王秋菊,劉 峰,常本超,韓東來,隋玉剛,楊興玉,陳海龍,新家憲,劉艷霞,焦 峰
(1. 黑龍江省農業(yè)科學院土壤肥料與資源環(huán)境研究所,哈爾濱 150086;2. 黑龍江省農業(yè)科學院科研處,哈爾濱 150086;3. 黑龍江省農墾建三江管理局八五九農場,黑龍江 156326;4. 日本 NICH研究所,日本札幌 079-01;5. 黑龍江省農業(yè)科學院遙感技術中心,哈爾濱 150086;6. 黑龍江八一農墾大學,大慶 163319)
三江平原低濕地水田土壤理化特性及暗管排水效果
王秋菊1,劉 峰2,常本超1,韓東來3,隋玉剛3,楊興玉3,陳海龍3,新家憲4,劉艷霞5,焦 峰6※
(1. 黑龍江省農業(yè)科學院土壤肥料與資源環(huán)境研究所,哈爾濱 150086;2. 黑龍江省農業(yè)科學院科研處,哈爾濱 150086;3. 黑龍江省農墾建三江管理局八五九農場,黑龍江 156326;4. 日本 NICH研究所,日本札幌 079-01;5. 黑龍江省農業(yè)科學院遙感技術中心,哈爾濱 150086;6. 黑龍江八一農墾大學,大慶 163319)
低濕土壤漬澇問題是限制農業(yè)生產的瓶頸問題,為改良低濕土壤漬澇問題,該文研究低濕地水田草甸沼澤土土壤特性,并探討利用暗管排水進行低濕地排水及種植水稻的效果。結果表明,草甸沼澤土土壤質地黏重、各層土壤黏粒質量分數在40%以上;有效孔隙低,在6.40%~7.81%之間,通氣、透水性差,母質層幾乎不透氣、透水,土體容氣度為5.55%~16.08%;含水率高,自然狀態(tài)達到40%以上;土壤容重低,耕層為0.93 g/cm3,母質層1.30 g/cm3;硬度低,液性指數在0.38~0.61之間,整體處于可塑狀態(tài),機械承載力差;草甸沼澤土上設置暗管可以改善土壤的透水性,隨距暗管距離不同,土壤排水效果有差異,距離暗管越近,土壤排水效果越好,水分降低的越明顯;同樣排水曬田后,暗管處理土壤表層狀態(tài)呈干裂狀態(tài),對照(無暗管排水區(qū))則仍呈濕潤狀態(tài);從水稻產量看,有暗管的處理水稻產量比無暗管處理增產8.06%。研究可為低濕地水田合理利用及改良提供依據。
土壤;理化特性;排水;暗管;產量;三江平原;水田
三江平原位于黑龍江省東部,是黑龍江、松花江和烏蘇里江匯流沖積形成的低平原區(qū),總面積10.89萬km2,耕地面積366.77萬hm2,其中低濕耕地占63.7%[1]。平原區(qū)海拔高度為65~80 m,地勢低洼,土質黏重,降水集中,易發(fā)生澇災,導致大田作物大幅度減產;收獲季節(jié)土壤過濕,機械不能作業(yè),經常發(fā)生豐產不豐收現象[2]。三江平原開發(fā)初期,首先是通過建立大型排水渠道解決了地表水問題;其次是通過開展深松、超深松和心土混層等技術打破滯水層,在排除“壤中水”方面取得了一定效果[3-4]。但在降雨集中的作物生長季節(jié),洪澇災害仍頻繁困擾農業(yè)生產。為徹底解決農田澇害,“七五”期間黑龍江省提出“以稻治澇”的低濕地治理對策,通過推進“旱改水”大力發(fā)展水稻,不僅糧食產量大增,也為改善國家口糧構成做出重要貢獻[5-6]。隨種稻時間推移,低濕地水田土壤的問題日漸凸顯。這類土壤存在的主要問題[7-8]:1)土壤長期受地面水和地下潛水浸漬,氧化還原電位低,易產生硫化氫等有毒物質危害根系、影響水稻生長發(fā)育;2)由于土壤有機質高,其質量分數多在5%以上,生育后期土壤氮素供給過剩,易造成倒伏減產、降低稻米食味;3)三江平原水稻以井水灌溉為主,井水升溫和節(jié)水灌溉技術備受重視,由于缺乏有效的土壤排水技術,在非灌水期土壤水分降低緩慢,生育期間影響曬田效果;成熟后不能及時進行機械收獲,甚至發(fā)生霉變、雪捂等次生災害[9-10];也影響機械翻耕整地。本文分析三江平原低濕地水田土壤特性,針對低濕土壤存在的問題,圍繞低濕地水田排水,初步探討暗管排水的效果,為低濕田的利用和改良提供依據。
1.1 供試土壤
試驗地點在黑龍江省農墾建三江管理局 859農場第29 作業(yè)區(qū)(47°30′N、134°20′E,海拔高度為 65.6 m),年降雨量550~600 mm,有效積溫2 200 ℃,供試土壤為草甸沼澤土型水田土壤,種植水稻年限15 a。草甸沼澤土剖面發(fā)育明顯(圖1):第1層為黑土腐殖質層,富含有機質,厚度約20 cm;其下第2層為黃黏土母質層,厚度約10 cm,由于氧化鐵聚集,土色明亮;第3層為灰色潛育層,土壤通體軟黏,無明顯的犁底層。草甸沼澤土化學性質如表 1所示,供試土壤土腐殖質層薄,但有機質含量高,高于黑龍江省一般耕地土壤耕層的有機質質量分數(30 g/kg)[11];母質層土壤養(yǎng)分含量低,尤其是有機質、有效磷、速效鉀含量明顯低于腐殖質層。
圖1 典型草甸沼澤土剖面Fig.1 Profile of meadow marsh soil
表1 供試土壤化學性質Table 1 Chemical characteristic of tested soil
1.2 暗管鋪設方法
在試驗區(qū)鋪設暗管,暗管區(qū)長80 m、寬50 m。暗管間距10 m,平均埋深70 cm,坡降為1/1 000(圖2a),截面如圖2b,田間排列如圖2c所示。暗管為直徑25 cm的聚氯乙烯打孔管。鋪設方法:先用小型鉤機挖寬30 cm、深60~80 cm明溝,并將耕層土壤和下層土壤分別放置2側,以便分層回填;用細沙調整溝底坡降后,將包好過濾紗網的聚氯乙烯管平放到溝底并連接首尾,在管上鋪厚30~40 cm稻秸和稻殼作為過濾材料(圖2d),踏實后回填分層土壤;在暗管排水出口與區(qū)外明渠接連,并設有開關閥門。
1.3 試驗設計
試驗于2016年春季開始,設有暗管區(qū)和無暗管區(qū)(對照),大區(qū)對比,每區(qū)長80 m,寬50 m,面積400 m2。試驗區(qū)灌水管理一致,采用淺-濕-干間歇灌溉模式:淺水層階段保持土壤表面3~5 cm水層,逐漸達到濕潤狀態(tài),即表層無明水,腳窩有水的狀態(tài),當達到地面干燥、腳窩濕潤狀態(tài)再次灌水,水層深度3~5 cm。在水稻分蘗末期曬田和成熟初期打開暗管閥門排水,其余時期保持水層階段關閉閥門。水稻于2016年4月10日播種,5月20日移栽到試驗區(qū),9月30日收獲。人工插秧,插秧規(guī)格行距30 cm,株距10 cm,每穴插3株,每公頃插秧密度為水稻品種龍粳 31。試驗區(qū)施肥一致,N、P2O5、K2O肥施用量分別為120、60、60 kg/hm2。其中N按照基肥、返青肥、穗肥比例 4∶3∶3施肥;鉀肥按基肥、穗肥比例3∶2施肥;磷肥作為基肥一次性施入。試驗區(qū)10 a平均降水量580 mm,有效積溫2 210 ℃[12]。
圖2 暗管田間設計圖Fig.2 Design diagram of subsurface pipe in field
1.4 調查項目及方法
土樣取樣方法:收獲后選取代表性點挖 60 cm×60 cm×100 cm土壤剖面,用100 mL的環(huán)刀取原狀土樣分別按照10~15、20~25、40~45 cm深度取樣,每層取3次平行樣;取原狀土時同時取土壤化學樣品,用于化學指標測定的土樣取樣層次為 0~15、>15~30、>30~50 cm,其中0~15 cm耕層按S形多點取樣,混合后按四分法留500 g備用。
土壤物理性質測定方法:土壤顆粒組成采用MS-2000激光粒度儀(Malvern Instruments Limited Enigma Business Park, APA2000)測定,并參照楊金玲等[13]校正系數進行校正;土壤三相組成采用DIK-1150三相測定儀(大起理化工業(yè)株式會社,±1.0%)測定,容氣度為氣相占液相與氣相之和的百分比,%;土壤含水率采用烘干法測定(105 ℃);土壤飽和導水率采用 DIK-4050透水性測定儀(大起理化工業(yè)株式會社)測定;土壤通氣系數采用DIK-5001通氣性測定儀(大起理化工業(yè)株式會社)測定;土壤硬度采用DIK-5521硬度計(大起理化工業(yè)株式會社,5 MPa)田間原位測定;土壤液限測定采用DIK-5700液限測定器(大起理化工業(yè)株式會社)測定。土壤塑限測定是在液限測定基礎上采用搓條法,然后根據測定土壤條狀斷裂時的水分含量來測定[14];土壤水分特征曲線分別采用砂柱法、壓力膜法和離心機法測定不同壓力下土壤含水量,繪制土壤水分特征曲線,計算土壤孔隙組成;水中沉淀容積采用參照《土壤物理測定方法》測定[15]。
式中W0為自然土壤含水率,%;W1為土壤液限含水率,%;W2為土壤塑限含水率,%。
化學指標測定方法:土壤pH值采用美國產原位IQ150土壤pH計(Spectrum Technologies, Inc)測定,測定位置分別為土表以下5、15、25 cm,每層測5點,取平均值;堿解氮采用擴散吸收法測定;速效磷含量測定采用碳酸氫鈉提取法測定;速效鉀含量測定采用鹽酸浸提-AAS法測定;土壤有機質采用重鉻酸鉀外加熱法測定[16]。
水稻產量測定方法:水稻成熟后,采用久保田牌水稻聯(lián)合收割機(日本久保田株式會社)全區(qū)直接收獲測產,由于機械直接收獲時水稻籽實水分質量分數較高,水稻標準產量按照水稻籽實水分質量分數為 14.5%時的質量計算得出。
數據采用Microsoft Excel及DPS 6.85進行數據處理。
2.1 低濕地水田土壤物理性質
2.1.1 顆粒和孔隙組成
三江平原低濕地多為沼澤化土壤,成土母質為第四紀河湖沉積物,土質黏重。由表2可知,各土層黏粒質量分數均超過40%,按照國際土壤分類標準[17]劃分各層均為黏土。0~15 cm耕層土壤總孔隙度為58.68%,高于東北地區(qū)其他各類相同層次土壤[11]。其中<0.000 2 mm的微小孔隙比例最大,高達44.94%;>15~30、>30~50 cm母質層總孔隙度分別為50.66%和46.08%,微小孔隙為41.03%、36.77%。當量直徑>0.05 mm的大孔隙僅為2.49%~5.92%,有效孔隙低,在6.40%~7.81%之間,土壤內排水能力十分弱。
表2 土壤物理特性Table 2 Soil physical property
2.1.2 通氣、透水、持水和可塑性
土壤通氣性與透水性測定結果高度一致(表 2):耕層0~15 cm土壤通氣透水性比母質層高,母質層幾乎不通氣。土壤三相組成,耕層有機質含量高,固相率為32.77%,母質層接近 60%。土壤整體容氣度相對較低,在5.55%~16.08%之間,表明土壤處于過濕狀態(tài)。
由土壤水分特征曲線(圖3a)知,由于土質黏重,土壤持水能力極強,剖面從上至下呈降低趨勢。從土壤剖面硬度變化曲線(圖3b)看,土壤硬度在700 kPa以下,土體軟,承載力低,缺少承載作業(yè)機械的堅硬土層。特別是0~20 cm土層,土壤硬度接近于0,易陷車。從表2土壤液性指數看出,各土層液性指數為 0.38~0.61,為可塑狀態(tài),不宜機械作業(yè),易發(fā)生陷車,影響機械作業(yè)效率。
圖3 土壤水分特征曲線及硬度Fig.3 Soil water characteristic curve and soil hardness
2.2 暗管排水效果分析
2.2.1 對土壤水分影響
為明確暗管的排水效果,分別在分蘗末期排水曬田后和收獲前觀測田面水分狀態(tài)。圖4a是暗管區(qū)曬田5 d后地表狀態(tài),田面干燥呈龜裂狀;圖4b是對照區(qū),田面有積水。水稻成熟期再次觀測結果,暗管區(qū)(圖 4c)水分已經排出,田面干燥;對照區(qū)田面雖無積水,但泥濘陷腳(圖4d)。
圖4 暗管區(qū)(SP)及對照無暗管區(qū)(CK)田面狀況Fig.4 Soil surface condition for subsurface pipe and CK plots without subsurface pipe
圖 5是收獲之前土壤含水率測定結果。各個土層含水率,暗管區(qū)均低于對照區(qū);距暗管5 m處(兩暗管中間位置)土壤含水率也低于對照,表明 1條暗管的排水范圍超過10 m。暗管區(qū)相同土層含水率比較,暗管正上方所在位置(0 m)最低,并且隨距暗管水平距離增加而呈增加趨勢。
圖5 距暗管不同距離不同土層土壤含水率Fig.5 Soil water content of different depths at different distances away from subsurface pipe
2.2.2 對水稻產量影響
暗管區(qū)和對照區(qū)全區(qū)直接收獲測產,暗管處理水稻產量比對照增產8.06%(表3)。
表3 暗管排水對水稻產量影響Table 3 Effect of subsurface pipe drainage on rice yield
黑龍江省三江平原由于土質黏重,排水性差,徑流排泄不暢等,種植旱田作物時土壤水分過多是它的主要特點[18]。改為水田可以充分發(fā)揮土壤自身的保水性能,趨利避害。但土質黏重也影響土壤氣體交換,不利于水稻生長發(fā)育[19-21],同時也影響土壤微生物區(qū)系組成和微生物活性[22-24];長期滯水會導致土壤氧化還原電位降低,產生的有毒物質危害水稻生育。另一方面,水田的犁底層是承載機械行走的基礎[25-26]。供試土壤硬度小于10 kg/cm2,表層硬度接近0,無犁底層,造成機械作業(yè)困難,限制了農業(yè)的現代化發(fā)展。低濕地土壤有機質豐富,潛在肥力高,但養(yǎng)分釋放緩慢。因此改善土壤排水性對于活化土壤養(yǎng)分有重要意義[27-28]。隨氣溫升高,養(yǎng)分釋放速度逐漸增加,在水稻生育后期會出現土壤供氮過剩現象,不僅造成倒伏,還會導致稻米蛋白積累過多影響食味[29]。暗管試驗結果表明,距離暗管越遠土壤含水率越高,說明暗管排水能力有局限性。本試驗所采用暗渠間隔、坡降等技術參數是參照日本標準[30]設計的,初步試驗證明該標準切實可行。今后要進一步研究確定合理的暗渠間隔及其與深松、鼠洞、以及其他技術組合的綜合排水效果,為進一步降低施工成本,提高排水效果提供科學依據,也為低濕地改良提供有效的應用技術。
通過暗管排水試驗初步得到以下結論:
1)供試的草甸沼澤土質地黏重,土壤持水能力極強,通氣孔隙少,無效孔隙高;土壤通氣、透水性差,母質層幾乎不透氣、透水;從水分特征曲線看,土壤自然含水率高達 40%以上,土體容氣度僅 5.55%~16.08%;液性指數在0.38~0.61,處于可塑狀態(tài),土壤硬度低,機械承載力差。
2)供試土壤耕層有機質豐富,潛在肥力高,下層瘠薄。
3)暗管提高土壤排水能力的效果明顯,特別是在提高曬田效果方面效果顯著。調查結果,暗管區(qū)土壤含水率低于對照區(qū),距離暗管越近土壤含水率越低,對于提高收獲機械作業(yè)效率有重要意義。
4)產量實測結果表明暗管區(qū)比對照增產8.06%。
本研究對低濕地暗管排水進行初步探索,對暗管排水后效還需進一步調查和研究。
[1] 姜秋香,付強,王子龍,等. 三江平原水土資源空間匹配格局[J]. 自然資源學報,2011,26(2):270-278.Jiang Qiuxiang, Fu Qiang, Wang Zilong, et al. Spatial matching patterns of land and water resources in Sanjiang Plain[J]. Journal of Natural Resources, 2011, 26(2): 270-278. (in Chinese with English abstract)
[2] 趙魁義,婁彥景,胡金明,等. 三江平原濕地生態(tài)環(huán)境受威脅現狀及其保育研究[J]. 自然資源學報,2008, 23(5):790-796.Zhao Kuiyi, Lou Yanjing, Hu Jinming, et al. A study of current status and conservation of threatened wetland ecological environment in Sanjiang Plain[J]. Journal of Natural Resources, 2008, 23(5): 790-796. (in Chinese with English abstract)
[3] 劉彥隨,甘紅,張富剛. 中國東北地區(qū)農業(yè)水土資源匹配格局[J]. 地理學報,2006,61(8):847-854.Liu Yansui, Gan Hong, Zhang Fugang. Analysis of the matching patterns of land and water resources in Northeast China[J]. Acta Geographica Sinica, 2006, 61(8): 847-854.(in Chinese with English abstract)
[4] 孟慶英,張春峰,賈會彬,等. 不同機械改土方式對白漿土物理特性及酶活性的影響[J]. 土壤學報,2016,53(2):552-559.Meng Qingying, Zhang Chunfeng, Jia Huibin, et al. Effects of mechanical soil amelioration method on physical properties of and enzyme activity in Planosol[J]. Acta Pedologica Sinica,2016, 53(2): 552-559. (in Chinese with English abstract)
[5] 張守金,王學農,袁斌. “以稻治澇”是近期解決三江平原漬澇的好辦法[J]. 黑龍江水利科技,1988(2):16-17.Zhang Shoujin, Wang Xuenong, Yuan Bin. "Rice for Waterlogging" is the good way to solve the waterlogging of Sanjiang Plain[J]. Heilongjiang Science and Technology of Water Conservancy, 1988(2): 16-17. (in Chinese with English abstract)
[6] 程思順,黃潤哲,李芳. 以稻治澇,以稻致富[J]. 黑龍江水利科技,1998(1): 28-30.Cheng Sishun, Huang Runzhe, Li Fang. Using rice to govern waterlogging and to become rich[J]. Heilongjiang Science and Technology of Water Conservancy, 1998(1): 28-30. (in Chinese with English abstract)
[7] 陸建建. 濕地生態(tài)學[M]. 北京:高等教育出版社,2006.
[8] 夏貴菊,何彤慧,于驥,等. 銀川平原草甸濕地鹽土及其鹽分分布特征[J]. 土壤,2016,48(4):785-792.Xia Guiju, He Tonghui, Yu Ji, et al. Salt profile distributions of meadow wetland in Yinchuan Plain[J]. Soils, 2016, 48(4):785-792. (in Chinese with English abstract)
[9] Oster J D, Frenkel H. The chemistry of the reclamation of sodic soils with gypsum and lime[J]. Soil Science Society of America Journal, 1980, 44(1): 41-45.
[10] Oster J D, Grattan S R. Drainage water reuseI[J]. Irrigation and Drainage Systems, 2002, 16(4): 297-310.
[11] 黑龍江省土地管理局,黑龍江省土壤普查辦公室. 黑龍江土壤[M]. 北京:農業(yè)出版社,1992.
[12] 黑龍江省統(tǒng)計局. 2006-2016黑龍江省統(tǒng)計年鑒[M]. 北京:中國統(tǒng)計出版社,2016.
[13] 楊金玲,張甘霖,李德成,等. 激光法與濕篩-吸管法測定土壤顆粒組成的轉換及質地的確定[J]. 土壤學報,2009,46(5): 772-780.Yang Jinling, Zhang Ganlin, Li Decheng, et al. Relationships of soil particle size distribution between sieve-pipette and laser diffraction methods[J]. Acta Pedologica Sinica, 2009,46(5): 772-780. (in Chinese with English abstract)
[14] 鮑士旦. 土壤農化分析[M]. 北京:中國農業(yè)出版社,2005,30-165.
[15] 翁德衡. 土壤物理性測定法[M]. 重慶:科學技術文獻出版社重慶分社,1979.
[16] 魯如坤. 土壤農業(yè)化學分析[M]. 北京:中國農業(yè)科技出版社,1999.
[17] 中國科學院南京土壤研究所. 中國土壤[M]. 北京:科學出版社,1980.
[18] 何璉. 中國三江平原[M]. 黑龍江:黑龍江科學技術出版社,2000.
[19] 龔子同,張效樸. 我國水稻土資源特點及低產水稻土的增產潛力[J]. 農業(yè)現代化研究,1988(3):33-36.Gong Zitong, Zhang Xiaopu. The characteristics of our country paddy soil resources and potential of low yield paddy soil[J]. Research of Agricultural Modernization, 1988(3): 33-36. (in Chinese with English abstract)
[20] 張琳,張鳳榮,姜廣輝,等. 我國中低產田改造的糧食增產潛力與糧食安全保障[J]. 農業(yè)現代化研究,2005,26(1):22-25.Zhang Lin, Zhang Fengrong, Jiang Guanghui, et al. Potential improvement of medium low yielded farmland and guarantee of food safety in China[J]. Research of Agricultural Modernization, 2005, 26(1): 22-25. (in Chinese with English abstract)
[21] 劉占軍,艾超,徐新朋. 低產水稻土改良與管理研究策略[J]. 植物營養(yǎng)與肥料學報,2015,21(2):509-516.Liu Zhanjun, Ai Chao, Xu Xinming. Research strategy of reclamation and management for low-yield rice paddy soils[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(2):509-516. (in Chinese with English abstract)
[22] Boehm M J, Wu T, Stone A G, et al. Cross polarized magicangle spinning13C nuclear magnetic resonance spectroscopic characterization of soil organic matter relative to culturable bacterial species composition and sustained biological control of pythium root rot[J]. Applied and Environmental Microbiology, 1997(63): 162-168.
[23] 湯宏,沈健林,張楊珠,等. 秸稈還田與水分管理對稻田土壤微生物量碳、氮及溶解性有機碳、氮的影響[J]. 水土保持學報,2013,27(1):240-246.Tang Hong, Shen Jianlin, Zhang Yangzhu, et al. Effect of rice straw incorporation and water management on soil microbial biomass carbon, nitrogen and dissolved organic carbon, nitrogen in a rice paddy field[J]. Journal of Soil and Water Conservation, 2013, 27(1): 240-246. (in Chinese with English abstract)
[24] 侯翠翠,宋長春,李英臣,等. 不同水分條件沼澤濕地土壤輕組有機碳與微生物活性動態(tài)[J]. 中國環(huán)境科學 2012,32(1): 113-119.Hou Cuicui, Song Changchun, Li Yingchen, et al. Light fractions of soil organic carbon and microbial activity dynamics in marshes under different water conditions[J].China Environmental Science, 2012, 32(1): 113-119.(in Chinese with English abstract)
[25] 周衛(wèi). 低產水稻土改良與原理[M]. 北京:科學出版社,2015.
[26] 陳溢,鄭亭,樊高瓊,等. 不同土壤水分條件下拖拉機行走對四川丘陵旱地土壤特性及小麥生長的影響[J]. 水土保持學報,2013,27(6):147-151.Chen Yi, Zheng Ting, Fan Gaoqiong, et al. Effects of tractor traffic on soil properties and wheat growth in Sichuan Hilly areas under different soil moisture content[J]. Journal of Soil and Water Conservation, 2013, 27(6): 147-151. (in Chinese with English abstract)
[27] 古漢虎,向萬勝,李玲.濕地農田低產土壤改良利用研究[J].長江流域資源與環(huán)境,1997(11):334-339.Gu Hanhu, Xiang Wansheng, Li Ling. A study on wetland low-yield soil and its improvement[J]. Resources and Environment in the Yangtze Basin, 1997(11): 334-339. (in Chinese with English abstract)
[28] 李凱,竇森,張慶聯(lián),等. 暗管排水技術及其在蘇打鹽堿土改良上的應用[J]. 吉林農業(yè)科學,2012,37(1):41-43.Li Kai, Dou Sen, Zhang Qinglian, et al. Subsurface pipe drainage technology and its application on improvement of soda-saline soil[J]. Journal of Jilin Agricultural Sciences,2012, 37(1): 41-43. (in Chinese with English abstract)
[29] 王秋菊. 黑龍江地區(qū)土壤肥力和積溫對水稻產量、品質影響研究[D]. 沈陽:沈陽農業(yè)大學,2012.Wang Qiuju. Effect of Soil Fertility and Temperature on Rice Yield and Quality in Heilongjiang Area[D]. Shenyang:Shenyang Agricultural University, 2012. (in Chinese with English abstract)
[30] 農林水産省構造改善局整備課監(jiān)修. 暗渠排水の設計と施工[M]. 東京:畑地農業(yè)振興會,昭和58年.
Soil physiochemical properties and subsurface pipe drainage effect of paddy field in low wetland of Sanjiang plain
Wang Qiuju1, Liu Feng2, Chang Benchao1, Han Donglai3, Sui Yugang3,Yang Xingyu3, Chen Hailong3, Ken Araya4, Liu Yanxia5, Jiao Feng6※
(1.Institute of Soil Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Harbin150086,China;2.Management Department of Scientific Research of Heilongjiang Academy of Agricultural Sciences, Harbin150086,China;3.The859Farm of Jiansanjiang Management Bureau,Heilongjiang Province Agricultural Reclamation Administration, Heilongjiang,156326,China; 4.NICH Laboratory, Hokkaido Sapporo079-01,Japan; 5.Remote Sensing Technique Centre, Heilongjiang Academy ofAgricultural Science, Harbin150086,China; 6.Heilongjiang Bayi Agricultural University, Daqing163319,China)
Sanjiang plain is located in the east of Heilongjiang Province. Sanjiang plain is the low plains formed from confluence and alluvial of Heilongjiang, Songhua River and Wusuli River. Problems often occur in low wetlands such as low-lying, clay, concentrated rainfall, flooding, resulting in crop production reduction. In addition, in the harvest season, the soil is too wet, agricultural machinery is difficult to operate in the wet soil. This study investigated the soil physiochemical properties of low farmland and introduced subsurface drainage technique widely used in the Southern China to the field in order to solve the problems above. The study was carried out in Sanjiang 859 Farm in Heilongjiang. The rice was planted for 15 years. The soil organic matter content (58.14 g/kg) in 0-15 cm was higher than the other places (30 g/kg). However, the alkaline N, available P and K were low. In the experimental field, we set up a plot buried with subsurface pipe. The spacing of pipe was 10 m and the buried depth was 70 cm. The slope gradient was 1/1000. The pipe diameter was 25 cm. The experiment started from the spring of 2016. A plot without subsurface pipe was designed with the same size with that with subsurface pipe.The irrigation in both plots was same: shallow period with surface water depth of 3-5 cm and irrigation when the surface was dry. At the end of tillering stage of rice, the surface was dried and at the initial maturing stage the soil was drained. The soil was samples for physiochemical property measurement. The rice yield was determined. The results showed that the soil texture was clay. The clay content was more than 40%, the effective porosity was low (6.40%-7.81%). Soil aeration and water permeability were poor, especially the parent material where was almost airtight and watertight. The soil water content was high, and in the natural state it was more than 40%. The soil bulk density was low and the topsoil was 0.93 g/cm3. The soil hardness was low and the liquid index was 0.38-0.61. The whole soil was in the plastic state, and the mechanical bearing capacity was poor. It was possible to improve the permeability of the soil by setting up the subsurface pipe in the meadow marsh soil. The distance from the subsurface pipe had an effect on the soil drainage effect, and the closer the distance from the subsurface pipe, the better the effect of soil drainage, the more obvious the decrease of water content. In the rice field with subsurface pipe at tillering stage, the soil surface was dry while the control without pipe was still wet. The yield of rice treated with subsurface pipe was 8.06% higher than that without subsurface pipe. This study provides technical support for improving soil condition in the low plains.
soils; physichemical properties; drainage; subsurface pipe; yield; Sanjiang Plain; paddy field
10.11975/j.issn.1002-6819.2017.14.019
S152.7
A
1002-6819(2017)-14-0138-06
王秋菊,劉 峰,常本超,韓東來,隋玉剛,楊興玉,陳海龍,新家憲,劉艷霞,焦 峰. 三江平原低濕地水田土壤理化特性及暗管排水效果[J]. 農業(yè)工程學報,2017,33(14):138-143.
10.11975/j.issn.1002-6819.2017.14.019 http://www.tcsae.org
Wang Qiuju, Liu Feng, Chang Benchao, Han Donglai, Sui Yugang, Yang Xingyu, Chen Hailong, Ken Araya, Liu Yanxia, Jiao Feng. Soil physiochemical properties and subsurface pipe drainage effect of paddy field in low wetland of Sanjiang plain[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 138-143. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.14.019 http://www.tcsae.org
2017-01-10
2017-06-10
農業(yè)部公益性行業(yè)專項(201503118-04);科技支撐計劃(2015BAD23B05-03);省博士后基金(LBH-Z13189);省自然科學基金(D2015005);院創(chuàng)新工程(2014JQ03)
王秋菊,黑龍江依蘭人,副研究員,博士,主要從事低產土壤改良研究。哈爾濱 黑龍江省農業(yè)科學院土壤肥料與資源環(huán)境研究所,150086。Email:bqjwang@126.com。
※通信作者:焦 峰,黑龍江省大慶人,教授,博士,主要從事土壤化學研究。大慶 黑龍江八一農墾大學,163319。Email:jiaofeng1980@163.com。