区视频9 | 久久欧美精品欧美久久欧美| 成人精品一区二区免费| 黄色丝袜av网址大全| 久久久国产成人精品二区| 一进一出抽搐动态| 亚洲av免费高清在线观看| 母亲3免费完整高清在线观看| 舔av片在线| 国产精品av视频在线免费观看| 18禁黄网站禁片免费观看直播| 麻豆久久精品国产亚洲av| 亚洲成人久久性| 最新美女视频免费是黄的| 少妇高潮的动态图| 免费人成在线观看视频色| 一级毛片女人18水好多| 99热只有精品国产| 午夜影院日韩av| 国产高潮美女av| av福利片在线观看| 黄色成人免费大全| 1000部很黄的大片| 一区二区三区激情视频| 动漫黄色视频在线观看| 婷婷精品国产亚洲av| 搞女人的毛片| 天天一区二区日本电影三级| 一个人看视频在线观看www免费 | 18禁在线播放成人免费| 欧美在线一区亚洲| 超碰av人人做人人爽久久 | 狂野欧美白嫩少妇大欣赏| 精品熟女少妇八av免费久了| 非洲黑人性xxxx精品又粗又长| 国产亚洲欧美98| aaaaa片日本免费| 校园春色视频在线观看| 99久国产av精品| 国产麻豆成人av免费视频| 中文字幕精品亚洲无线码一区| 欧美黑人巨大hd| 十八禁人妻一区二区| 国产欧美日韩一区二区精品| 18禁黄网站禁片午夜丰满| 国产单亲对白刺激| 高清在线国产一区| 成人一区二区视频在线观看| 人妻丰满熟妇av一区二区三区| 精品久久久久久久久久免费视频| 国产高清三级在线| 看片在线看免费视频| 日韩欧美在线乱码| 少妇熟女aⅴ在线视频| 搞女人的毛片| 又黄又粗又硬又大视频| 国产精品99久久99久久久不卡| 亚洲中文字幕一区二区三区有码在线看| 亚洲电影在线观看av| 一区二区三区高清视频在线| 婷婷精品国产亚洲av在线| 日韩欧美一区二区三区在线观看| 波多野结衣高清作品| 欧美性猛交黑人性爽| 国产伦人伦偷精品视频| 51午夜福利影视在线观看| 丝袜美腿在线中文| 最后的刺客免费高清国语| 欧美成人一区二区免费高清观看| 午夜福利视频1000在线观看| 毛片女人毛片| 成年人黄色毛片网站| 熟女人妻精品中文字幕| 亚洲人成电影免费在线| 午夜免费激情av| 在线观看午夜福利视频| 欧美成人a在线观看| 国产精品嫩草影院av在线观看 | 国产成人啪精品午夜网站| 内地一区二区视频在线| 久久国产精品人妻蜜桃| 中文字幕久久专区| 亚洲午夜理论影院| 少妇熟女aⅴ在线视频| 亚洲色图av天堂| 亚洲精品一卡2卡三卡4卡5卡| 国产毛片a区久久久久| 少妇熟女aⅴ在线视频| 欧美日韩精品网址| 又紧又爽又黄一区二区| 国产一区二区三区视频了| 亚洲真实伦在线观看| 国产免费av片在线观看野外av| 老汉色av国产亚洲站长工具| 国产精品乱码一区二三区的特点| 国产毛片a区久久久久| av天堂在线播放| 国内揄拍国产精品人妻在线| 在线免费观看的www视频| 啪啪无遮挡十八禁网站| 久久久久性生活片| av专区在线播放| 亚洲国产欧美网| 男人和女人高潮做爰伦理| 午夜精品在线福利| 成年免费大片在线观看| 色尼玛亚洲综合影院| 国产精品野战在线观看| 欧美精品啪啪一区二区三区| 精品福利观看| 女同久久另类99精品国产91| 亚洲 欧美 日韩 在线 免费| 伊人久久大香线蕉亚洲五| 搡老岳熟女国产| 国产成年人精品一区二区| a级毛片a级免费在线| 母亲3免费完整高清在线观看| 久久久久九九精品影院| 亚洲av免费高清在线观看| 一级黄片播放器| 最近最新中文字幕大全电影3| 成人一区二区视频在线观看| 国产99白浆流出| 午夜影院日韩av| 亚洲av美国av| 一a级毛片在线观看| 五月伊人婷婷丁香| 国内揄拍国产精品人妻在线| 丰满乱子伦码专区| 欧美在线一区亚洲| 欧美日韩一级在线毛片| 少妇的丰满在线观看| 国产精品一区二区免费欧美| 人人妻人人看人人澡| 欧美乱码精品一区二区三区| 欧美不卡视频在线免费观看| 国产精品综合久久久久久久免费| 国产真实伦视频高清在线观看 | 欧洲精品卡2卡3卡4卡5卡区| 欧美极品一区二区三区四区| 啦啦啦观看免费观看视频高清| 亚洲一区二区三区不卡视频| 国产亚洲精品久久久久久毛片| 人人妻人人澡欧美一区二区| www.999成人在线观看| 亚洲性夜色夜夜综合| 亚洲最大成人手机在线| 国产成人欧美在线观看| 中文在线观看免费www的网站| 中文字幕高清在线视频| 激情在线观看视频在线高清| 免费在线观看影片大全网站| 国产高清激情床上av| 黄色视频,在线免费观看| 青草久久国产| av片东京热男人的天堂| 亚洲第一欧美日韩一区二区三区| 日韩大尺度精品在线看网址| av福利片在线观看| 男人舔奶头视频| 久久久久久久久大av| 叶爱在线成人免费视频播放| 麻豆国产av国片精品| 99久国产av精品| a级一级毛片免费在线观看| 搞女人的毛片| 三级国产精品欧美在线观看| 一区福利在线观看| 欧美日韩中文字幕国产精品一区二区三区| 岛国在线免费视频观看| av女优亚洲男人天堂| 国产精品久久电影中文字幕| 99热这里只有是精品50| 欧美乱色亚洲激情| 亚洲 欧美 日韩 在线 免费| 色噜噜av男人的天堂激情| 国产精品免费一区二区三区在线| 一二三四社区在线视频社区8| 中亚洲国语对白在线视频| 午夜免费激情av| 女人被狂操c到高潮| 亚洲精品乱码久久久v下载方式 | 婷婷六月久久综合丁香| 他把我摸到了高潮在线观看| 国产精品爽爽va在线观看网站| a在线观看视频网站| 成年免费大片在线观看| 久久国产精品人妻蜜桃| 久久久久久久久中文| 黄色成人免费大全| 精华霜和精华液先用哪个| 亚洲国产欧洲综合997久久,| 欧美日韩乱码在线| 精品熟女少妇八av免费久了| 国产色爽女视频免费观看| 天天一区二区日本电影三级| 国产乱人视频| 午夜a级毛片| 国产伦人伦偷精品视频| 国产中年淑女户外野战色| 精品久久久久久久久久免费视频| 婷婷精品国产亚洲av| 一级a爱片免费观看的视频| 丰满乱子伦码专区| 午夜精品久久久久久毛片777| 亚洲人成网站高清观看| 在线观看免费视频日本深夜| av中文乱码字幕在线| 国产国拍精品亚洲av在线观看 | 精品一区二区三区视频在线 | 日本与韩国留学比较| 精品乱码久久久久久99久播| 亚洲av一区综合| 亚洲欧美日韩高清专用| 成熟少妇高潮喷水视频| 免费一级毛片在线播放高清视频| 国产精品1区2区在线观看.| 久久人人精品亚洲av| 欧美午夜高清在线| 综合色av麻豆| 成人无遮挡网站| 女警被强在线播放| 女警被强在线播放| 在线播放国产精品三级| 午夜日韩欧美国产| 老司机在亚洲福利影院| 在线观看66精品国产| h日本视频在线播放| 亚洲 欧美 日韩 在线 免费| 午夜福利欧美成人| 欧美性感艳星| 欧美日韩一级在线毛片| 亚洲久久久久久中文字幕| 搞女人的毛片| 亚洲成人精品中文字幕电影| 90打野战视频偷拍视频| 中文字幕精品亚洲无线码一区| 黑人欧美特级aaaaaa片| 黄色日韩在线| 国产真人三级小视频在线观看| 亚洲性夜色夜夜综合| 久久久色成人| 九色国产91popny在线| 国产成+人综合+亚洲专区| 国内精品久久久久精免费| 老司机在亚洲福利影院| 一a级毛片在线观看| 午夜亚洲福利在线播放| 一级黄片播放器| 欧美日本视频| 免费在线观看影片大全网站| 免费av毛片视频| 免费人成视频x8x8入口观看| 内地一区二区视频在线| 欧美日韩精品网址| 亚洲片人在线观看| 丝袜美腿在线中文| 国产单亲对白刺激| 99国产精品一区二区三区| 美女大奶头视频| 两个人视频免费观看高清| 熟女少妇亚洲综合色aaa.| 亚洲国产精品合色在线| 五月伊人婷婷丁香| 99国产综合亚洲精品| 亚洲人与动物交配视频| 欧美最黄视频在线播放免费| 国产精品久久久久久久电影 | 久久精品国产99精品国产亚洲性色| 在线国产一区二区在线| 亚洲 国产 在线| 成人特级av手机在线观看| 麻豆成人午夜福利视频| 最近最新中文字幕大全电影3| 国产精品亚洲一级av第二区| 宅男免费午夜| 给我免费播放毛片高清在线观看| 国产成人a区在线观看| 91久久精品电影网| 噜噜噜噜噜久久久久久91| 亚洲人与动物交配视频| 日日摸夜夜添夜夜添小说| 国产乱人视频| 噜噜噜噜噜久久久久久91| 亚洲成人久久爱视频| a级一级毛片免费在线观看| 午夜福利在线在线| 欧美性猛交╳xxx乱大交人| 欧美一级毛片孕妇| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久人人做人人爽| 中亚洲国语对白在线视频| 国产高清三级在线| 色哟哟哟哟哟哟| 成人特级av手机在线观看| 国产精品亚洲av一区麻豆| 亚洲中文日韩欧美视频| 无遮挡黄片免费观看| 国产三级黄色录像| 精品一区二区三区视频在线 | 国产免费av片在线观看野外av| a在线观看视频网站| 最近最新中文字幕大全电影3| 日本黄色视频三级网站网址| 亚洲熟妇中文字幕五十中出| 无人区码免费观看不卡| 搡老熟女国产l中国老女人| 国产不卡一卡二| 一本久久中文字幕| 啦啦啦韩国在线观看视频| 欧美+亚洲+日韩+国产| 90打野战视频偷拍视频| x7x7x7水蜜桃| 欧美乱色亚洲激情| 少妇人妻一区二区三区视频| 欧美zozozo另类| 丰满人妻熟妇乱又伦精品不卡| 麻豆成人av在线观看| 欧美黄色片欧美黄色片| 亚洲成人久久爱视频| 亚洲国产欧美网| 亚洲精品一区av在线观看| www.999成人在线观看| 午夜激情福利司机影院| 色老头精品视频在线观看| 宅男免费午夜| 最近在线观看免费完整版| 可以在线观看毛片的网站| 国产午夜精品久久久久久一区二区三区 | 成熟少妇高潮喷水视频| 免费无遮挡裸体视频| 99久久精品热视频| 麻豆成人午夜福利视频| 99久久精品一区二区三区| 亚洲成人久久性| 少妇裸体淫交视频免费看高清| www国产在线视频色| 一级黄色大片毛片| 97超视频在线观看视频| 狂野欧美白嫩少妇大欣赏| 18+在线观看网站| 97人妻精品一区二区三区麻豆| 成人无遮挡网站| 国产探花在线观看一区二区| 此物有八面人人有两片| 日日干狠狠操夜夜爽| 久久久久久久亚洲中文字幕 | 午夜福利高清视频| 琪琪午夜伦伦电影理论片6080| 亚洲人成伊人成综合网2020| 老熟妇乱子伦视频在线观看| 天堂动漫精品| 精品午夜福利视频在线观看一区| 三级男女做爰猛烈吃奶摸视频| 亚洲精品成人久久久久久| 黄片大片在线免费观看| 亚洲中文日韩欧美视频| 在线观看一区二区三区| 久久午夜亚洲精品久久| 国产精品野战在线观看| 色噜噜av男人的天堂激情| 国产淫片久久久久久久久 | 性欧美人与动物交配| 国产伦在线观看视频一区| 亚洲片人在线观看| 十八禁人妻一区二区| 亚洲中文日韩欧美视频| 男女下面进入的视频免费午夜| 国产亚洲精品久久久com| 在线播放无遮挡| 国产高清激情床上av| 成人无遮挡网站| 亚洲中文日韩欧美视频| 国内揄拍国产精品人妻在线| 精品熟女少妇八av免费久了| 亚洲无线观看免费| 深夜精品福利| 国产视频内射| 亚洲精品在线美女| 国产精品精品国产色婷婷| 国产精品久久久久久久久免 | 国产精品久久电影中文字幕| 亚洲精品在线美女| 69人妻影院| 成人一区二区视频在线观看| 亚洲欧美日韩无卡精品| 国产高清有码在线观看视频| 在线播放国产精品三级| 欧美日韩黄片免| 18禁在线播放成人免费| 免费看日本二区| 国产精品亚洲一级av第二区| 99精品欧美一区二区三区四区| 精品无人区乱码1区二区| av福利片在线观看| 亚洲国产欧洲综合997久久,| 中出人妻视频一区二区| 12—13女人毛片做爰片一| 国产精品自产拍在线观看55亚洲| 亚洲不卡免费看| 国产高潮美女av| 中亚洲国语对白在线视频| 亚洲国产欧美网| 亚洲激情在线av| 热99re8久久精品国产| 国产乱人伦免费视频| 丰满的人妻完整版| 在线免费观看不下载黄p国产 | 夜夜爽天天搞| 免费人成在线观看视频色| 91av网一区二区| 桃红色精品国产亚洲av| 欧美日韩国产亚洲二区| www.999成人在线观看| 亚洲人成网站在线播| 国产免费一级a男人的天堂| 在线观看美女被高潮喷水网站 | 一区二区三区免费毛片| 午夜久久久久精精品| 亚洲精品在线美女| 天美传媒精品一区二区| 欧美国产日韩亚洲一区| 男人舔奶头视频| 最近最新免费中文字幕在线| 18+在线观看网站| 久久人人精品亚洲av| 久久久久精品国产欧美久久久| 欧美一级毛片孕妇| 国内少妇人妻偷人精品xxx网站| 国产黄色小视频在线观看| 亚洲在线自拍视频| avwww免费| xxxwww97欧美| 精品国产超薄肉色丝袜足j| 欧美性感艳星| 精品一区二区三区av网在线观看| 五月伊人婷婷丁香| 亚洲人与动物交配视频| av天堂中文字幕网| 18禁美女被吸乳视频| 国产精品野战在线观看| 久久这里只有精品中国| 国产视频内射| 每晚都被弄得嗷嗷叫到高潮| 久久精品91无色码中文字幕| 国产精品99久久久久久久久| 国产一区二区激情短视频| 婷婷丁香在线五月| 人妻夜夜爽99麻豆av| 18美女黄网站色大片免费观看| 又黄又粗又硬又大视频| 亚洲av日韩精品久久久久久密| 久久人妻av系列| 久久精品夜夜夜夜夜久久蜜豆| 美女高潮的动态| 亚洲 国产 在线| 禁无遮挡网站| 亚洲av二区三区四区| 一个人免费在线观看电影| 精品久久久久久久人妻蜜臀av| 久久久久久久久久黄片| 精品日产1卡2卡| 亚洲成人精品中文字幕电影| 非洲黑人性xxxx精品又粗又长| 老汉色∧v一级毛片| 午夜老司机福利剧场| 婷婷亚洲欧美| 听说在线观看完整版免费高清| 男女那种视频在线观看| 国产精品香港三级国产av潘金莲| 夜夜夜夜夜久久久久| 国产三级中文精品| 欧美日韩一级在线毛片| 欧美日韩综合久久久久久 | 国产又黄又爽又无遮挡在线| 亚洲国产高清在线一区二区三| 亚洲无线在线观看| 久久久国产成人精品二区| 一级黄色大片毛片| 天堂√8在线中文| av片东京热男人的天堂| 日韩精品中文字幕看吧| 88av欧美| 欧美丝袜亚洲另类 | 村上凉子中文字幕在线| 女人十人毛片免费观看3o分钟| 久久久久精品国产欧美久久久| 成人av一区二区三区在线看| 日韩欧美免费精品| 日本三级黄在线观看| 日本成人三级电影网站| 日本 av在线| 欧美性猛交╳xxx乱大交人| 男人的好看免费观看在线视频| 熟女人妻精品中文字幕| 特大巨黑吊av在线直播| 看片在线看免费视频| 国产成+人综合+亚洲专区| 老汉色∧v一级毛片| av国产免费在线观看| 亚洲激情在线av| 操出白浆在线播放| 国产成+人综合+亚洲专区| 一个人免费在线观看的高清视频| 国产精品电影一区二区三区| 国产毛片a区久久久久| 欧美性感艳星| netflix在线观看网站| 精品久久久久久久毛片微露脸| 少妇的逼水好多| 国产精品日韩av在线免费观看| 国产激情欧美一区二区| 国产av不卡久久| 国产精品电影一区二区三区| 一二三四社区在线视频社区8| 国产色婷婷99| 亚洲精品美女久久久久99蜜臀| 免费人成在线观看视频色| 色综合站精品国产| 久久久久久久久中文| 亚洲av电影在线进入| 日韩欧美在线乱码| 听说在线观看完整版免费高清| 欧美乱码精品一区二区三区| 嫩草影院精品99| 亚洲一区二区三区不卡视频| 香蕉丝袜av| 岛国在线观看网站| 欧美激情在线99| 国产精品98久久久久久宅男小说| 免费看十八禁软件| 日本成人三级电影网站| 日韩欧美精品免费久久 | 亚洲精品一卡2卡三卡4卡5卡| 丝袜美腿在线中文| 婷婷亚洲欧美| 欧美xxxx黑人xx丫x性爽| 一个人看的www免费观看视频| 欧美xxxx黑人xx丫x性爽| 国产老妇女一区| 久久久久九九精品影院| 国产精品亚洲一级av第二区| 免费看十八禁软件| 欧美三级亚洲精品| 精品欧美国产一区二区三| 三级国产精品欧美在线观看| av女优亚洲男人天堂| 久久精品人妻少妇| 国产97色在线日韩免费| 久久国产乱子伦精品免费另类| 国产成人欧美在线观看| 3wmmmm亚洲av在线观看| 欧美中文综合在线视频| 丰满的人妻完整版| 国产色爽女视频免费观看| 丰满人妻一区二区三区视频av | 亚洲一区二区三区色噜噜| 麻豆成人午夜福利视频| 亚洲精品亚洲一区二区| 桃色一区二区三区在线观看| 亚洲精品日韩av片在线观看 | 国产精品 欧美亚洲| 一区福利在线观看| 中文在线观看免费www的网站| 88av欧美| 中文字幕久久专区| 久久久久久久午夜电影| 91在线观看av| а√天堂www在线а√下载| 欧美+日韩+精品| 天天躁日日操中文字幕| 亚洲成人免费电影在线观看| 亚洲av免费高清在线观看| 亚洲专区中文字幕在线| 亚洲人与动物交配视频| 亚洲美女黄片视频| 亚洲第一欧美日韩一区二区三区| 亚洲美女视频黄频| 一本精品99久久精品77| АⅤ资源中文在线天堂| 9191精品国产免费久久| 搡老妇女老女人老熟妇| 亚洲av二区三区四区| 国产亚洲精品久久久com| 国产午夜福利久久久久久| 亚洲人与动物交配视频| 国产午夜精品久久久久久一区二区三区 | 国产精品久久久久久精品电影| 真实男女啪啪啪动态图| 女生性感内裤真人,穿戴方法视频| 成人永久免费在线观看视频| 亚洲黑人精品在线|