王 健 ,劉厚林 ,Matev? Dular
(1. 泰州學院船舶與機電工程學院,泰州 225300;2. 江蘇大學流體機械及工程技術研究中心,鎮(zhèn)江 212013;3. Laboratory for Water and Turbine Machines, Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana 1000, Slovenia)
離心式水力空化發(fā)生器空化空蝕機制試驗研究
王 健1,劉厚林2,Matev? Dular3
(1. 泰州學院船舶與機電工程學院,泰州 225300;2. 江蘇大學流體機械及工程技術研究中心,鎮(zhèn)江 212013;3. Laboratory for Water and Turbine Machines, Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana 1000, Slovenia)
該文對一臺轉子-定子型離心式水力空化發(fā)生器的性能進行了系統(tǒng)的試驗研究,以尋求其空化生成機制并與空蝕分布之間的關系??梢暬囼灲Y果表明空化發(fā)生器內(nèi)存在楔形槽空化、轉子葉齒和定子葉齒前緣空化。通過水聽器測量了空化發(fā)生器蝸殼側面位置的壓力脈動情況,在相同轉速下壓力脈動隨著流量的增加而增大,壓力脈動周期不變;在相同流量下壓力脈動隨著轉速的增加而增大,周期減小:50 Hz時壓力幅值為30 Hz時的2.5倍,周期縮短0.001 s。油墨法試驗結果顯示空蝕主要發(fā)生在轉子葉齒尾端和中部,定子葉齒前緣空泡附著部分及尾端。楔形槽空化是造成破壞的主要原因,因其空化強度最高且空泡潰滅行為離固壁表面最近。該研究可為離心式空化發(fā)生器的研發(fā)提供參考。
水力;離心泵;空化;空化發(fā)生器;空蝕;可視化試驗
一直以來空化都是制約水力機械發(fā)展的阻礙[1-4],但隨著近年來對空化的理解與研究越發(fā)深入,研究人員發(fā)現(xiàn)若對空化的高湍流和高能量轉換特性加以利用,空化可以成為一種具有廣泛應用前景的技術手段。不但可以加速化學反應[5]、清洗管道[6]、處理污水[7-9],還可以為魚雷等水下兵器減阻[10]??栈赜械囊讓崿F(xiàn)、低能耗且相對廉價的特點,使其在相關領域得到了越來越廣泛的應用。因此研究高效節(jié)能的空化設備具有重要的意義。
目前研究比較廣泛的空化水處理方法為超聲波空化和水力空化,尤其針對前者的研究較為成熟。最早在 20世紀20年代,Harvey等[11]對超聲波空化對微生物的分解能力進行了研究。20世紀80年代之后,隨著超聲設備的發(fā)展與普及,其應用得到了迅速的發(fā)展,涉及醫(yī)學、有機合成、生物化學、材料加工、環(huán)境保護等多個方面[12-17]。盡管如此,超聲波空化由于存在能耗高、空化區(qū)域小以及設備昂貴等缺點,限制了其實現(xiàn)工業(yè)化和產(chǎn)業(yè)化的進程[17]。
不同于超聲波空化,水力空化可在各種不同的水力裝置內(nèi)實現(xiàn),通過控制結構參數(shù)或動力源便可改變空化的長度,周期,強度等特性,效率更高。各國科研人員對水力空化的研究主要集中在細菌或雜質(zhì)降解、分離、破壞以及加速化學反應等方面[18-25],對水力空化設備的空化性能關注較少,諸如壓力損失過大,壓力脈動幅度較小,空泡產(chǎn)出效率較低等問題。
近來主要使用的水力空化設備有文丘里管[18-22]和孔板[23-29]。Mohoklar等[30]利用一種連續(xù)氣泡混合模型研究了文丘里管的一維氣泡流動,結果顯示氣泡與氣泡和氣泡與液體的相互作用對氣泡流型有重要影響。隨后又對比了文丘里管和孔板裝置的空化流場壓力梯度,發(fā)現(xiàn)孔板射流的空化強度要高于文丘里管[31]。翟磊[32]研究了孔板幾何參數(shù)對空化強度的影響關系,并基于此設計了一種孔板和文丘里管組合式空化發(fā)生器,能夠顯著提高單孔板或多孔板式空化發(fā)生器的空化性能。Kanthale等[33]采用數(shù)值模擬的方法研究了孔板空化在不同工況及系統(tǒng)參數(shù)下的空化強度。結果表明空化所引起的物理化學轉變不僅僅是由空泡潰滅所造成的,還與空化發(fā)生器內(nèi)的活性空化體積量有關。近來,在孔板射流的基礎上發(fā)展出了一種新型的空化發(fā)生器,即將孔板設計為轉子結構并置于定子腔內(nèi),流體流入轉子內(nèi)部后在離心力的作用下從轉子表面分布的噴嘴流出形成空化,其運動模式與離心泵相同[34-35]。相比孔板水力空化設備單位能耗羥自由基可增大15倍,且所需時間縮短了70 min[36];液流速度可通過改變轉子速度進行調(diào)節(jié),控制簡便,具有更大的優(yōu)勢與潛力。
本文是課題組早期工作的延伸[37-39],綜合采用可視化試驗、油墨試驗等方法對課題組設計的離心式空化發(fā)生器的空化產(chǎn)生機制、壓力脈動及其空蝕區(qū)域進行了研究,觀測了發(fā)生器內(nèi)的不同空化生成模式;分析了壓力脈動隨空化發(fā)展程度的變化規(guī)律;最后探討了轉子葉齒與定子葉齒空蝕區(qū)域的分布及其主要誘因。本文研究有利于進一步了解轉子-定子式空化發(fā)生器的空化性能,為今后空化發(fā)生器結構的優(yōu)化提供參考,有利于進一步實現(xiàn)空化水處理方法的產(chǎn)業(yè)化與工業(yè)化。
本文研究的離心式空化發(fā)生器是由一臺 ITT公司生產(chǎn)的離心泵改造而成。離心泵型號為SHE 40-160/40/P,流量調(diào)節(jié)范圍Q=18~48 m3/h,對應揚程為H=18.5~35.5 m,葉輪外徑D2=160 mm,蝸殼出口直徑Dd=40 mm,葉片數(shù)z=6。額定功率為40 kW,額定轉速為2 890 r/min。
離心式空化發(fā)生器的改造方法為:將原離心泵葉輪于徑向80 mm處周向切割后加裝一個與葉輪同時旋轉的轉子部件,并在泵腔中與轉子相對的位置安裝一個定子部件。轉子與定子的結構如圖 1所示,兩者均為圓盤結構,靠近外緣一側有12個大小相同的葉齒,定子的葉齒上開有楔形凹槽。轉子和定子有葉齒的一側相對布置,轉子隨原離心泵葉輪運動,轉子與定子的相對運動形成成對的收縮流道,為空泡的形成創(chuàng)造了條件。圖 1中右側所示為轉子-定子剖面圖,圖中左邊固定靜止的為定子,右側旋轉的為轉子。轉子和定子間的空隙由墊片數(shù)量控制??栈l(fā)生器裝配圖如圖1a中所示,主要部件有:切割后的葉輪、定子、轉子與蝸殼。
圖1 空化發(fā)生器結構圖Fig.1 Geometric structure of cavitation generator
本文試驗于斯洛文尼亞盧布爾雅那大學(University of Ljubljana)機械工程學院水機實驗室(Laboratory for Water and Turbine Machines)閉式空化試驗臺上進行,如圖 2所示。利用離心式空化發(fā)生器自身離心泵作為試驗臺動力源??栈l(fā)生器進口前端裝有穩(wěn)壓罐,確保來流穩(wěn)定性。電磁流量計布置在空化發(fā)生器下游罐與穩(wěn)壓罐之間。
為了便于對空化發(fā)生器內(nèi)部的空化進行可視化觀測,在蝸殼側面加裝了觀測窗,如圖3a所示。空泡瞬態(tài)結構通過一臺Fastec Imaging HiSpec4 2G mono型高速數(shù)碼相機記錄。照明設備采用兩臺LED燈,分別置于相機兩側,具體布置如圖3b所示。
圖2 閉式空化試驗臺示意圖Fig.2 Schematic diagram of closed loop cavitation test rig
圖3 觀測窗、相機、光源和水聽器布置圖Fig.3 Layout of observation window, camera,light and hydrophone setups
本文將結合油墨法(用油墨將轉子和定子進行噴涂)對轉子和定子的空蝕區(qū)域進行研究。同時采用 Reson Hydrophone TC4013水聽器測量轉子與定子間的壓力脈動情況,研究空化發(fā)生器在不同工況運行時的內(nèi)部壓力及空泡強度的改變對壓力的影響。水聽器的測量范圍為1 Hz~170 kHz,安裝在蝸殼隔舌附近,這是由于在蝸殼內(nèi)此處的壓力脈動變化最大,如圖3b所示。試驗中空化發(fā)生器的轉速由變頻器FUJI ELECTRIC FVR-E9S控制,實際轉速由數(shù)字式轉速表Velleman DTO6234測量。高速相機的采樣頻率設定為8 000幀/s,水聽器采樣頻率設定為1 MHz。表1中給出了當轉子與定子的間距為0.8 mm時空化發(fā)生器的試驗工況。選取30,40與50 Hz,3種不同的電機驅(qū)動頻率fd,每種頻率下利用閥門調(diào)節(jié)空化發(fā)生器在 3種不同流量下運行,以便對比相同頻率不同流量和相同流量不同頻率的運行工況下空化發(fā)生器的性能。不同驅(qū)動頻率下空化發(fā)生器的轉速由轉速表讀取,分別為1 663,2 268和2 870 r/min。根據(jù)式(1)計算可得各驅(qū)動頻率下空化發(fā)生器的軸頻分別為 27.7、37.8和47.8 Hz,則其離心泵葉輪葉頻與轉子葉頻可分別根據(jù)式(2)和式(3)fr=mfn計算。
式中n為空化發(fā)生器轉速,z為離心泵葉輪葉片數(shù),m為轉子葉齒數(shù),故離心泵葉輪葉頻為6倍軸頻6fn,轉子葉頻為12倍軸頻12fn。
表1 空化發(fā)生器試驗工況Table 1 Operating conditions of the cavitation generator
3.1 空泡瞬時形態(tài)分析
圖4為運行工況為fd=50 Hz,Q=31.4 m3/h時,空化發(fā)生器內(nèi)空泡瞬時形態(tài)。所取時間跨度為轉子相鄰兩個葉齒經(jīng)過觀測窗口的過程,即保證一個完整的轉子-定子葉齒交錯周期。圖4中工況周期為14Δt,其中Δt=0.125 ms。圖中還給出了t=t0+6Δt時定子葉齒與轉子葉齒的三維示意圖,t0表示任意時刻。
在一個完整的運動周期內(nèi)存在 3種空化模式。第一種為定子葉齒前緣空化(虛線框):當轉子的一個葉齒向定子葉齒靠近時,帶動流體掠過定子葉齒前緣,流場類似于鈍頭體繞流。轉子-定子間的相對運動使得定子葉齒與轉子葉齒間過流斷面減?。╰=t0+4Δt至t=t0+6Δt)),液體流速增加,在定子葉齒前緣形成附著空泡(t=t0+4Δt),并迅速發(fā)展擴大(t=t0+6Δt);當轉子葉齒與定子葉齒開始交錯重合時,由于轉子葉齒的干擾(t=t0+8Δt),附著空泡急劇縮小并脫落(t=t0+10Δt),且從轉子-定子的流道中溢出至轉子-定子與蝸殼的間隙中,如圖 4中t=t0+10Δt至t=t0+14Δt虛線框所示。但附著空泡并未完全消失,如圖中點劃線框所示。
圖4 空化發(fā)生器轉子和定子葉齒交錯時空泡瞬態(tài)分布(驅(qū)動頻率fd=50 Hz,流量Q=31.4 m3·h-1)Fig.4 Cavitation distribution of cavitation generator as rotor and stator teeth staggering(Driving frequency fd=50 Hz, Flow rate Q=31.4 m3·h-1)
同時隨著重合區(qū)域的增加,另外一種空化模式開始形成。由于定子葉齒上開有楔形槽,此時流道類似擴散管,未消失的附著空泡重新開始生長(點畫線框t=t0+10Δt),直至轉子葉齒開始與定子錯開(t=t0+2Δt),以下稱該空化模式為楔形槽空化。隨后當t=t0+4Δt時,下一轉子葉齒逼近,定子葉齒前緣空化開始發(fā)展。故在一個完整周期中,定子葉齒前緣經(jīng)歷 2次空化發(fā)展過程,分別為定子葉齒前緣空化與楔形槽空化。值得一提的是,當t=t0+4Δt時,可觀察到一簇與附著空泡分離的空泡團體積迅速變大(雙點劃線框),這是由于轉子定子葉齒錯開后過流斷面突然變大使附著空泡得以擴散并充分發(fā)展而脫落,也得益于轉子的高速旋轉在轉子葉齒后側形成了一個低壓區(qū)。
第三種空化模式為轉子葉齒前緣空化(實線框),如圖4中t=t0+4Δt時刻和t=t0+6Δt時刻所示。這是由于轉子高速旋轉而在其前緣形成的鈍頭體繞流空化。該空化模式在定子與轉子葉齒開始交錯時與定子葉齒前緣空化的碰撞下消失,并對后者造成干擾使其脫落。
3.2 壓力脈動分析
為了研究空化發(fā)生器內(nèi)的壓力脈動情況,圖 5給出了驅(qū)動頻率為50 Hz時,3種不同流量下的壓力脈動時域圖與頻譜圖。
圖5 不同流量下空化發(fā)生器內(nèi)壓力脈動時域頻譜圖(驅(qū)動頻率fd=50 Hz)Fig.5 Time domain and frequency spectrum of pressure pulsation under different flow rate as fd=50 Hz
從圖5a中可以發(fā)現(xiàn),在0.01 s內(nèi),空化發(fā)生器在不同流量下的壓力脈動周期一致,皆約為0.002 s;隨著流量的增加,壓力脈動幅值相應升高:從 18.0 m3/h時約1.0×105Pa上升至31.4 m3/h時約1.5×105Pa。另外需要注意的是,當流量為18.0 m3/h時,在任意一個周期內(nèi)的波峰存在明顯的駝峰現(xiàn)象,2個波峰幅值相當,且第二波峰略高;第一波峰則隨著流量的增加逐漸減弱,當流量為31.4 m3/h時,第二波峰已明顯高于第一波峰。
通過圖5b中還可以發(fā)現(xiàn),26.0 m3/h和31.4 m3/h流量下空化發(fā)生器的主頻和次頻與軸頻的比值均為 12和24,即12倍軸頻12fn與24倍軸頻24fn,并非離心泵的葉輪葉頻fb=6fn,而等于轉子葉頻fr=12fn與兩倍轉子葉頻2fr;18.0 m3/h時主頻同樣為轉子葉頻,但次頻則為三倍轉子葉頻 3fr,這可能是因為該流量下空化發(fā)生器內(nèi)部流場受前文提及的駝峰現(xiàn)象的影響。
圖6所示為空化發(fā)生器在不同驅(qū)動頻率下流量相同時(Q=18.0 m3/h)的壓力脈動時域圖和頻譜圖。從圖6a中可看出,當流量不變時,壓力脈動隨著驅(qū)動頻率的增大而升高,脈動周期則隨之縮短:驅(qū)動頻率30 Hz時壓力脈動幅值約為4.0×104Pa,脈動周期約為0.003 s,且無駝峰現(xiàn)象,而驅(qū)動頻率50 Hz時,壓力脈動幅值增大了2.5倍,為1.0×105Pa,而脈動周期則縮短了0.001 s。
圖6b中由于驅(qū)動頻率不同,故各頻譜曲線的軸頻不同??梢钥闯?,壓力脈動主頻和次頻的壓力幅值均隨著驅(qū)動頻率的增加而顯著升高;當驅(qū)動頻率為 40 Hz和30 Hz時,由于無駝峰現(xiàn)象,故與驅(qū)動頻率為50 Hz時不同,空化發(fā)生器的主頻與次頻分別等于轉子葉頻與兩倍轉子葉頻。因此盡管空化的產(chǎn)生會影響腔內(nèi)的壓力脈動,但空化發(fā)生器的主頻與次頻主要由轉子葉齒數(shù)決定。
圖6 不同驅(qū)動頻率下空化發(fā)生器流量相同時壓力脈動時域頻譜圖(流量Q=18.0 m3·h-1)Fig.6 Time domain and frequency spectrum of pressure pulsation under different driving frequency with same flow rate Q=18.0 m3·h-1
為了研究不同轉子與定子間距對空化發(fā)生器腔內(nèi)壓力的影響,分別調(diào)整轉子-定子間距從0.8 mm增加到3.8 mm和5.6 mm后對壓力脈動進行測量,結果如圖7所示??梢钥闯?,隨著間隙的增大,腔內(nèi)的壓力幅值有所減小,但降低幅度并不明顯。壓力脈動周期仍然保持一致。
圖7 不同轉子定子間距壓力脈動時域圖(驅(qū)動頻率 fd=40 Hz,Q=18.0 m3·h-1)Fig.7 Time domain of the pressure pulsation with different spacing between rotor and stator(Driving frequency fd=40 Hz, Flow rate Q=18.0 m3·h-1)
3.3 定子轉子葉齒空蝕分析
為了確定空化發(fā)生器內(nèi)的空蝕發(fā)生區(qū)域,采用油墨法進行了空蝕試驗:使空化發(fā)生器在驅(qū)動頻率為50 Hz,流量為31.4 m3/h的工況下持續(xù)運行30 min,令空泡充分腐蝕噴涂有黑色染料的轉子和定子。試驗結果如圖 8所示,圖中淺色區(qū)域為空蝕區(qū)域。
從圖 8中可以看出,轉子的腐蝕區(qū)域發(fā)生在葉齒尾緣以及葉齒中部;定子的腐蝕區(qū)域則主要發(fā)生在楔形槽空泡覆蓋的區(qū)域,某些葉齒的尾端也有空蝕發(fā)生。從前文分析可知,離心式空化發(fā)生器主要有 3種空化形態(tài),其中楔形槽空化形成時流道截面最小,流速最高,故空化強度最大[39],且產(chǎn)生的空泡距離固壁表面最近,空泡潰滅時釋放的沖擊波能量將直接作用在固壁表面造成破壞,故空蝕主要發(fā)生在楔形槽區(qū)域。同時由圖 4的分析可知楔形槽空化從轉子葉齒與定子葉齒大部分重合時開始初生,并在完全重合時發(fā)展完全并開始脫落,空泡的潰滅過程始于轉子葉齒與定子葉齒開始錯開,故轉子的腐蝕區(qū)域集中在葉齒尾端與葉齒中部。另外值得注意的是轉子葉齒前緣空化覆蓋的區(qū)域則幾乎沒有油墨剝離,這也從側面證明了空泡的潰滅行為發(fā)生在近壁面是造成空蝕的重要誘因。
圖8 轉子與定子空蝕區(qū)域分布圖Fig.8 Cavitation erosion distribution on rotor and stator
本文對一種離心式水力空化發(fā)生器進行了實驗研究,系統(tǒng)分析了發(fā)生器的空化機制,壓力脈動以及空蝕區(qū)域,主要結論如下。
1)空化發(fā)生器內(nèi)的空化形成機制主要有轉子與定子交錯重合形成的楔形槽擴散空化,轉子高速旋轉形成的轉子葉齒前緣空化與定子葉齒前緣空化。
2)在相同轉速下,即空化發(fā)生器驅(qū)動頻率為50 Hz時,腔內(nèi)壓力幅值隨著流量的增加而增大,從18.0 m3/h時約1.0×105Pa上升至31.4 m3/h時約1.5×105Pa,而壓力脈動周期不變,均約為0.002 s,且各流量下空化發(fā)生器主頻均為轉子葉頻,即 12倍軸頻;在相同流量下,即Q=18.0 m3/h時,腔內(nèi)壓力脈動幅值隨著轉速的增加而升高,脈動周期則隨之縮短:驅(qū)動頻率50 Hz時的壓力脈動幅值約為30 Hz時的2.5倍,脈動周期則縮短了0.001 s,而主頻則依然為相應驅(qū)動頻率下的轉子葉頻。故空化發(fā)生器的主頻主要由轉子葉齒數(shù)決定,與轉速和流量無關,即與空化的劇烈程度無關。當轉子與定子間距變大時,壓力脈動幅值有所減小,但降低幅度并不明顯,壓力脈動周期不變。
3)轉子的腐蝕區(qū)域發(fā)生在葉齒尾端和中部;定子的腐蝕區(qū)域集中在葉齒前端與尾端。楔形槽空化是導致空蝕的主要原因,這是由于此時流道內(nèi)流速最高,空化強度最大。轉子葉齒前緣幾乎沒有空蝕,證明了空泡的潰滅行為發(fā)生在近壁面是造成空蝕的必要條件。
[1] 劉厚林,劉東喜,王勇,等. 三種空化模型在離心泵空化流計算中的應用評價[J]. 農(nóng)業(yè)工程學報, 2012, 28(16):54-59.Liu Houlin, Liu Dongxi, Wang Yong, et al. Applicative evaluation of three cavitating models on cavitating flow calculation in centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2012, 28(16): 54-59. (in Chinese with English abstract)
[2] 鄧育軒,李仁年,韓偉,等. 螺旋離心泵內(nèi)回流渦空化特性[J]. 農(nóng)業(yè)工程學報, 2015, 31(1): 86-90.Deng Yuxuan, Li Rennian, Han Wei, et al. Characteristics of backflow vortex cavitation in screw centrifugal pump[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2015, 31(1): 86-90.(in Chinese with English abstract)
[3] 張德勝,吳蘇青,施衛(wèi)東,等. 軸流泵小流量工況條件下葉頂泄露空化特性[J]. 農(nóng)業(yè)工程學報,2013,29(22):68-75.Zhang Desheng, Wu Suqing, Shi Weidong, et al.Characteristics of tip leakage vortex cavitation in axial flow pump at small flow rate condition[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2013, 29(22): 68-75. (in Chinese with English abstract)
[4] 阮輝,廖偉麗,羅興锜,等. 葉片低壓邊的軸面位置對高水頭水泵水輪機空化性能的影響[J]. 農(nóng)業(yè)工程學報, 2016,32(16): 73-81.Ruan Hui, Liao Weili, Luo Xingqi, et al. Effects of low pressure meridional position on cavitation performance for high-head pump-turbine[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(16): 73-81. (in Chinese with English abstract)
[5] Pandit A B, Moholkar V S. Harness cavitation to improve processing[J]. Chemical Engineering Progress, 1996, 92(7):57-69.
[6] 王萍輝.空化射流在管道清洗中的應用[J].電力科學與工程,2002(4):21-24.Wang Pinghui. Application of cavitation jet to tubes and pipes cleaning[J]. Electric Power Science and Engineering,2002(4): 21-24. (in Chinese with English abstract)
[7] Sivakumar M, Pandit A B. Wastewater treatment: A novel energy efficient hydrodynamic cavitational technique[J].Ultrasonics Sonochemistry, 2002, 9(3): 123-131.
[8] Despo F K, Sureyya M, Sureyya M. Pharmaceutical residues in environmental waters and wastewater: Current state of knowledge and future research[J]. Analytical and Bioanalytical Chemistry, 2011, 399(1): 251-275.
[9] Kosjek T, Andersen H R, Kompare B, et al. Fate of carbamazepine during water treatment[J]. Environmental Science & Technology, 2009, 43(16): 6256-6261.
[10] 曹偉,魏英杰,王聰,等.超空泡技術現(xiàn)狀:問題與應用[J].力學進展,2006,36(4):571-579.Cao Wei, Wei Yingjie, Wang Cong, et al. Current status,problems and applications of supercavitation technology[J].Advances in Mechanics, 2006, 36(4): 571-579. (in Chinese with English abstract)
[11] Harvey E N, Loomis A L. The destruction of luminous bacteria by high frequency sound waves[J]. Journal of Bacteriology, 1929, 17(5): 373-376.
[12] 甘雪萍,戴曦,張傳福.超聲空化及其在電化學中的應用[J].四川有色金屬,2001,3(3):24-26.Gan Xueping, Dai Xi, Zhang Chuanfu. Ultrasonic cavitation and its application in the electrochemistry field[J]. Sichuan Nonferrous Metals, 2001, 3(3): 24-26. (in Chinese with English abstract)
[13] 王金剛,郭培全,王西奎,等.空化效應在有機廢水處理中的應用研究[J].化學進展,2005,17(3):549-553.Wang Jingang, Guo Peiquan, Wang Xikui, et al. Research status of degradation and application of cavitation in organic wastewater treatment[J]. Progress in Chemistry, 2005, 17(3):549-553. (in Chinese with English abstract)
[14] 王磊,邱邐.超聲空化效應在治療領域中的研究進展[J].國際醫(yī)學放射學雜志,2011,34(4):364-366.Wang Lei, Qiu Li. Advances of therapeutic ultrasound cavitation[J]. International Journal of Medical Radiology,2011, 34(4): 364-366. (in Chinese with English abstract)
[15] Petrier C, Jiang Y, Lamy M F. Ultrasound and environment:Sonochemical destruction of chloroaromatic derivatives[J].Environmental Science & Technology, 1998, 32(9): 1316-1318.
[16] 郭洪光,高乃云,姚娟娟,等.超聲波技術在水處理中的應用研究進展[J].工業(yè)用水與廢水,2010,41(3):1-4.Guo Hongguang, Gao Naiyun, Yao Juanjuan, et al. Research progress and development of ultrasonic technology applied in water treatment[J]. Industrial Water & Wastewater, 2010,41(3): 1-4. (in Chinese with English abstract)
[17] Gogate P R, Pandit A B. A review and assessment of hydrodynamic cavitation as a technology for the future[J].Ultrason Sonochem, 2005, 12(1): 21-27.
[18] Zupanc M, Kosjek T, Petkovsek M, et al. Removal of pharmaceuticals from wastewater by biological processes,hydrodynamic cavitation and UV treatment[J]. Ultrason Sonochem, 2013, 20(4): 1104-1112.
[19] Kalumuck K M, Chahine G L. The use of cavitating jets to oxidize organic compounds in water[J]. Journal of Fluids Engineering, 2000, 122(3): 465-470.
[20] ?arc A, Stepi?nik P T, Petkov?ek M, et al. The issue of cavitation number value in studies of water treatment by hydrodynamic cavitation[J]. Ultrasonics Sonochemistry,2017(34): 51-59.
[21] 許佳麗,黃永春,袁媛,等.基于文丘里管的水力空化降解殼聚糖的研究[J].食品工業(yè)科技,2016,37(2):244-248.Xu Jiali, Huang Yongchun, Yuan Yuan, et al. Study on the degradation of chitosan with hydrodynamic cavitation based on the venturi tube[J]. Science and Technology of Food Industry, 2016, 37(2): 244-248. (in Chinese with English abstract)
[22] 劉惠賢,何仁,黃永春,等.水力空化對羧甲基纖維素鈉(CMC)溶液黏度的影響[J].食品工業(yè),2014,35(6):34-36.Liu Huixian, He Ren, Huang Yongchun, et al. Influence of hydrodynamic cavitation on the viscosity of CMC solution[J].The Food Industry, 2014, 35(6): 34-36. (in Chinese with English abstract)
[23] 武志林,王偉民,李維新,等.水力空化聯(lián)合臭氧氧化滅藻技術的實際應用[J].生態(tài)與農(nóng)村環(huán)境學報,2016,32(3):500-506.Wu Zhilin, Wang Weimin, Li Weixin, et al. Practical application of technology combining ozonation with hydrodynamic cavitation to algae removal from water[J].Journal of Ecology and Rural Environment, 2016, 32(3):500-506. (in Chinese with English abstract)
[24] Zhang Z, Wang G, Nie Y, et al. Hydrodynamic cavitation as an efficient method for the formation of sub-100 nm O/W emulsions with high stability[J]. Chinese Journal of Chemical Engineering, 2016, 24(10): 1477-1480.
[25] 張茜,董志勇,陳樂,等.三角孔多孔板水力空化殺滅大腸桿菌的研究[J].水力發(fā)電學報,2016,35(8):65-71.Zhang Qian, Dong Zhiyong, Chen Le, et al. Experimental study on escherichia coli killed by hydrodynamic cavitation behind triangular multi-orifice plates[J]. Journal of Hydroelectric Engineering, 2016, 35(8): 65-71. (in Chinese with English abstract)
[26] 朱孟府,鄧橙,宿紅波,等.多孔孔板水力空化反應器的水力特性[J].環(huán)境工程學報,2013,7(2):546-550.Zhu Mengfu, Deng Chen, Su Hongbo, et al. Hydraulic characteristics of hydrodynamic cavitation reactor with orifice plate[J]. Chinese Journal of Environmental Engineering, 2013, 7(2): 546-550. (in Chinese with English abstract)
[27] 何志霞,陳馭航,紀長浩.多孔孔板水力空化可視化與數(shù)值模擬[J].農(nóng)業(yè)機械學報,2016,47(2):396-401.He Zhixia, Chen Yuhang, Ji Changhao. Visualization and numerical simulation of hydrodynamic cavitationin multihole orifice plate[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2): 396-401. (in Chinese with English abstract)
[28] 師淑婷,晉日亞,楊思靜,等.多孔水力空化裝置降解甲基橙[J].環(huán)境工程學報,2016,10(3):1271-1275.Shi Shuting, Jin Riya, Yang Sijing, et al. Porous hydrodynamic cavitation device for degrading Methyl Orange[J]. Chinese Journal of Environmental Engineering,2016, 10(3): 1271-1275. (in Chinese with English abstract)
[29] 董志勇,徐琳香,李大煒,等.圓孔多孔板水力空化降解對硝基苯酚廢水的試驗研究[J].浙江工業(yè)大學學報,2015,43(3):275-278.Dong Zhiyong, Xu Linxiang, Li Dawei, et al. Experimental study on degradation of P-NP by hydrodynamic cavitation due to circular multi-orifice plate[J]. Journal of Zhejiang University of Technology, 2015, 43(3), 275-278. (in Chinese with English abstract)
[30] Moholkar V S, Pandit A B. Modeling of hydrodynamic cavitation reactors: A unified approach[J]. Chemical Engineering Science, 2001, 56(21): 6295-6302.
[31] Moholkar V S, Pandit A B. Numerical investigations in the behaviour of one-dimensional bubbly flow in hydrodynamic cavitation[J]. Chemical Engineering Science, 2001, 56(4):1411-1418.
[32] 翟磊.孔板型水力空化發(fā)生器結構優(yōu)化及其性能評價[D].北京:中國石油大學(北京),2010.Zhai Lei. Structural Optimization and Performance Evaluation of Hydrodynamic Cavitation Reactor of Orifice Type[D]. Beijing: China University of Petroleum, 2010. (in Chinese with English abstract)
[33] Kanthale P M, Gogate P R, Pandit A B, et al. Dynamics of cavitational bubbles and design of a hydrodynamic cavitational reactor: Cluster approach[J]. Ultrason Sonochem,2005, 12(6): 441-452.
[34] Chahine G L, Kalumuck K M. Swirling fluid jet cavitation method and system for efficient decontamination of liquids:6221260[P]. 2001-04-24.
[35] Badve M, Gogate P, Pandit A, et al. Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry[J]. Separation and Purification Technology, 2013(106): 15-21.
[36] 李翔.旋轉空化發(fā)生器性能研究[D].浙江:浙江工業(yè)大學,2013.Li Xiang. Performance of Rotating Cavitation Reactor[D].Zhejiang: Zhejiang University of Technology, 2013. (in Chinese with English abstract)
[37] Petkov?ek M, Zupanc M, Dular M, et al. Rotation generator of hydrodynamic cavitation for water treatment[J]. Separation and Purification Technology, 2013(118): 415-423.
[38] Petkovsek M, Mlakar M, Levstek M, et al. A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration[J]. Ultrasonics Sonochemistry,2015(26): 408-414.
[39] 王健.水力裝置空化空蝕數(shù)值計算與試驗研究[D].鎮(zhèn)江:江蘇大學,2015.Wang Jian. Numerical Simulation and Experimental Tests for Cavitation and Induced Erosion in Hydraulic Apparatus[D].Zhenjiang: Jiangsu University, 2015. (in Chinese with English abstract)
Experiment on cavitation erosion mechanism of centrifugal hydraulic cavitation generator
Wang Jian1, Liu Houlin2, Matev? Dular3
(1.School of Shipping and Mechatronic Engineering, Taizhou University, Taizhou225300, China;2.Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang212013, China;3. Laboratory for Water and Turbine Machines, Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana1000, Slovenia)
The performance of a rotor-stator centrifugal cavitation generator was experimentally studied, aiming at investigating the correlation between its cavitation mechanism and damage distribution. The generator was modified from a centrifugal pump, including a cut impeller, a volute, a rotor and a stator. The rotor and stator consist of 12 teeth each, whereas the stator has wedge grooves on each tooth. Therefore, as the rotor spins, there are 12 nozzles when the rotor tooth overlaps the stator tooth. The experiments were conducted in a closed-loop test rig in the Laboratory for Water and Turbine Machines of University of Ljubljana, Slovenia. The cavitation generator was also used as a flow driver in the test. In order to study the cavitation mechanism, an observation window was mounted on the side of the generator volute. The cavitation evolution was recorded via a high speed camera accordingly. Based on the visualization tests, it is found that there are 3 kinds of cavitation generating mechanisms. One is produced in nozzle tubes formed by the interaction movement of the rotor and stator. The other two are caused by the high speed rotation of the rotor. One happens on the leading edge of the stator tooth as the rotor moves towards it. At the same time, the rotor itself generates bubbles on the leading edge of the tooth. Hence, in one rotor-stator teeth interlacing period, the cavitation generated on the leading edge of the stator (nozzle cavitation and rotating-induced cavitation)has 2 circulations. For detecting the cavitation intensity, the pressure pulsation between the rotor and volute was measured by a hydrophone under different operating conditions. The results show that the pressure pulsation increases as the flow rate increases while keeping the rotating speed constant, but the pressure pulsation cycle remains the same. As the driving frequency is 50 Hz, the pressure amplitudes under 18 and 31.4 m3/h are 1.0×105and 1.5×105Pa, respectively, while the cycle is approximately 0.002 s. Additionally, regardless of the flow rate, the dominant frequency is equal to the rotor blade-passing frequency, but not the impeller-passing frequency of the original centrifugal pump. That is to say, the dominant frequency is 12 times shaft frequency. When the flow rate remains the same (18 m3/h), the pressure pulsation rises with the increasing of rotating speed, whereas the cycle declines. As the driving frequency reaches 50 Hz, the pressure pulsations are nearly 2.5 times that when the driving frequency is 30 Hz, but its cycle increases from 0.002 to 0.003 s. And the domain frequencies under each driving frequency are still equal to the rotor blade-passing frequency. Meanwhile, the influence of the distance between rotor and stator on the pressure pulsation was also studied. The distance was adjusted by the shims under the stator. It is found that increasing the distance would slightly decrease the pressure. Furthermore, the oil ink painting approach was employed to investigate the erosion area of the cavitation generator. The result indicates that the rear part and the middle part of the rotor tooth are eroded. For the stator, the damage almost covers the wedge grooves and some rear part of the tooth, which means these parts are the potential erosive area. The nozzle cavitation is the dominant trigger for these damages, since it has the strongest cavitation intensity among the above discussed 3 kinds of cavitation generating mechanisms. When the teeth of the rotor and stator interlace each other, the flow velocity in the gap between the rotor and stator is getting faster, creating stronger cavitation intensity. Hence, the erosion area primarily locates on the wedge groove. Moreover, the nozzle cavitation initiates while the rotor tooth overlaps most part of the stator tooth, and starts to shed off as they begin to stagger, so the shed bubbles collapse downstream, contributing to damages on the rear part of both rotor and stator. It reveals that the cavitation erosion in hydraulic machinery is primarily caused by the collapse of bubbles that are close to the solid wall.
hydrodynamics; centrifugal pumps; cavitation; cavitation generator; cavitation erosion; visualization experiment
10.11975/j.issn.1002-6819.2017.14.007
TV131.63
A
1002-6819(2017)-14-0049-07
王 健,劉厚林,Matev? Dular. 離心式水力空化發(fā)生器空化空蝕機制試驗研究[J]. 農(nóng)業(yè)工程學報,2017,33(14):49-55.
10.11975/j.issn.1002-6819.2017.14.007 http://www.tcsae.org
Wang Jian, Liu Houlin, Matev? Dular. Experiment on cavitation erosion mechanism of centrifugal hydraulic cavitation generator[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 49-55.(in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.14.007 http://www.tcsae.org
2017-01-24
2017-05-31
國家自然科學基金青年基金項目(51609164);江蘇省自然科學基金青年基金項目(BK20160574);泰州學院博士/教授項目(QD2013002)作者簡介:王 健,男,江蘇泰州人,船舶與機電工程學院,講師,博士,主要從事水力機械空化空蝕方面的研究。泰州 泰州學院船舶與機電工程學院,225300。Email:arieskin@126.com