劉彩玲,黎艷妮,宋建農(nóng),馬 拓,王蒙蒙,王徐建,張 超
(中國農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083)
基于EDEM的離心甩盤撒肥器性能分析與試驗(yàn)
劉彩玲,黎艷妮,宋建農(nóng)※,馬 拓,王蒙蒙,王徐建,張 超
(中國農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083)
為提高顆粒肥料撒施均勻性,該文對離心甩盤式撒肥器進(jìn)行甩盤轉(zhuǎn)速、喂入量、喂入角和喂入位置角對拋撒均勻性單因素離散元仿真分析,完成多元回歸正交旋轉(zhuǎn)仿真試驗(yàn)和目標(biāo)參數(shù)優(yōu)化并進(jìn)行臺架試驗(yàn),分析結(jié)果表明,喂入位置角與轉(zhuǎn)速及喂入位置角與喂入角間交互作用對撒肥均勻性影響均高度顯著;各因素影響主次順序?yàn)樗ΡP轉(zhuǎn)速、喂入角、喂入量、喂入位置角;當(dāng)甩盤轉(zhuǎn)速900 r/min、喂入量4 275 顆/s、喂入角110°、喂入位置角64°時均勻性變異系數(shù)為12.48%,仿真驗(yàn)證和實(shí)際試驗(yàn)驗(yàn)證結(jié)果與優(yōu)化結(jié)果相吻合。機(jī)器前進(jìn)速度為5.4 km/h時實(shí)際工況動態(tài)仿真得到工作幅寬內(nèi)均勻性變異系數(shù)為11.43%,滿足田間撒肥作業(yè)要求。研究結(jié)果可為顆粒肥撒施機(jī)設(shè)計提供參考。
農(nóng)業(yè)機(jī)械;離散元法;數(shù)值分析;撒肥器;均勻性;試驗(yàn)
施用化肥是農(nóng)作物增產(chǎn)最快、最有效的措施,合理施用化肥可提高肥料利用率,降低施肥量,從而提高經(jīng)濟(jì)效益,減少環(huán)境污染,實(shí)現(xiàn)農(nóng)業(yè)可持續(xù)發(fā)展[1-2]。
目前國外大多采用圓盤式撒肥機(jī)進(jìn)行撒肥作業(yè),以美國John Deere、德國阿瑪松、法國AMASAT變量撒播機(jī)為代表,但國外撒肥機(jī)械價格昂貴,配件供應(yīng)不及時,撒肥均勻性有待提高[3-6]。國內(nèi)近年來對撒肥機(jī)研究取得一些研究成果,如張睿等[7]設(shè)計了一種鏈條輸送式變量肥料拋撒機(jī),該機(jī)肥料到達(dá)落肥口時間較長,增加施肥作業(yè)時間;齊興源等[8]設(shè)計了一種稻田氣力變量施肥機(jī),該機(jī)以空氣流為動力輸送和撒播肥料,能耗大,對氣流穩(wěn)定性要求較高,且管道輸送存在排肥滯后現(xiàn)象;胡永光等[9]對茶園施肥機(jī)離心撒肥過程進(jìn)行仿真優(yōu)化,該機(jī)只適合窄行距茶園作業(yè)??傮w看國內(nèi)撒肥機(jī)的研究多處于試驗(yàn)研究階段,實(shí)際應(yīng)用中現(xiàn)有撒肥機(jī)均為圓盤式撒肥機(jī)構(gòu),且以水平圓盤式為主,撒施均勻性有待提高[10-11]。
針對目前肥料撒施不均勻問題,課題組提出一種離心甩盤撒肥機(jī)并取得初步成效[12]。為進(jìn)一步提高撒肥器撒施性能,基于離散元仿真軟件EDEM(enhances discrete element method)在國內(nèi)外撒肥器研究中的有益應(yīng)用[13-18],本文在分析肥料顆粒運(yùn)動特性基礎(chǔ)上對撒肥過程進(jìn)行離散元仿真,探究各參數(shù)對撒施均勻性的影響規(guī)律,優(yōu)化參數(shù)并進(jìn)行臺架試驗(yàn),以期為顆粒肥撒肥機(jī)的設(shè)計提供參考。
離心甩盤撒肥器包括機(jī)架、肥箱、供肥槽輪、喂料斗、護(hù)罩、離心甩盤、直流電機(jī),如圖1a所示。
圖1 離心甩盤式撒肥器結(jié)構(gòu)示意圖Fig.1 Structure of fertilizer spreader with centrifugal swing disk
關(guān)鍵部件離心甩盤由盤體、導(dǎo)軌和凸臺組成,盤體為旋轉(zhuǎn)拋物面,由一條水平線段和拋物線組成的母線繞固定軸旋轉(zhuǎn)一周形成,如圖1b所示,盤體母線方程為
導(dǎo)軌軌跡線是以R1=60 mm為基圓半徑的漸開螺旋線,斷面為三角形,共 16條。喂入?yún)^(qū)是內(nèi)徑R0,外徑R1的圓環(huán)面,內(nèi)有徑向?qū)к?,其斷面和漸開螺旋線導(dǎo)軌斷面相同,數(shù)量一致。錐形凸臺位于甩盤中央,甩盤外緣半徑R2=180 mm,高度H0=60 mm,喂入?yún)^(qū)內(nèi)徑R0=40 mm,喂入?yún)^(qū)外徑R1=60 mm,材料采用ABS工程塑料。喂料斗底部出肥口為圓環(huán)面,其內(nèi)徑40 mm,外徑60 mm。
撒肥工作原理:肥料在供肥槽輪作用下進(jìn)入喂料斗喂入?yún)^(qū),在錐形離心甩盤高速旋轉(zhuǎn)作用下沿漸開螺旋線導(dǎo)軌作加速運(yùn)動,至錐盤邊緣以一定速度拋出后做斜拋運(yùn)動,最后落地完成撒肥作業(yè)過程。
假定肥料顆粒為一剛性質(zhì)點(diǎn),質(zhì)量為m,忽略顆粒間相互作用和空氣阻力。肥料沿導(dǎo)軌向上運(yùn)動,在某點(diǎn)E時受力如圖2a所示,建立空間坐標(biāo)系如圖2b所示。
圖2 肥料顆粒在甩盤上的受力分析Fig.2 Force analysis of fertilizer particle on swing disk
肥料顆粒從A0運(yùn)動至A處,xOy坐標(biāo)平面內(nèi)基圓向徑OM對應(yīng)的轉(zhuǎn)角為θ,(°);e(θ)、g(θ)、k分別為靜坐標(biāo)系中以O(shè)點(diǎn)建立的球坐標(biāo)單位向量,其中k軸與動坐標(biāo)系的z軸重合;ξ、η、γ分別為動坐標(biāo)系中肥料顆粒在A點(diǎn)的切線、主法線、副法線方向單位向量。
肥料顆粒在P點(diǎn)時受合外力為F,則
由牛頓第二運(yùn)動定律可知
設(shè)肥料顆粒在P點(diǎn)時絕對加速度a,m/s2;牽連加速度加速度為ae,m/s2;科氏加速度為ac,m/s2;相對切向加速度為art,m/s2;相對法向加速度為arn,m/s2;則肥料顆粒的受力方程為
式中rv為肥料顆粒在E點(diǎn)的相對運(yùn)動速度,m/s;μ為肥料顆粒與甩盤的摩擦系數(shù);n為甩盤盤體母線法向方向的單位向量;g為重力加速度,m/s2。
為研究肥料顆粒拋出甩盤的速度,將動坐標(biāo)系單位向量與肥料顆粒受力方程(4)作數(shù)積得其運(yùn)動微分方程
求解微分方程(6),得到肥料顆粒脫離甩盤時絕對速度av在x0y0z0靜坐標(biāo)系下各坐標(biāo)軸上的分量為
式中nθ取甩盤漸開螺旋線的最大展開角maxθ,(°);nφ為肥料顆粒離開甩盤位置時甩盤相對于機(jī)架的轉(zhuǎn)動角度,(°);參見圖2b;vrn為肥料顆粒脫離甩盤時的相對速度,m/s。由式(7)可以看出,肥料顆粒拋出甩盤時的速度取決于甩盤轉(zhuǎn)速與甩盤結(jié)構(gòu)。
3.1 三維仿真模型
去除圖1a中與接觸無關(guān)部件并將Creo軟件繪制的撒肥器三維實(shí)體模型導(dǎo)入EDEM(圖3)。設(shè)置土壤材料承接肥料顆粒,通過大量仿真統(tǒng)計不同喂入角下的施肥區(qū)域肥料分布質(zhì)量,確保能夠完全收集整個施肥區(qū)域肥料并考慮計算能力確定仿真區(qū)域3.92 m×2.40 m。
圖3 離心甩盤式撒肥三維仿真模型Fig.3 3D simulation model of fertilizer spreader with centrifugal swing disk
3.2 仿真參數(shù)的確定
選用近似球體大顆粒尿素為研究對象,顆粒表面沒有黏附力,選擇Hertz-Mindlin 無滑動接觸模型。甩盤采用ABS工程材料注模加工。為精確設(shè)定邊界條件,利用自制試驗(yàn)平臺對顆粒密度、顆粒與工程材料間彈性恢復(fù)系數(shù)和靜摩擦系數(shù)進(jìn)行試驗(yàn)測定[19-20],其余特性參數(shù)參考相關(guān)文獻(xiàn)[9,16-18],確定仿真參數(shù)為:顆粒肥料直徑4 mm,泊松比 0.4,彈性模量 28 MPa,密度 1 337 kg/m3;顆粒與顆粒間恢復(fù)系數(shù)、靜摩擦因數(shù)、滾動摩擦因數(shù)分別為0.35、0.3、0.26,顆粒與工程材料間恢復(fù)系數(shù)、靜摩擦因數(shù)、滾動摩擦因數(shù)分別為0.6、0.17、0.01。
3.3 仿真試驗(yàn)設(shè)計與試驗(yàn)指標(biāo)
參照美國ASAE S341.2圓盤式撒肥機(jī)靜態(tài)試驗(yàn)方法[21-22],使用二維矩陣法收集肥料并計算其均勻性。應(yīng)用EDEM后處理Selection模塊在縱向(Y方向)距離甩盤中心0.5 m處設(shè)置Grid Bin Group,每個網(wǎng)格大小140 mm ×200 mm(圖4),3.92 m×2.40 m的收集矩形區(qū)域內(nèi)共12行28列336個計算網(wǎng)格。將落入每列網(wǎng)格中肥料質(zhì)量進(jìn)行疊加,形成1×28的單行肥料收集矩陣,單行矩陣中肥料數(shù)值相當(dāng)于撒肥裝置以一定速度穿過單行網(wǎng)格后收集到的肥料。離心式撒肥機(jī)橫向撒肥幅寬較大更易產(chǎn)生誤差,常以橫向幅寬方向撒肥變異系數(shù)作為撒肥均勻性試驗(yàn)指標(biāo)[3,12,23]。
圖4 EDEM中計算網(wǎng)格的布置圖Fig.4 Layout diagram of computational grid in EDEM
橫向均勻性變異系數(shù)Cv計算方法如下:
其中S為標(biāo)準(zhǔn)差,g;為收集域內(nèi)每個網(wǎng)格收集肥料的平均值,g;mk為第k列收集網(wǎng)格肥料質(zhì)量,g;n為收集網(wǎng)格的列數(shù)。
4.1 單因素優(yōu)化仿真試驗(yàn)與結(jié)果分析
喂入角影響肥料顆粒在盤面上的分布,喂入量(顆粒工廠生成顆粒的速度,顆/s。)影響顆粒數(shù)量及顆粒間作用力,喂入位置角影響顆粒離開甩盤的位置、速度與運(yùn)動軌跡,因此基于已有研究及前文分析[12,23-26],確定甩盤轉(zhuǎn)速、喂入位置角、喂入量為試驗(yàn)因素,仿真持續(xù)時間為6 s。
4.1.1 甩盤轉(zhuǎn)速對撒肥分布的影響
保持喂入角、喂入位置角、喂入量分別為60°、70°、2 000顆/s,甩盤轉(zhuǎn)速從600到1000 r/min變化,增量為100 r/min。橫向幅寬方向肥料分布規(guī)律如5b所示,肥料顆粒主要落在-1.8~1.8 m區(qū)域,隨甩盤轉(zhuǎn)速增大橫向有效幅寬增大,肥料分布峰值降低,橫向撒肥均勻性逐漸變好,施肥一致性逐漸提高。根據(jù)ASAE S341.2的定義[21],施肥橫向有效幅寬為目標(biāo)施肥量的1/2處對應(yīng)的施肥寬度,如圖5a所示。
4.1.2 喂入角對撒肥分布的影響
保持甩盤轉(zhuǎn)速、喂入位置角、喂入量分別為700 r/min、70°、2 000 顆/s,喂入角從 20°到 100°變化,增量為 20°。橫向幅寬方向肥料分布規(guī)律如圖 5c所示,在 40°~100°時,隨喂入角增大肥料分布峰值降低,分布圖形逐漸向梯形轉(zhuǎn)變,有效幅寬逐漸增加,肥料橫向分布波動減小,施肥均勻性提高。20°時肥料總質(zhì)量峰值與總和最小,其原因?yàn)槲谷虢沁^小使肥料喂入甩盤速度小于其落入喂料斗速度,因此在相同時間內(nèi)肥料撒施量較小。為使喂入角不影響肥料喂入甩盤轉(zhuǎn)速應(yīng)使喂入角大于20°。
圖5 甩盤轉(zhuǎn)速、喂入角、喂入位置角和喂入量對肥料分布的影響Fig.5 Influence of rotational speed of disk, feeding angle, angle of feeding position and feeding quantity on fertilizer distribution
4.1.3 喂入位置角對撒肥分布的影響
保持甩盤轉(zhuǎn)速、喂入角、喂入量分別為700 r/min、60°、2 000顆/s,喂入位置角從 50°到 90°變化,增量為10°。橫向幅寬方向肥料分布規(guī)律如圖5d所示,喂入位置角影響肥料撒施分布的對稱性,從而影響施肥機(jī)田間往復(fù)或回轉(zhuǎn)施肥時的均勻性[27]。隨喂入位置角增大,肥料在橫向幅寬方向分布的對稱軸由負(fù)向逐漸向正向移動,喂入位置角為70°時對稱軸在盤心的置,對稱分布最佳。橫向撒肥均勻性 50°~70°隨喂入位置角增大逐漸變好,70°~90°規(guī)律相反,70°時變異系數(shù)最小。
4.1.4 喂入量對撒肥分布的影響
保持甩盤轉(zhuǎn)速、喂入角、喂入位置角分別為700 r/min、60°、70°,喂入量從2 000~6 000顆/s變化,增量為1 000顆/s。橫向幅寬方向肥料分布規(guī)律如圖 5e所示,隨喂入量變化,肥料分布質(zhì)量曲線出現(xiàn)明顯波動,影響肥料橫向撒施均勻性,隨喂入量增大,施肥均勻性提高。
單因素仿真試驗(yàn)表明,橫向幅寬方向分布于中心位置肥量較多并上下波動,兩側(cè)撒施量逐漸減少,甩盤轉(zhuǎn)速、喂入角、喂入量、喂入位置角影響橫向分布均勻性。
4.2 正交回歸旋轉(zhuǎn)中心仿真試驗(yàn)
為研究離心甩盤撒肥器施肥均勻性,以均勻性變異系數(shù)Cv為試驗(yàn)指標(biāo)進(jìn)行二次正交回歸旋轉(zhuǎn)仿真試驗(yàn)。
4.2.1 二次正交回歸旋轉(zhuǎn)組合試驗(yàn)
以甩盤轉(zhuǎn)速、喂入角、喂入量、喂入位置角為因素設(shè)計四元二次回歸正交旋轉(zhuǎn)組合試驗(yàn),星號臂γ=2.0,因子區(qū)域中心試驗(yàn)點(diǎn)個數(shù)為6,因素編碼見表1[28],試驗(yàn)方案及試驗(yàn)結(jié)果見表2。
表1 因素水平編碼Table 1 Coding of factors and levels
表2 二次正交回歸旋轉(zhuǎn)組合試驗(yàn)試驗(yàn)方案及結(jié)果Table 2 Test plan and data of quadratic regression rotatable orthogonal design
4.2.2 試驗(yàn)結(jié)果方差分析
采用Design-Expert 8.0.6對表2中試驗(yàn)結(jié)果進(jìn)行多元回歸擬合分析,得到橫向均勻性變異系數(shù)方差分析如表3,二次回歸模型高度顯著[29](P<0.000 1),失擬項(P=0.081 9>0.05)不顯著,回歸方程不失擬。依據(jù)系數(shù)間不存在線性相關(guān)性,經(jīng)逐步回歸法剔除不顯著因素得各因素與變異系數(shù)Cv回歸響應(yīng)面方程為
表3方差分析結(jié)果表明影響因子L2、n2、nL、βL、n、β、λ2、λ對均勻性變異系數(shù)Cv影響高度顯著,因此甩盤轉(zhuǎn)速、喂入角、喂入量對變異系數(shù)有重要影響,雖然喂入位置角不顯著,但其平方項和交互作用項高度顯著,因此不可忽略該因素對試驗(yàn)指標(biāo)的影響,各因素對試驗(yàn)指標(biāo)影響的顯著性由大到小依次為甩盤轉(zhuǎn)速、喂入角、喂入量和喂入位置角。甩盤轉(zhuǎn)速與喂入位置角及喂入角與喂入位置角交互作用影響不可忽視。
表3 變異系數(shù)方差分析Table 3 Variance analysis for variation coefficient
4.2.3 響應(yīng)曲面分析
為直觀分析試驗(yàn)指標(biāo)和各個因素之間的關(guān)系,利用Design-Expert 8.0.6 軟件得到交互作用顯著因素間的響應(yīng)曲面,如圖6所示。
當(dāng)喂入角為90°,喂入量為4 000顆/s時,甩盤轉(zhuǎn)速與喂入位置角交互作用的響應(yīng)曲面如圖 6a,表明甩盤轉(zhuǎn)速 700~900 r/min范圍時隨喂入位置角增大變異系數(shù)增大,900~1 100 r/min轉(zhuǎn)速范圍影響規(guī)律相反;喂入位置角50°至70°范圍時隨轉(zhuǎn)速增大變異系數(shù)增大,70°至90°影響規(guī)律相反;甩盤轉(zhuǎn)速900 r/min及喂入位置角為70°時有最小凹點(diǎn),施肥均勻性較好。甩盤轉(zhuǎn)速和喂入位置角共同決定肥料顆粒離開甩盤的位置和速度,從而影響肥料撒施與分布規(guī)律。
圖6 變異系數(shù)的雙因素響應(yīng)曲面Fig.6 Response surface of two factors for coefficient of variation
甩盤轉(zhuǎn)速為900 r/min,喂入量為4 000顆/s,喂入位置角與喂入角交互作用響應(yīng)曲面如圖 6b,表明一定喂入角時隨喂入位置角增大變異系數(shù)先降后升,70°時顆粒離開甩盤速度方向與機(jī)具前進(jìn)方向匹配較好,橫向分布更均勻。50°~70°喂入位置角區(qū)域隨喂入角增大變異系數(shù)減小,70°~90°喂入位置角區(qū)域變化規(guī)律相反。
4.3 試驗(yàn)結(jié)果的目標(biāo)優(yōu)化
為尋求各因素最優(yōu)組合,以表 1中各因素范圍為約束條件,以變異系數(shù)回歸模型式(12)為目標(biāo)函數(shù),求解其最小值,得變異系數(shù)最低時優(yōu)化解為甩盤轉(zhuǎn)速899.84 r/min(取900 r/min)、喂入量4 274.63顆/s(取4 275 顆/s)、喂入角 110°、喂入位置角 64.2°(取 64°),此時變異系數(shù)為12.48%。將優(yōu)化參數(shù)進(jìn)行仿真驗(yàn)證,得橫向變異系數(shù)為13.52%,與優(yōu)化結(jié)果基本相吻合。
選擇與仿真條件一致的大顆粒尿素,試驗(yàn)地點(diǎn)為中國農(nóng)業(yè)大學(xué)工學(xué)院地下室。按照 ASAE試驗(yàn)標(biāo)準(zhǔn)每隔兩列計算網(wǎng)格擺放 10×12個盒子形成與仿真一致的3.92 m×2.40 m收集域(圖7),每個盒子面積與計算網(wǎng)格面積相同(140 mm×200 mm)。測定肥料顆粒與紙盒碰撞恢復(fù)系數(shù)為 0.63,為使肥料不從紙盒中彈出,其底部鋪80 g經(jīng)孔徑Ф2 mm檢驗(yàn)篩篩分出的細(xì)土。在最優(yōu)參數(shù)組合下進(jìn)行 3次重復(fù)試驗(yàn),得變異系數(shù)分別為 13.50%、12.44%、12.48%,均值為12.81%,與優(yōu)化結(jié)果基本一致,驗(yàn)證仿真模型精度和邊界參數(shù)可靠性,靜態(tài)試驗(yàn)撒肥效果較好。
圖7 試驗(yàn)現(xiàn)場Fig.7 Diagram of test site
撒肥機(jī)動態(tài)性能研究試驗(yàn)量大且復(fù)雜,因此目前撒肥均勻性試驗(yàn)研究多基于靜態(tài)試驗(yàn)法[8,9,12,23],少數(shù)動態(tài)試驗(yàn)[3,11]也只考慮單行程內(nèi)肥料分布均勻性,與田間作業(yè)存在差距。本文依據(jù)撒肥機(jī)往返作業(yè)肥料拋撒重疊搭接實(shí)際作業(yè)情況進(jìn)行最佳參數(shù)下動態(tài)仿真試驗(yàn)研究。文獻(xiàn)[30]指出,離心式撒肥器撒施肥料橫向分布不均勻,最大稠度區(qū)位于以D/2為半徑的圓弧內(nèi)(圖8),與前述單因素試驗(yàn)分析規(guī)律一致,因此田間作業(yè)為滿足撒施均勻性需有一定重疊量Δb,Δb為拋擲遠(yuǎn)度的25%左右?;谇笆龇抡婺P秃瓦吔鐓?shù),前進(jìn)速度分別為0. 5 m/s(1.8 km/h)和1.5 m/s(5.4 km/h),收集域3.92 m×5.20 m,采用回轉(zhuǎn)作業(yè)方式進(jìn)行多軌跡擬合疊加[4],得三維分布如圖9a、9b,肥料總量分布如圖9c,0.5 m/s和1.5 m/s時疊加后工作幅寬內(nèi)均勻性變異系數(shù)分別為9.92%和11.43%,常用拋撒式施肥機(jī)要求橫向施肥均勻度變異系數(shù)Cv≤20%,圓盤式撒肥機(jī)田間作業(yè)橫向施肥均勻度變異系數(shù)Cv為10%~15%[22],因此能滿足田間施肥實(shí)際需求。
圖8 肥料撒施的分布圖Fig.8 Distribution map of fertilizer spreading
圖9 不同前進(jìn)速度時肥料顆粒的分布Fig.9 Distribution of fertilizer particles at different forward speed
1)為提高顆粒肥料撒肥均勻性,對設(shè)計的具有漸開螺旋線導(dǎo)軌的離心甩盤撒肥器進(jìn)行了理論分析,結(jié)合單因素仿真試驗(yàn)研究了影響因素對撒肥均勻性的影響規(guī)律,確定了各因素的取值范圍:甩盤轉(zhuǎn)速為700~1 100 r/min,喂入角為 70°~110°,喂入量為 2 000顆/s~6 000顆/s,喂入位置角為50°~90°。
2)多元回歸正交旋轉(zhuǎn)試驗(yàn)二次回歸方程與響應(yīng)面分析表明,喂入位置角與甩盤轉(zhuǎn)速及喂入位置角與喂入角間交互作用對撒肥均勻性影響均高度顯著,各因素影響主次順序?yàn)樗ΡP轉(zhuǎn)速、喂入角、喂入量、喂入位置角。
3)對目標(biāo)進(jìn)行優(yōu)化求解,甩盤轉(zhuǎn)速900 r/min、喂入量4 275顆/s、喂入角110°、喂入位置角64°時均勻性變異系數(shù)12.48%,與仿真驗(yàn)證和實(shí)際驗(yàn)證試驗(yàn)結(jié)果基本一致。實(shí)際工況下多軌跡擬合與疊加動態(tài)仿真研究表明,前進(jìn)速度為5.4 km/h時實(shí)際工作幅寬內(nèi)均勻性變異系數(shù)為11.43%,滿足田間撒肥作業(yè)要求。
[1] 付宇超,袁文勝,張文毅,等. 我國施肥機(jī)械化技術(shù)現(xiàn)狀及問題分析[J]. 農(nóng)機(jī)化研究,2017(1):251-255.Fu Yuchao, Yuan Wensheng, Zhang Wenyi, et al. Present situation and problem analysis of the technology offertilizer mechanization in China[J]. Journal of Agricultural Mechanization Research, 2017(1): 251-255. (in Chinese with English abstract)
[2] 陳遠(yuǎn)鵬,龍慧,劉志杰. 我國施肥技術(shù)與施肥機(jī)械的研究現(xiàn)狀及對策[J]. 農(nóng)機(jī)化研究,2015(4):255-260.Chen Yuanpeng, Long Hui, Liu Zhijie. Actuality and measures of fertilization technology and machinery in China[J]. Journal of Agricultural Mechanization, 2015(4):255-260. (in Chinese with English abstract)
[3] 呂金慶,尚琴琴,楊穎,等. 錐盤式撒肥裝置的性能分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(11):16-24.Lü Jinqing, Shang Qinqin, Yang Ying, et al. Performance analysis and experiment on granular fertilizer spreader with swing disk[J]. Transactions of the Chinese Scoiety of Agricultural Engineering (Transactions of the CSAE), 2016,32 (11): 16-24. (in Chinese with English abstract)
[4] Klas. On the production of monodisperse particles with a spinning disk[J]. Precision Agricultural, 2014, 15(3): 304-320.
[5] Fulton J P, Shearer S A, Higgins S F, et al. A method to generate and use as-applied surfaces to evaluate variable-rate fertilizer applications[J]. Precision Agricultural, 2013, 14(2):184-120.
[6] Villette S, Cointault F, Piron E, et al. Centrifugal spreading:An analytical model for the motion of fertilizer particles on a spinning disk[J]. Biosystems Engineering, 2005, 92(2):157-164.
[7] 張睿,王秀,馬偉,等. 變量施肥拋撒機(jī)撒肥機(jī)構(gòu)研究[J].農(nóng)機(jī)化研究,2013(11):153-155,163.Zhang Rui, Wang Xiu, Ma Wei, et al. Design and experiment on spreading mechanism of variable rate fertilizer spreader[J].Journal of Agricultural Mechanization Research, 2013(11):153-155, 163. (in Chinese with English abstract)
[8] 齊興源,周志艷,楊程,等. 稻田氣力式變量施肥機(jī)關(guān)鍵部件的設(shè)計與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(6):20-26.Qi Xingyuan, Zhou Zhiyan, Yang Cheng, et al. Design and experiment of key parts of pneumatic variable-rate fertilizer applicator for rice production[J]. Transactions of the Chinese Scoiety of Agricultural Engineering (Transactions of the CSAE),2016, 32(6): 20-26. (in Chinese with English abstract)
[9] 胡永光,楊葉成,肖宏儒,等. 茶園施肥機(jī)離心撒肥過程仿真與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(5):77-82.Hu Yongguang, Yang Yecheng, Xiao Hongru, et al.Simulation and parameter optimization of centrifugal fertilizer spreader for tea plants[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5):77-82. (in Chinese with English abstract)
[10] 蘆新春,陳書法,楊進(jìn),等. 寬幅高效離心式雙圓盤撒肥機(jī)設(shè)計與試驗(yàn)[J]. 農(nóng)機(jī)化研究,2015(8):100-103.Lu Xinchun, Chen Shufa, Yang Jin, et al. Design and experiment on double-disk spreader with wide breadth and highly efficiency[J]. Journal of Agricultural Mechanization Research, 2015(8): 100-103. (in Chinese with English abstract)
[11] 陳書法,張石平,孫星釗,等. 水田高地隙自走式變量撒肥機(jī)設(shè)計與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(11):16-21.Chen Shufa, Zhang Shiping, Sun Xingzhao, et al. Design and experiment of self-propelled high-ground-clearance spreader for paddy variable-rate fertilization[J]. Transactions of the Chinese Scoiety of Agricultural Engineering (Transactions of the CSAE), 2012, 28(11): 16-21. (in Chinese with English abstract)
[12] 張軍奎. 水稻苗期施肥機(jī)的設(shè)計與試驗(yàn)研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2012.Zhang Junkui. Design and Experiment Study on Topdressing Machine in Rice Seeding Stage[D]. Beijing: China Agricultural University, 2012. (in Chinese with English abstract)
[13] van Liedekerke P, Tijskens E, Dintwa E, et al. DEM simulations of the particle flow on a centrifugal fertilizer spreader[J]. Powder Technology, 2009, 190(3), 348-360.
[14] van Liedekerke P, Tijskens E, Dintwa E. et al. A discrete element model for simulation of a spinning disk fertilizer spreader I: Single particle simulation [J]. Powder Technology,2006, 170(2), 71-85.
[15] Cool S, Pieters J, Mertens K C, et al. A simulation of the influence of spinning on the ballistic flight of spherical fertiliser grains[J]. Computers and Electronics in Agriculture,2014(105): 121-131.
[16] 苑進(jìn),劉勤華,劉雪美,等. 配比變量施肥中多肥料摻混模擬與摻混腔結(jié)構(gòu)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2014,45(6):125-132.Yuan Jin, Liu Qinhua, Liu Xuemei, et al. Simulation of multi-fertilizers blending process and optimization of blending cavity structure in nutrient proportion of variable rate fertilization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 125-132. (in Chinese with English abstract)
[17] 周韋,王金峰,王金武,等. 基于EDEM的水田深施肥機(jī)構(gòu)螺旋鋼絲的數(shù)值模擬與分析[J]. 農(nóng)機(jī)化研究,2015(1):27-30.Zhou Wei, Wang Jinfeng, Wang Jinwu, et al. Numerical simulation and analysis of a fertilizer can on fertilizer spreader based on EDEM[J]. Journal of Agricultural Mechanizaton, 2015(1): 27-30. (in Chinese with English abstract)
[18] 張家華. 基于離散元法的變量施肥機(jī)排肥器排肥過程仿真分析[D]. 石河子:石河子大學(xué),2015.Zhang Jiahua. Simulation Analysis of Variable Fertilizer Applicator Apparatus Fat Process Based on Diskrete Element Method[D]. Shihezi: Shihezi University, 2015. (in Chinese with English abstract)
[19] Liu Cailing, Wang Yali, Song Jiannong, et al. Experimental determination and numerical simulation of granular material restitution coefficient[J]. International Agricultural Engineering Journal, 2016, 25(4): 48-56.
[20] 劉彩玲,王亞麗,宋建農(nóng),等. 基于三維激光掃描的水稻種子離散元建模及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(15):294-300.Liu Cailing, Wang Yali, Song Jiannong, et al. Experiment and diskret element model of rice seed based on 3D laser scanning[J]. Transactions of the Chinese Scoiety of Agricultural Engineering (Transactions of the CSAE), 2016,32(15): 294-300. (in Chinese with English abstract)
[21] Procedure For Measuring Distribution Uniform and Calibrating Granular Broadcast Spreaders:ISO ASAE S341.2: 2006[S].
[22] Equipment for distributing fertilizers-Test methods-Part2:Fertilizer distributors in lines: ISO 5690: 1984[S].
[23] 董向前,宋建農(nóng),張軍奎,等. 錐盤式顆粒肥撒施機(jī)構(gòu)拋撒性能分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(19):33-40.Dong Xiangqian, Song Jiannong, Zhang Junkui, et al.Working performance and experiment on granular fertilizer spreader with cone disk[J]. Transactions of the Chinese Scoiety of Agricultural Engineering (Transactions of the CSAE), 2013, 29(19): 33-40. (in Chinese with English abstract)
[24] Aphale A, Bolander N, Park J, et al. Granular fertiliser particle dynamics on and off a spinner spreader[J].Biosystems Engineering, 2003, 85(3): 319-329.
[25] Olieslagers R, Ramon H, Baerdemaeker J D. Calculation of fertilizer distribution patterns from a spinning disk spreader by means of a simulation model [J]. Journal of Agricultural Engineering Research, 1996, 63: 137-152.
[26] 蔣義然,王新旺,劉瑞靜. 施肥幅寬對圓盤式變量撒肥機(jī)施肥一致性的影響[J]. 安徽農(nóng)業(yè)科學(xué),2012,40(23):11923-11925.Jiang Yiran, Wang Xinwang, Liu Ruijing. Effect of fertilization width on the fertilization consistency of spinning disk spreader[J]. Journal of Anhui Agricultural Sciences,2012, 40(23): 11923-11925. (in Chinese with English abstract)
[27] 吳輝. 圓盤式施肥機(jī)拋撒試驗(yàn)系統(tǒng)開發(fā)與撒肥規(guī)律研究[D]. 保定:河北農(nóng)業(yè)大學(xué),2007.Wu Hui. Development and Distribution Study on the Spreading Test System for a Spinner Spreader[D]. Baoding:Agricultural University of Hebei, 2007. (in Chinese with English abstract)
[28] 任露泉. 回歸設(shè)計及其優(yōu)化[M]. 北京:科學(xué)出版社,2009.
[29] 徐向宏,何明珠.試驗(yàn)設(shè)計與Design-Expert、SPSS應(yīng)用[M].北京:科學(xué)出版社,2010.
[30] 北京農(nóng)業(yè)機(jī)械化學(xué)院. 農(nóng)業(yè)機(jī)械學(xué):上冊[M]. 北京: 中國農(nóng)業(yè)出版社,1981.
Performance analysis and experiment on fertilizer spreader with centrifugal swing disk based on EDEM
Liu Cailing, Li Yanni, Song Jiannong※, Ma Tuo, Wang Mengmeng,Wang Xujian, Zhang Chao
(College of Engineering, China Agricultural University, Beijing100083,China)
Fertilizing operation is an important link in grain seeding, which plays an important role in ensuring the high yield.Fertilizer spreaders often are used in the operating process. At present, the spreading uniformity of most of the machines needs be improved. In order to improve the spreading performance, in this study, a centrifugal fertilizer spreader with a rotating swing disk with 16 involute spiral guide rails was studied and dynamic characteristic analysis of fertilizer particle was performed. A single factor simulation analysis on rotational speed of disk, feeding angle, feeding quantity and angle of feeding position was conducted using a disk rete element model based on theoretical analysis results. Influence of various factors on the spreading uniformity of the centrifugal swing disk was discussed. The working range of the parameters was derived. The rotational speed of disk ranged from 700 r/min to 1 100 r/min, feeding angle was from 70° to 110°, feeding quantity was from 2 000 particles to 6 000 particles per sencond, and angle of feeding position was from 50° to 90°. The urea with larger size was taken as the research material. The orthogonal regression rotation simulation experiment with four influencing factors was designed and the test indexes were coefficient of variation of fertilizer distribution on the lateral width direction. The simulation experiments on fertilizer spreading performance and target parameter optimization was done, and the static verification test was carried out. Multivariate nonlinear regression model was established and the affecting importance of factors on the uniformity and response surface analysis was finished. The experimental data were processed and optimized by Design-expert 8.0.6. The results showed that the interaction between angle of feeding position and rotational speed of disk,angle of feeding position and feeding angle had important influence on spreading uniformity. The order of importance was followed by rotational speed of disk, feeding angle, feeding quantity and angle of feeding position. The minimum uniformity coefficient of variation were 12.48% when rotational speed of disk, feeding quantity, feeding angle and angle of feeding position was 900 r/min, 4 275 per second, 110° and 64°, respectively. With the optimal parameters, the results of simulation and bench testing were mostly in agreement. The simulation research on fertilizer spreading performance of fertilizer spreader by EDEM was proved to be feasible. In order to verify operating effect under actual working conditions, the dynamic simulation research of multi-track fitting and superposition was carried out. The results showed that uniformity coefficient of variation were 9.92% and 11.43%, respectively when the forward speed of a machine was 0.5 m/s and 1.5 m/s. The fertilizer spreader can meet the technical requirements of field operations. The centrifugal fertilizer spreader with a rotating swing disk provides better working performance. The research results provide a theoretical reference for design and optimization of the granular fertilizer spreader with a spinning swing disk.
agricultural machinery; discrete element method; numerical analysis; spreader; uniformity; experiment
10.11975/j.issn.1002-6819.2017.14.005
S224.2;TP391.9
A
1002-6819(2017)-14-0032-08
劉彩玲,黎艷妮,宋建農(nóng),馬 拓,王蒙蒙,王徐建,張 超. 基于EDEM的離心甩盤撒肥器的性能分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(14):32-39.
10.11975/j.issn.1002-6819.2017.14.005 http://www.tcsae.org
Liu Cailing, Li Yanni, Song Jiannong, Ma Tuo, Wang Mengmeng, Wang Xujian, Zhang Chao. Performance analysis and experiment on fertilizer spreader with centrifugal swing disk based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 32-39. (in Chinese with English abstract)
doi:10.11975/j.issn.1002-6819.2017.14.005 http://www.tcsae.org
2017-01-18
2017-05-24
國家重點(diǎn)研發(fā)計劃課題—北方作物精量播種和精密化肥深施關(guān)鍵技術(shù)與裝備(2016YFD0200607)
劉彩玲,女,河北秦皇島人,副教授,博士,2012-2013年赴美國伊利諾伊大學(xué)香檳分校研修,主要從事現(xiàn)代農(nóng)業(yè)機(jī)械與農(nóng)業(yè)裝備研究。北京 中國農(nóng)業(yè)大學(xué)工學(xué)院,100083。Email:cailingliu@163.com。
※通信作者:宋建農(nóng),男,河北藁城人,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)機(jī)械與農(nóng)業(yè)裝備研究。北京 中國農(nóng)業(yè)大學(xué)工學(xué)院,100083。
Email:songjn@cau.edu.cn
中國農(nóng)業(yè)工程學(xué)會高級會員:劉彩玲(E041200744S)