董 亮,趙宇琪,肖佳偉,劉厚林
(江蘇大學(xué)流體機(jī)械工程技術(shù)研究中心,鎮(zhèn)江 212013)
液力減速器空化前后振動及噪聲特性變化機(jī)理
董 亮,趙宇琪,肖佳偉,劉厚林
(江蘇大學(xué)流體機(jī)械工程技術(shù)研究中心,鎮(zhèn)江 212013)
為研究液力減速器空化前后振動噪聲特性變化情況,基于INV3020數(shù)據(jù)采集系統(tǒng)和高速攝影系統(tǒng)建立了空化和振動噪聲測試系統(tǒng),實(shí)現(xiàn)了性能參數(shù)和振動噪聲信號的同步采集。通過調(diào)節(jié)液力減速器進(jìn)、出口壓力及泵輪轉(zhuǎn)速,結(jié)合高速攝影試驗(yàn)準(zhǔn)確獲得空化初生的條件,利用加速度傳感器和聲壓傳感器測量了空化前后的振動和噪聲。結(jié)果表明,在轉(zhuǎn)速1 100 r/min條件下,初始壓力下降至0.04 MPa時,泵輪背面靠近外緣位置最先出現(xiàn)空泡,隨著壓力繼續(xù)降低,空泡逐漸占據(jù)整個流道,并向低壓區(qū)域游移。各空化階段周向振動沖擊強(qiáng)度明顯高于徑向方向,徑向方向M1、M3兩測點(diǎn)振動強(qiáng)度相差不大;空化初生時振動加速度和聲壓級最大,嚴(yán)重空化時次之,未空化時最小。不同空化階段對噪聲各頻段貢獻(xiàn)量不同,空化初生時聲壓級的提高主要由于葉頻及其倍頻分量,及300 ~ 500 Hz頻帶與1 000~2 000 Hz頻帶聲壓級的上升。隨著空化的加劇,葉頻及其倍頻逐漸淹沒在空化誘發(fā)的低頻噪聲中,軸頻及其倍頻分量突出,1 000~5 000 Hz頻段聲壓級上升,并伴隨空化誘發(fā)的寬頻帶。該研究可為液力減速器空化振動噪聲機(jī)理研究及液力減速器設(shè)計(jì)方法提供參考。
液壓裝備;空化;振動;噪聲;液力減速器
限速和制動對大轉(zhuǎn)動慣量設(shè)備和重型車輛極為重要,它涉及設(shè)備運(yùn)行和車輛行駛的安全。傳統(tǒng)的摩擦制動器因高速工況制動性能不穩(wěn)定及長時間連續(xù)制動會導(dǎo)致制動失效等問題,難以滿足軍用車輛、重型貨車和某些大慣量機(jī)械減速系統(tǒng)對高功率、大容量的要求[1]。作為液力耦合器的一個派生類型,液力減速器依靠泵輪和渦輪內(nèi)液流的作用將設(shè)備機(jī)械能轉(zhuǎn)換成工作液內(nèi)能,從而實(shí)現(xiàn)耗能減速[2]。有研究表明,使用液力減速器的車輛與相同情況下使用其它制動器的車輛相比,在同樣制動距離條件下,下坡速度可提高 20%以上,換擋次數(shù)減少5.9%,平均故障率降低48.1%,制動盤和制動鼓用量減少42%和 51%,粉塵排放減少 50%以上,系統(tǒng)壽命延長 4倍以上,因此配備有液力減速器的車輛能夠極大降低維修運(yùn)營成本[3]。同時,裝有液力減速器的車輛制動柔和,緊急剎車時不會帶給乘客強(qiáng)烈前沖感,并能避免機(jī)械制動產(chǎn)生的尖銳制動噪聲。正因?yàn)樗哂协h(huán)保性能,因此廣泛應(yīng)用于各類大慣量機(jī)械和車輛中[4-5]。
當(dāng)泵輪高速運(yùn)轉(zhuǎn)時,液力減速器流道內(nèi)的局部壓力若小于此溫度下對應(yīng)的飽和蒸汽壓,會導(dǎo)致空化發(fā)生[6-7]。發(fā)生空化時,一方面空化流動會因不同尺度渦旋急劇改變流場結(jié)構(gòu)與壓力分布,甚至堵塞流道、降低制動性能[8-9];另一方面空泡的產(chǎn)生、發(fā)展與潰滅會引發(fā)制動系統(tǒng)劇烈振動并產(chǎn)生噪聲,嚴(yán)重影響整個系統(tǒng)的可靠性[10-11]。
目前,國內(nèi)學(xué)者對液力減速器的研究多集中于制動性能的提高及性能預(yù)測方面。李雪松[12]應(yīng)用滑動網(wǎng)格理論與有限體積法對液力減速器模型內(nèi)部流場進(jìn)行了三維數(shù)值模擬及流場特性分析,計(jì)算出制動轉(zhuǎn)矩,從而對液力減速器的制動特性進(jìn)行了預(yù)測。嚴(yán)軍[13]根據(jù)一維束流理論推導(dǎo)出了液力減速器工作壓力的基本規(guī)律,并在液力減速器恒力矩控制上提出了一種模糊并聯(lián)控制算法。李慧淵等[14]采用 ANSYS-CFX流場仿真軟件,分析溫度邊界條件對液力減速器空載力矩及制動力矩的影響,發(fā)現(xiàn)出口壓力的變化是影響制動力矩的主要因素。褚亞旭等[15]采用大渦模擬對液力減速器內(nèi)部瞬態(tài)三維流動控制方程組進(jìn)行了耦合求解,得到了其內(nèi)部流動規(guī)律。而對于大型設(shè)備緊急制動過程,常伴有明顯的空化現(xiàn)象。常用的空化監(jiān)測方法有高速攝影法[16]、振動測試法[17-18]、噪聲測試法[19-20]和超聲監(jiān)測法[21]等。Robinette等[22-23]深入研究液力變矩器空化機(jī)理,認(rèn)為空化的根本原因?yàn)楣ぷ饕阂暂^大沖角流入泵輪,在泵輪葉片背面產(chǎn)生分離流動,進(jìn)而使得該區(qū)域壓力迅速降低以致最先出現(xiàn)空泡。Arakeri等[24]使用無線微波遙測技術(shù)進(jìn)一步證實(shí)空化產(chǎn)生于渦輪進(jìn)口的分離流動區(qū)。Kowalski等[25-26]使用近距離聲學(xué)測量方法精確捕捉到了液力變矩器空化的噪聲特性。Watanabe等[27]通過高速攝影捕捉到空化最先發(fā)生于導(dǎo)輪進(jìn)口處葉片背面位置,并且記錄下空化區(qū)域隨著空化數(shù)減小而不斷發(fā)展的過程。
目前對于液力減速器內(nèi)部流態(tài)的研究主要集中在內(nèi)部流態(tài)與空化發(fā)生后空泡分布變化方面[28-31],缺少像其他旋轉(zhuǎn)流體機(jī)械空化各階段振動噪聲特性的全面深入研究[32-33]。
由于高速攝影法能夠直觀得到內(nèi)部流場空化狀態(tài),因此本文以一臺液力減速器為試驗(yàn)對象,搭建多信號同步采集試驗(yàn)臺,通過高速攝影得到空化初生的臨界條件,圍繞空化前后振動加速度及噪聲信號的變化規(guī)律進(jìn)行研究,為深入研究液力減速器振動噪聲機(jī)理及設(shè)計(jì)方法提供試驗(yàn)支持。
1.1 試驗(yàn)對象
依據(jù)相似定律計(jì)算公式
其中PM為模型機(jī)功率,W;P為原型機(jī)功率,W;nM為模型機(jī)轉(zhuǎn)速,r/min;n為原型機(jī)轉(zhuǎn)速,r/min;D2M為模型機(jī)泵輪外徑,mm;D2為原型機(jī)泵輪外徑,mm。
將YOX系列液力減速器模型在葉片數(shù)不變的基礎(chǔ)上經(jīng)過等比例縮小3倍,使模型機(jī)功率為原型機(jī)10%,因此,在模型機(jī)葉輪轉(zhuǎn)速800~1 100 r/min條件下,完全滿足流體力學(xué)中幾何相似及運(yùn)動相似定律,因此振動噪聲特性的變化規(guī)律與實(shí)際模型一致,能夠?yàn)榭栈呐袆e提供依據(jù)。其水力結(jié)構(gòu)主要包括泵輪、渦輪、殼體和后蓋板。為便于空泡形態(tài)拍攝,轉(zhuǎn)動的泵輪用噴漆涂成黑色,靜止的渦輪以透明有機(jī)玻璃為材料。泵輪與渦輪均采用徑向直葉片形式(葉片傾角0°),葉片數(shù)分別為11和12,循環(huán)圓內(nèi)徑均為 50 mm,外徑均為 150 mm,高度均為20 mm。泵輪、渦輪模型如圖1所示。
圖1 泵輪、渦輪、殼體模型示意圖Fig.1 Model diagram of pump and turbine wheel and casing
1.2 試驗(yàn)系統(tǒng)
試驗(yàn)在江蘇大學(xué)水泵及系統(tǒng)工程技術(shù)研究中心試驗(yàn)室進(jìn)行。試驗(yàn)裝置由變頻器、電機(jī)、液力減速器、進(jìn)出口閥及水箱等組成,試驗(yàn)系統(tǒng)如圖2所示。在制動工況,渦輪不轉(zhuǎn)動,從泵輪輸入的機(jī)械能全部轉(zhuǎn)化為液體熱能,通過進(jìn)出口球閥控制流量和腔體壓力,并依靠增壓泵提供冷卻循環(huán)流量。為便于腔體壓力調(diào)節(jié)和空化程度控制,采用清水代替油液作為工作介質(zhì)。
圖2 液力減速器空化試驗(yàn)系統(tǒng)示意圖Fig.2 Diagram of cavitation experimental system of hydraulic retarder
本文對不同工況下的內(nèi)部流態(tài)、振動加速度和外聲場噪聲進(jìn)行了同步采集和數(shù)據(jù)處理。高速攝影系統(tǒng)由高速相機(jī)、多功能相機(jī)臺架、兩個LED燈和MSTUDIO軟件等構(gòu)成,如圖3a所示。高速相機(jī)采用美國IDT公司生產(chǎn)的YSLM型高速攝影相機(jī),最大拍攝速率為256 000幀/s,能夠充分保證對空泡動態(tài)特性的捕捉。由于泵輪是金屬葉輪,單個LED燈會使拍攝區(qū)域產(chǎn)生局部陰影,為確保拍攝區(qū)域充分打光,在減速器斜前方 45°布置兩個 LED燈。振動加速度傳感器采用美國 PBC公司生產(chǎn)的INV9822A型ICP加速度傳感器,在后蓋板兩兩相互垂直的3個方向上布置測點(diǎn),如圖3b所示。外聲場噪聲的測量采用INV9206型聲壓傳感器,傳感器布置在減速器正前方1 m的位置,如圖3c所示。驅(qū)動電機(jī)采用皖南三相異步電機(jī),額定轉(zhuǎn)速1 500 r/min,最大轉(zhuǎn)速2 000 r/min,轉(zhuǎn)動慣量 0.02 kg·m2。變頻器采用三星公司生產(chǎn)的F700變頻器,對電機(jī)進(jìn)行變頻調(diào)速。采用INV3020C高性能數(shù)據(jù)采集系統(tǒng),單臺采集系統(tǒng)可達(dá) 104通道,最高采樣頻率102.4 kHz,并對振動、噪聲等非定常信號的同步采集后進(jìn)行數(shù)據(jù)的時域和頻域分析。
為真實(shí)反映非定常瞬態(tài)信號,需要設(shè)置合適的采樣頻率以保證采集信號對原始信號的真實(shí)還原。采樣頻率過高會發(fā)生信號的混疊;采樣頻率過低則會導(dǎo)致無法捕捉到特征信號,使得采集信號失真。根據(jù)奈奎斯特理論,只有采樣頻率需高于分析頻率 2~4倍,才能把數(shù)字信號還原成為原來的信號。本文主要研究 0~5 kHz頻段范圍內(nèi)空化對振動噪聲信號影響規(guī)律,為保證信號真實(shí)性及高分辨率特性,本文采樣頻率設(shè)置為12.8 kHz,采樣時間30 s。
監(jiān)督責(zé)任不夠明晰。監(jiān)督必須要承擔(dān)責(zé)任,不然監(jiān)督可有可無。但在實(shí)踐當(dāng)中,紀(jì)檢監(jiān)察人員嚴(yán)格執(zhí)行制度卻經(jīng)常被貼上不愿擔(dān)責(zé)、缺乏擔(dān)當(dāng)?shù)臉?biāo)簽,究其原因,是制度規(guī)定不夠明晰,對監(jiān)督失職、瀆職行為雖然有處罰規(guī)定,處罰也很嚴(yán)厲,但依據(jù)怎樣的標(biāo)準(zhǔn)來定性卻較為籠統(tǒng),被監(jiān)督部門往往以“出了問題還是我們擔(dān)責(zé),又不會追你們的責(zé)”為由來搪塞;比如招投標(biāo)承辦部門只在開標(biāo)前通知紀(jì)檢部門參與監(jiān)督,是不是做到了事前報(bào)告;這時候不監(jiān)督是失職,監(jiān)督了怕違規(guī),參與還是不參與,責(zé)任如何界定;相關(guān)制度卻沒有明確規(guī)定,很多時候顯得左右為難。
圖3 液力減速器空化試驗(yàn)系統(tǒng)測點(diǎn)分布圖Fig.3 Distribution of measuring points of cavitation experimental system for hydraulic retarder
1.3 試驗(yàn)設(shè)計(jì)
考慮到強(qiáng)度問題,采用降低腔內(nèi)工作壓力的方法使其在運(yùn)行過程中產(chǎn)生空化現(xiàn)象,通過調(diào)節(jié)增壓泵出口閥控制腔內(nèi)初始壓力p,使初始壓力p按照0.10、0.08、0.06、0.04、0.03、0.02和0.01 MPa依次降低。對液力減速器在800~1 100 r/min各工況下不同壓力運(yùn)行時內(nèi)部空化流場進(jìn)行觀測,發(fā)現(xiàn)在800~1 100 r/min轉(zhuǎn)速下,僅1 100r/min時,隨壓力的降低能夠觀測到空化從無到有直至嚴(yán)重空化的整個過程。因此選擇1 100 r/min工況作為分析工況,并對各傳感器調(diào)零。試驗(yàn)過程中,使液力減速器保持全充液狀態(tài)且溫度恒定。
2.1 空化前后內(nèi)流場對比
圖4為n=1 100 r/min工況,初始壓力從0.1 MPa降低到0.01 MPa過程中通過高速攝影捕捉到的渦輪內(nèi)部流態(tài)??梢钥闯觯S著壓力從0.1 MPa下降到0.04 MPa,泵輪背面靠近外緣位置最先出現(xiàn)空泡,隨著壓力繼續(xù)降低,空泡逐漸占據(jù)整個流道。通過高速攝影能夠識別出液力減速器空化未發(fā)生(p>0.04 MPa)、空化初生(p=0.04 MPa)和空化嚴(yán)重(p=0.01 MPa)等空化形態(tài),為分析空化前后振動噪聲特性的變化提供依據(jù)。圖4f、4g為空化初生及嚴(yán)重空化狀態(tài)下不同時刻單個流道內(nèi)流場空泡分布。
2.2 空化前后振動特性對比
圖5為n=1 100 r/min工況,初始壓力從0.1 MPa降低到0.01 MPa過程中振動加速度幅值的變化情況??梢钥闯觯跏級毫?.1 MPa降低到0.01 MPa的過程中,振動加速度呈現(xiàn)先增大后減小的趨勢。測點(diǎn)位置不同,振動大小存在差異,M2測點(diǎn)的振動最為劇烈,M1和M3測點(diǎn)的振動加速度幅值較為接近。由此可知液力減速器運(yùn)行時,從泵輪流出的液流對渦輪的作用力主要為軸向的沖擊力,作用于葉片上的力則要小得多。在空化初生時會出現(xiàn)振動激增的現(xiàn)象,隨著空化程度進(jìn)一步加劇,振動反而減小。
圖4 不同初始壓力下渦輪內(nèi)部流場高速攝影圖Fig.4 High-speed photogram of turbine internal flow field at different initial pressure conditions
選取3個代表性的空化階段(未空化0.10 MPa、空化初生0.04 MPa和嚴(yán)重空化0.01 MPa),對3個測點(diǎn)的振動加速度信號在0~5 000 Hz頻段內(nèi)進(jìn)行頻域分析。圖6給出了對振動加速度進(jìn)行FFT變換后的頻譜曲線。其中,振動加速度級計(jì)算公式為
式中La為振動加速度級,dB;a為振動加速度幅值,mm/s2;a0為基準(zhǔn)加速度,取a0=10-6mm/s2。
圖5 不同初始壓力下不同測點(diǎn)振動加速度幅值變化Fig.5 Amplitude of vibration acceleration at different initial pressures of different monitoring points
圖6 不同空化階段各測點(diǎn)振動加速度級Fig.6 Vibration acceleration level of different monitoring points at different cavitation stage
由圖6可以發(fā)現(xiàn),3個測點(diǎn)的振動加速度頻譜曲線趨勢基本一致,每個測點(diǎn)的最大值都出現(xiàn)在葉片通過頻率(BPF)處。0~2 000 Hz頻帶內(nèi),各測點(diǎn)在各個空化階段均顯示出明顯的軸頻和葉頻及其倍頻特征,說明在低頻帶旋轉(zhuǎn)泵輪和靜止殼體間動靜干涉作用仍然是引起液力減速器振動的主要原因。各空化階段振動加速度級之間的差異較小,說明0~2 000 Hz頻帶不適合作為空化監(jiān)測的特征頻帶。2 000~3 000 Hz頻帶內(nèi),空化各階段的振動加速度級顯示出明顯差異,空化初生和嚴(yán)重空化階段的振動加速度級明顯大于未空化階段,各測點(diǎn)均有10 dB左右的增加。3 000~4 000 Hz頻帶內(nèi),各空化階段振動頻譜曲線相互交錯,規(guī)律不明顯。4 000~5 000 Hz頻帶內(nèi),各空化階段振動加速度級之間的相對差異逐漸增大,空化初生的振動加速度聲壓級最大,嚴(yán)重空化階段次之,未空化階段最小。由此可見,空化前后2 000~3 000 Hz和4 000~5 000 Hz頻帶振動加速度級的變化明顯,可以作為液力減速器空化監(jiān)測的特征頻帶。
2.3 空化前后噪聲特性對比
圖7為n=1 100 r/min工況,初始壓力從0.1 MPa降低到0.01 MPa過程中的外場噪聲總聲壓級變化。
圖7 不同工作壓力下液力減速器外場噪聲總聲壓級值Fig.7 External sound pressure level of hydraulic retarder at different working pressures
可以看出,空化初生階段(p=0.04 MPa),噪聲聲壓級明顯升高,這是由于空泡產(chǎn)生并迅速破裂的過程中,30%~50%的空泡勢能轉(zhuǎn)變?yōu)槁暷?。?yán)重空化階段(p=0.10 MPa)噪聲聲壓級相對于空化初生階段要小,但略大于未空化階段(p>0.04 MPa),這是由于此階段的空泡產(chǎn)生后又在下游低壓區(qū)進(jìn)一步擴(kuò)大,輻射出聲能相比于空化初生階段要小的多。由于總聲壓級值易受某些突出聲壓值的影響,從而使得整個聲壓級增加,無法體現(xiàn)空化對各頻段噪聲影響規(guī)律,因此,需要對信號進(jìn)一步處理。
將3個典型空化階段(未空化p=0.10 MPa、空化初生p=0.04 MPa和嚴(yán)重空化p=0.01 MPa)的聲壓信號進(jìn)行FFT變換,并對聲壓級信號進(jìn)行A計(jì)權(quán)處理,得到符合人耳聽覺的各階段的聲壓級(Sound pressure level,SPL)頻譜曲線,如圖8所示。從圖8的聲壓分布來看,噪聲的能量主要集中在0~1 000 Hz頻帶,聲壓級隨著頻率的增大均呈現(xiàn)減小的趨勢。
未空化階段(p=0.10 MPa),0~1 000 Hz頻帶內(nèi),軸頻、葉頻及其倍頻出現(xiàn)峰值,說明在低頻帶旋轉(zhuǎn)泵輪和靜止殼體間動靜干涉作用仍然是引起液力減速器噪聲的主要原因。1 000 Hz~5 000 Hz頻帶內(nèi),聲壓級隨著頻率的升高逐漸降低,呈現(xiàn)寬帶譜特性。
空化初生階段(p=0.04 MPa),主頻信號與未空化階段特性信號基本相同,主要差異體現(xiàn)在 300~500 Hz及1 000~2 000 Hz頻帶聲壓級相對未空化階段呈現(xiàn)上升趨勢。造成兩個頻帶聲壓級上升的原因可能是空泡產(chǎn)生又迅速潰滅所引起結(jié)構(gòu)振動產(chǎn)生的噪聲所引起的。
嚴(yán)重空化階段(p=0.01 MPa),葉頻的低倍協(xié)頻上升,而高倍協(xié)頻被淹沒在寬頻信號中。一方面由于空化加劇使氣泡增多并發(fā)展成氣泡團(tuán),從而阻塞動靜干涉脈動向下游傳播,使葉頻為主的特征變得不明顯,而軸頻分量得以突出。另一方面,空泡潰滅會造成低頻段的壓力波動及高頻段的壓力脈沖,不同體積空泡群潰滅,使得低頻部分的頻率分布更加復(fù)雜;由于脈沖輻射頻率不同,因此造成1 000~5 000 Hz頻帶出現(xiàn)多峰值特征,在頻譜圖上體現(xiàn)為寬頻。
圖8 不同空化階段噪聲頻譜圖(對數(shù)坐標(biāo))Fig.8 Noise spectrum at different cavitation stage(logarithmic coordinate)
為分析空化對各頻段噪聲貢獻(xiàn)量,將數(shù)據(jù)進(jìn)行倍頻程分析,得到倍頻程譜如圖9所示。
圖9 不同空化階段噪聲倍頻程譜圖Fig.9 Octave noise spectrum at different cavitation stage
可以看出,未空化階段及空化初生階段聲壓級峰值出現(xiàn)在中心頻率為250 Hz頻帶,說明此時動靜干涉作用是主要噪聲源。嚴(yán)重空化階段聲壓級峰值頻帶較多,因?yàn)榭栈T導(dǎo)噪聲成分所占比重在此階段上升明顯,流動誘導(dǎo)噪聲比例相對減小。此外,空化的發(fā)生與發(fā)展對0~100 Hz低頻段基本無影響;100 Hz~1 000 Hz的中頻段,空化后噪聲信號相比未空化階段略有升高;1 000 Hz~5 000 Hz高頻段,噪聲信號隨空化的加劇而升高。
1)根據(jù)高速攝影拍攝得到的內(nèi)流場空泡分布結(jié)果將整個空化過程分為未空化(初始壓力大于0.04 MPa)、空化初生(初始壓力等于0.04 MPa)和空化嚴(yán)重(初始壓力等于0.01 MPa)等3各階段。
2)不同測點(diǎn)振動加速度存在較大差異,其中軸向振級高于徑向振級。所有測點(diǎn)振動均隨空化的發(fā)展呈現(xiàn)先增大后減小的趨勢,且不同空化階段在振級頻譜體現(xiàn)的頻段有所差異,其中0~2 000 Hz及4 000~5 000 Hz頻帶對空化的發(fā)展更加敏感。
3)噪聲總聲壓級隨空化呈現(xiàn)先增大后減小的趨勢,且不同空化階段對各頻段貢獻(xiàn)量不同??栈瘜?~100 Hz低頻段噪聲影響很小;0~1 000 Hz中頻段聲壓級隨空化的發(fā)展呈現(xiàn)先增后減趨勢;1 000~5 000 Hz高頻信號隨空化誘導(dǎo)噪聲比重的增加和流動誘導(dǎo)噪聲比重的減小呈現(xiàn)不斷增大的趨勢。
[1] 劉成曄. 汽車輔助制動裝置發(fā)展綜述[J]. 中國安全科學(xué)學(xué)報(bào),2008,18(1):105-111.Liu Chengye. Review on development of auxiliary braking set of automobiles[J]. China Safety Science Journal, 2008,18(1): 105-111. (in Chinese with English abstract)
[2] 嚴(yán)軍,何仁. 液力緩速器葉片變角度的緩速性能分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(4):206-209.Yan Jun, He Ren. Performance analysis for hydraulic retarder with different vanes[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(4): 206-209.(in Chinese with English abstract)
[3] Cooney T J, Mowatt J E. Development of a hydraulic retarder for the allison AT545R transmission[J]. Sae Transactions,1995, 104: 503-51.
[4] 黃榕清,吳磊,邵建華. 汽車液力緩速器的原理及應(yīng)用[J].汽車電器,2006(11):6-8.Huang Rongqing, Wu Lei, Shao Jianhua. Principle and application of vehicle hydraulic retarder[J]. Automotive Appliances, 2006(11): 6-8.(in Chinese with English abstract)
[5] 郭劉洋,杜明剛. CFD為基的液力減速器結(jié)構(gòu)優(yōu)化仿真[J].現(xiàn)代制造工程,2009(1):104-106.Guo Liuyang, Du Minggang. Configuration optimizing simulation of vehicle hydrodynamic retarder based on CFD technology[J]. Modern Manufacturing Engineering, 2009(1):104-106. (in Chinese with English abstract)
[6] 袁丹青,陳向陽,白濱,等. 水力機(jī)械空化空蝕問題的研究進(jìn)展[J]. 排灌機(jī)械工程學(xué)報(bào),2009,27(4):269-272.Yuan Danqing, Chen Xiangyang, Bai Bin, et al. Research progress of cavitation and ersion in hydraulic machinery[J].Journal of Drainage and Irrigation Machinery Engineering,2009, 27(4): 269-272.(in Chinese with English abstract)
[7] 段向陽,王永生,蘇永生. 水力機(jī)械空化(汽蝕)監(jiān)測研究綜述[J]. 水泵技術(shù),2008(5):1-6.Duan Xiangyang, Wang Yongsheng, Su Yongsheng. Review on monitoring of cavitation of hydraulic machinery[J]. Pump Technology, 2008(5): 1-6.(in Chinese with English abstract)
[8] 康燦,張貴峰,李利婷. 直葉片液力減速器內(nèi)部流場及空化性能研究[J]. 機(jī)械設(shè)計(jì)與制造,2016(11):92-96.Kang Can, Zhang Guifeng, Li Liting. Internal flows and cavitation performance of a hydraulic retarder equipped with straight blades[J]. Machinery Design and Manufacture,2016(11): 92-96. (in Chinese with English abstract)
[9] 董亮,肖佳偉,明加意,等. 液力減速器模型空化特性數(shù)值模擬及試驗(yàn)研究[J]. 排灌機(jī)械工程學(xué)報(bào),2017,35(1):1-5.Dong Liang, Xiao Jiawei, Ming Jiayi, et al. Numerical simulation and experimental study on cavitation behavior of hydraulic retarder model[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(1): 1-5. (in Chinese with English abstract)
[10] 肖佳偉. 液力減速器空化特性試驗(yàn)及分析[D]. 鎮(zhèn)江:江蘇大學(xué),2016.Xiao Jiawei. Experimental Investigation and Analysis on Cavitation of Hydraulic Retarder[D]. Zhenjiang: Jiangsu University, 2016. (in Chinese with English abstract)
[11] 魏巍,李慧淵,鄒波,等. 液力減速器制動性能及其兩相流分析方法研究[J]. 北京理工大學(xué)學(xué)報(bào),2010,30(11):1281-1284.Wei Wei, Li Huiyang, Zou Bo, et al. Study on braking performance and analysis of two-phase flow in vehicular hydraulic retarder[J]. Transactions of Beijing Institute of Technology, 2010, 30(11): 1281-1284. (in Chinese with English abstract)
[12] 李雪松. 車輛液力減速器三維流場分析與特性計(jì)算[D].長春:吉林大學(xué),2006.Li Xuesong. Three dimensional Flow Field Analysis and Characteristic Calculation of Vehicle Hydraulic Reducer[D].Changchun: Jilin University, 2006. (in Chinese with English abstract)
[13] 嚴(yán)軍. 大功率液力減速器設(shè)計(jì)與制動力矩控制算法研究[D]. 武漢:武漢理工大學(xué),2010.Yan Jun. Research on Design of High Power Hydraulic Reducer and Braking Torque Control Algorithm[D]. Wuhan:Wuhan University of Technology, 2010. (in Chinese with English abstract)
[14] 李慧淵,望運(yùn)虎,宋振川,等. 溫度和出口壓力對液力減速器制動力矩的影響機(jī)理研究[J]. 車輛與動力技術(shù),2016(1):24-28.Li Huiyuan, Wang Yunhu, Song Zhenchuan, et al. Study of influence mechanism of temperature and outlet pressure on braking torque of hydraulic retarder[J]. Vehicle and Power Technology, 2016(1): 24-28. (in Chinese with English abstract)
[15] 褚亞旭,劉春寶,馬文星. 液力耦合器三維瞬態(tài)流場大渦模擬與特性預(yù)測[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(10):169-173.Chu Yaxu, Liu Chunbao, Ma Wenxing. Large eddy simulation of the 3-D transient flow field in hydrodynamic coupling and characteristics prediction[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(10):169-173.(in Chinese with English abstract)
[16] 張建生,呂青,孫傳東,等. 高速攝影技術(shù)對水中氣泡運(yùn)動規(guī)律的研究[J]. 光子學(xué)報(bào),2000,29(10):952-955.Zhang Jiangsheng, Lv Qing, Sun Chuandong, et al. The moment of air bubbles in water by use of high speed photography[J]. Acta Photonica Sinica, 2000, 29(10): 952-955. (in Chinese with English abstract)
[17] 馬大猷. 噪聲與振動控制工程手冊[M]. 北京:機(jī)械工業(yè)出版社,2002.
[18] 師漢民,黃其柏. 機(jī)械振動系統(tǒng)[M]. 武漢:華中科技大學(xué)出版社,2013.
[19] 龐劍,諶剛,何華. 汽車噪聲與振動[M]. 北京:北京理工大學(xué)出版社,2006.
[20] 張鵬瑞,楊智剛. 一種旋轉(zhuǎn)機(jī)械振動信號的有效消噪方法[J]. 測控技術(shù),2015,34(8):45-48.Zhang Pengrui, Yang Zhigang. An improved signal denoising method in mechanical fault diagnosis[J]. Measurement and Control Technology, 2015, 34(8): 45-48. (in Chinese with English abstract)
[21] 張小飛,王茁,周有鵬. 超聲檢測中的噪聲處理[J]. 無損檢測,2002,24(5):200-202.Zhang Xiaofei, Wang Zhuo, Zhou Youpeng. Noise processing in ultrasonic testing[J]. Nondestructive Testing,2002, 24(5): 200-202. (in Chinese with English abstract)
[22] Robinette D L. Optimizing 12 volt start-stop for conventional powertrains[J]. Sae International Journal of Engines, 2011,4(1): 850-860.
[23] Robinette D L, Wehrwein D. Automatic transmission gear ratio optimization and monte carlo simulation of fuel consumption with parasitic loss uncertainty[J]. Jcms Journal of Common Market Studies, 2015, 8(1): 307-330.
[24] Arakeri V H. Cavitation inception[J]. Sadhana, 1979, 2(2):149-177.
[25] Kowalski D, Anderson C, Blough J. Cavitation detection in automotive torque converters using nearfield acoustical measurements[C]//SAE 2005 Noise and Vibration Conference and Exhibition. 2005: 3668-3678.
[26] Kowalski D, Anderson C, Blough J. Cavitation prediction in automotive torque converters[C]//SAE 2005 Noise and Vibration Conference and Exhibition. 2005: 135-141.
[27] Watanabe S, Otani R, Kunimoto S, et al. Vibration characteristics due to cavitation in stator element of automotive torque converter at stall condition[C]//ASME 2012 Fluids Engineering Division Summer Meeting Collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012, International Conference on Nanochannels, Microchannels, and Minichannels. 2012:535-541.
[28] 袁哲,馬文星,盧秀泉,等. 液力減速器動態(tài)制動性能預(yù)測分析[J]. 吉林大學(xué)學(xué)報(bào)(工),2013,43(增刊 1):160-164.Yuan Zhe, Ma Wenxing, Lu Xiuquan, et al. Dynamic braking performance prediction and analysis of hydrodynamic retarder[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(Supp.1): 160-164. (in Chinese with English abstract)
[29] 王峰,閆清東,馬越,等. 基于CFD技術(shù)的液力減速器性能預(yù)測研究[J]. 系統(tǒng)仿真學(xué)報(bào),2007,19(6):1390-1392.Wang Feng, Yan Qingdong, Ma Yue, et al. Prediction and analysis on hydraulic retarder performance based on CFD technology[J]. Journal of System Simulation, 2007, 19(6):1390-1392.(in Chinese with English abstract)
[30] 柴博森,王玉建,劉春寶,等. 基于粒子圖像測速技術(shù)的液力變矩器渦輪內(nèi)流場測試與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(12):92-98.Chai Bosen, Wang Yujian, Liu Chunbao, et al.Test and analysis of internal flow field in turbine of hydrodynamic torque converter based on particle image velocimetry[J].Transaction of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2015, 31(12): 92-98.(in Chinese with English abstract)
[31] 徐禮超,侯學(xué)明,基于典型工況的裝載機(jī)發(fā)動機(jī)與液力變矩器匹配[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(7):80-84.Xu Lichao, Hou Xueming. Power matching on loader engine and hydraulic torque converter based on typical operating conditions[J].Transaction of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2015,31(7): 80-84.(in Chinese with English abstract)
[32] 王勇,劉厚林,袁壽其,等. 離心泵非設(shè)計(jì)工況空化振動噪聲的試驗(yàn)測試[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(2):35-38.Wang Yong, Liu Houlin, Yuan Shouqi, et al. Experimental testing on cavitation vibration and noise of centrifugal pumps under off-design conditions[J]. Journal of Drainage and Irrigation Machinery Engineering(Transactions of the CSAE),2012, 28(2):35-38.(in Chinese with English abstract)
[33] 劉忠,鄒淑云,李志鵬,等. 離心泵空化狀態(tài)下聲發(fā)射信號的小波能量特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(8):99-103.Liu Zhong, Zou Shuyun, Li Zhipeng, et al. Wavelet energy features of acoustic emission signals under centrifugal pump cavitation conditions[J]. Journal of Drainage and Irrigation Machinery Engineering(Transactions of the CSAE), 2015,31(8): 99-103.
Change mechanism of vibration and noise characteristics before and after cavitation in hydraulic retarder
Dong Liang,Zhao Yuqi,Xiao Jiawei,Liu Houlin
(Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang212013,China)
In the hydraulic braking, the hydraulic reducer is often used in conjunction with other braking methods, which are used in the vehicle auxiliary brake. It is not transmission component, but the energy-saving component which works in the braking conditions. The use of hydraulic reducer in vehicles can effectively control the driving speed, ensure traffic safety, and increase the stability of the vehicle operation and comfort of driving. At braking of high speed device or large rotational inertia device, the inside of hydraulic reducer will cause cavitation, and the braking performance is reduced with temperature increment. The cavitation of hydraulic system can cause vibrating and produce lots of noise. In order to study the vibration and noise characteristics before and after cavitation in hydraulic retarder, a cavitation and vibration noise test bench was built based on the INV3020 data collection system and the high-speed photography system, which realized the synchronous acquisition for the performance parameters and vibration noise signals. The hydraulic reducer model was made of plexiglass material for the convenience of high speed photography. Firstly, by adjusting the opening of inlet and outlet valve of hydraulic retarder, the internal working pressure of the hydraulic reducer is controlled under several different conditions. The frequency converter is regulated to adjust the motor operating voltage, so that the pump speed of the impeller can be stable in several operation conditions. Combined with high-speed photography experiment, the accurate experiment condition was obtained for cavitation nascent stage, and the vibration and noise signals were measured before and after the cavitation in hydraulic retarder by using acceleration sensor and sound pressure sensor. The experimental results show that, the entire cavitation process can be divided into non-cavitation stage, nascent cavitation stage and serious cavitation stage based on the high-speed photography results. At nascent cavitation stage, the bubble first appeares at the back of the impeller close to the outer edge when the rotation speed of the impeller equals to 1 100 r/min and the inlet pressure equals to 0.04 MPa. As the pressure continues to decrease, the flow channel is gradually occupied by the bubbles, and it goes into serious cavitation stage. The vibration mainly occurs in radial direction of monitoring point, while there is no difference of vibration intensity between the 2 monitoring points. At nascent cavitation stage, the amplitude of vibration acceleration increases sharply, and with the degree of cavitation is further intensified, the amplitude of vibration acceleration is reduced. The change of the cavitation acceleration level of 2 000-3 000 Hz and 4 000-5 000 Hz bands before and after cavitation is obvious, which can be used as the characteristic frequency band of hydraulic reducer. For noise signal, the total sound pressure level in nascent cavitation stage is larger than that in severe cavitation stage, and the minimum value appears in the non-cavitation stage. The maximum value of noise signal is concentrated on blade passing frequency and its harmonic frequencies, which indicates that static and horizontal interference between the rotating pump wheel and the stationary shell in the low frequency band is still the main cause to the noise of the hydraulic reducer. In the 0-100 Hz low frequency band, there is no obvious relationship between sound pressure level and cavitation stages. In the 100-1 000 Hz middle frequency band, compared with serious cavitation stage and non-cavitation stage,the noise signal in nascent cavitation stage is slightly increased. Because the proportion of cavitation-induced vibration and noise components increases significantly at this stage, and the proportion of flow induced vibration noise is relatively reduced.In the high frequency range of 1 000-5 000 Hz, as the proportion of radiation noise signal of bubble burst increases, the serious cavitation stage shows the maximum amplitude of acoustic pressure value, the nascent cavitation stage takes the second place,and the non-cavitation stage shows the minimum value. The study could provide a reference for the study of cavitation vibration and noise of hydraulic retarder and the design method of it.
hydraulic equipment; cavitation; vibrations; noise; hydraulic retarder
10.11975/j.issn.1002-6819.2017.14.008
TH132.46
A
1002-6819(2017)-14-0056-07
董 亮,趙宇琪,肖佳偉,劉厚林. 液力減速器空化前后振動及噪聲特性變化機(jī)理[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(14):56-62.
10.11975/j.issn.1002-6819.2017.14.008 http://www.tcsae.org
Dong Liang, Zhao Yuqi, Xiao Jiawei, Liu Houlin. Change mechanism of vibration and noise characteristics before and after cavitation in hydraulic retarder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2017, 33(14): 56-62. (in Chinese with English abstract)
doi:10.11975/j.issn.1002-6819.2017.14.008 http://www.tcsae.org
2016-11-02
2017-06-05
國家自然科學(xué)基金(51509111);江蘇省產(chǎn)學(xué)研聯(lián)合創(chuàng)新資金資助項(xiàng)目(BY2016072-01);過程裝備與控制工程四川省高校重點(diǎn)試驗(yàn)室開放基金資助項(xiàng)目(GK201403);中國博士后科學(xué)基金資助項(xiàng)目(2015M581734,2017M611721);西華大學(xué)流體及動力機(jī)械教育部重點(diǎn)試驗(yàn)室開放課題資助項(xiàng)目(szjj2015—017,szjj2017-094);江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項(xiàng)目(PAPD)
董 亮,男,副研究員。鎮(zhèn)江 江蘇大學(xué)流體機(jī)械工程技術(shù)研究中心,212013。Email:dongliang@ujs.edu.cn