陳玫宏,郭 敏,劉 丹,3,李 江,張圣虎*,石利利*
?
典型內(nèi)分泌干擾物在太湖及其支流水體和沉積物中的污染特征
陳玫宏1,2,郭 敏2,劉 丹2,3,李 江1,張圣虎2*,石利利2*
(1.貴州大學(xué)資源與環(huán)境工程學(xué)院,貴州貴陽 550025;2.環(huán)境保護(hù)部南京環(huán)境科學(xué)研究所,江蘇南京 210042;3.南京工業(yè)大學(xué)化學(xué)與分子工程學(xué)院,江蘇南京 211816)
采用固相萃取-高效液相色譜/串聯(lián)質(zhì)譜法(SPE-HPLC-MS/MS)對太湖及支流表層水和沉積物中雙酚A(BPA)、四溴雙酚A(TBBPA)和3種烷基酚類化合物的濃度水平及分布特征進(jìn)行調(diào)查,并對其潛在風(fēng)險進(jìn)行評估.結(jié)果表明,表層水體中壬基酚(NP)和BPA是主要檢出組分,平均含量分別為29.6ng/L(0~121ng/L)和17.5ng/L(0~55.1ng/L);沉積物中NP的濃度含量最高,平均值為240ng/g(0~2045ng/g),其次為TBBPA,平均值為81.0ng/g(0~901ng/g),且目標(biāo)物總含量與沉積物中TOC含量具有正相關(guān)性,整體污染趨勢表現(xiàn)為太湖支流和北太湖較嚴(yán)重.生態(tài)風(fēng)險評價結(jié)果表明,太湖及其支流水體中目標(biāo)物的聯(lián)合毒性風(fēng)險熵相對較高,其生態(tài)風(fēng)險不容忽視;另外,5種目標(biāo)物對于人體健康風(fēng)險評估表明,健康風(fēng)險總EEQt值<1ng E2/L,對于人體健康不具有明顯的風(fēng)險.
雙酚A;四溴雙酚A;烷基酚類化合物;太湖;污染水平
環(huán)境內(nèi)分泌干擾物(EDCs)是一類存在于環(huán)境中能夠干擾生物體正常內(nèi)分泌功能的外源性物質(zhì)[1-3].雙酚A(BPA)、四溴雙酚A(TBBPA)及烷基酚類化合物(APs)作為典型的環(huán)境內(nèi)分泌干擾物已經(jīng)引起了人們的廣泛關(guān)注[4-5],已有毒性研究表明,EDCs能夠干擾生物體生殖系統(tǒng)、胚胎發(fā)育、機(jī)體代謝等生理功能[6-7],具有生物累積性和持久性.由于EDCs已經(jīng)廣泛用于個人護(hù)理品、洗滌劑、熱敏紙和塑料的生產(chǎn)[8-10],在其生產(chǎn)、使用、處置過程中不可避免的經(jīng)由各種途徑進(jìn)入水環(huán)境,并經(jīng)食物鏈進(jìn)入人體[11-12],給生態(tài)環(huán)境和人體健康帶來潛在風(fēng)險,目前在水體、沉積物以及生物內(nèi)均能檢測到不同濃度的EDCs[13-18].
太湖(30°55'~31°32'N; 119°52'~120°36'E)水域面積2338km2,平均水深1.9m,是我國第二大淡水湖[19].近年來由于周邊城市化工企業(yè)的迅速發(fā)展,太湖水體已經(jīng)受到不同程度的污染,目前對于太湖水體中烷基酚類化合物的含量水平和污染特征已有報道[19,21-24],但是污染水平及趨勢仍待進(jìn)一步分析評估.本研究以太湖及其入湖支流的表層水體和沉積物為研究對象,利用HPLC- MS/MS方法分析雙酚A、四溴雙酚A和烷基酚類化合物(壬基酚NP)、辛基酚(OP)、4-叔丁基苯酚(4-TBP))的含量水平,探討其殘留水平及組成特征及分布和來源,并對生態(tài)及人體健康進(jìn)行評估,以期為太湖地區(qū)水環(huán)境中該類物質(zhì)的風(fēng)險控制提供參考.
圖1 太湖及支流采樣點分布
2016年11月,在太湖及其入湖支流設(shè)置22個采樣點,如圖1所示.使用有機(jī)玻璃采水器采集2L表層水樣(0~1m),裝入棕色玻璃瓶中運回實驗室,水樣立即經(jīng)玻璃纖維濾膜(0.45μm)過濾,過濾后的水樣保存在4℃冰箱內(nèi)待測.使用彼得森采泥器采集表層沉積物(0~0.1m),其中S2未采集到沉積物,置于不銹鋼盒中,冷凍干燥,研磨過60目篩,-20℃保存待測.采用便攜式水質(zhì)監(jiān)測儀現(xiàn)場測定表層水體pH值、溫度(T)和溶解氧(DO).
高效液相色譜-串聯(lián)質(zhì)譜儀(LC-Agilent Technologies 1290Infinity,MS-AB SCIEX QTRAP 4500,美國AB公司);ZORBAX Eclipse Plus C18 (150mm×2.1mm,3.5μm)色譜柱(美國Agilent公司);Oasis HLB固相萃取小柱(500mg,6mL);真空冷凍干燥機(jī)(Virtis公司,美國);高速冷凍離心機(jī)(Sigma公司,德國);旋轉(zhuǎn)蒸發(fā)儀(BUCHI公司,瑞士);Milli-Q超純水器(Millipore 公司,美國); 12通道固相萃取裝置(Waters 公司,美國);AG-285電子天平(Mettler公司,瑞士); TOC分析儀(德國Elementar公司).
雙酚A、四溴雙酚A、壬基酚、辛基酚、4-叔丁基苯酚均購自J&K公司,純度均大于97%;乙腈、甲醇(色譜純,德國Merck公司);氨水(色譜純,國藥集團(tuán));超純水為Milli-Q純水機(jī)出水.
上述標(biāo)準(zhǔn)品均用甲醇配制成1000mg/L的標(biāo)準(zhǔn)儲備液,儲存于4℃冰箱.配制5種化學(xué)品的混合標(biāo)準(zhǔn)溶液,濃度為10mg/L.
水樣:分別用5mL甲醇、5mL超純水活化Oasis HLB(500mg,6mL) 固相萃取小柱,準(zhǔn)確量取經(jīng)0.45μm玻璃纖維濾膜過濾的水樣1L,經(jīng)活化的固相萃取小柱萃取,上樣速度約為5mL/min.上樣后,用10mL的超純水淋洗HLB小柱,并在負(fù)壓條件下抽真空20min進(jìn)行干燥,用10mL甲醇洗脫,洗脫液經(jīng)氮氣吹干,然后用甲醇/水(/=1/1)定容至1mL,渦旋震蕩1~2min,HPLC- MS/MS分析.
沉積物:樣品冷凍干燥后,研磨過60目篩,取5g沉積物于250mL聚四氟乙烯離心管中,加入50mL二氯甲烷/正己烷(/=4/1)混合萃取劑,超聲萃取20min后,以10000r/min離心5min,取上清液,重復(fù)上述步驟,合并上清液(100mL),旋轉(zhuǎn)蒸發(fā)至干,用甲醇定容至1mL,加入99mL超純水定容,重復(fù)上述水樣處理過程.
1.4.1 液相色譜條件 采用ZORBAX Eclipse Plus C18色譜柱(150mm×2.1mm,3.5μm),流動相為0.02% (體積比)氨水溶液(A)和乙腈(B);流速0.3mL/min;柱溫40℃,進(jìn)樣5μL;測定時采用的流動相梯度見表1.
表1 分析洗脫梯度
注: A: 0.02% (體積比) 氨水溶液; B:乙腈.
1.4.2 質(zhì)譜條件:采用電噴霧(ESI)離子源 負(fù)電離模式,多反應(yīng)離子監(jiān)測(MRM)掃描定量分析目標(biāo)污染物.氣簾氣(CUR)壓力為206851.8Pa,噴霧氣(GS1)壓力為241327.1Pa,輔助加熱氣(GS2)壓力為275802.4Pa,源溫度(TEM)為400℃,離子化電壓(IS)為5500V,碰撞氣(CAD)為41370.36Pa,碰撞能量(CE)、去簇電壓(DP)、入口電壓(EP)、出口電壓(CXP)和經(jīng)實驗優(yōu)化后的質(zhì)譜條件見表2.
表2 5種目標(biāo)化合物的質(zhì)譜分析條件
注:* 定量離子.
為了確保可靠的結(jié)果,分析過程按照方法空白、加標(biāo)空白、樣品平行樣進(jìn)行質(zhì)量控制和質(zhì)量保證.以7個不同濃度的標(biāo)準(zhǔn)溶液(BPA、TBPPA、NP、OP、4-TBP組成的混標(biāo))作標(biāo)準(zhǔn)曲線,其線性相關(guān)系數(shù)(2)>0.998,外標(biāo)法定量.預(yù)處理土壤作為加標(biāo)空白,無目標(biāo)化合物檢出.在水樣和沉積物空白樣品中進(jìn)行目標(biāo)物加標(biāo)回收,水樣中目標(biāo)物的回收率為66.8%~102%(RSD: 3.10%~10.5%),沉積物中目標(biāo)物的回收率為65.4%~85.6% (RSD: 6.70%~11.2%),方法空白均未檢出目標(biāo)物.水體和沉積物中各目標(biāo)物(BPA、TBPPA、NP、OP、4-TBP)的方法定量限分別為1.0,1.7,1.0,2.0, 1.0ng/L和0.1,0.16,0.1,0.2,0.1ng/g.實驗所用錐形瓶、雞心瓶等玻璃器皿均在丙酮溶劑中浸泡,105℃下烘干,同時盡量避免使用塑料容器,分析儀器色譜管路為惰性材料的塑料管路,降低背景空白干擾.
根據(jù)歐盟關(guān)于環(huán)境風(fēng)險評價的技術(shù)指導(dǎo),采用風(fēng)險商值法(RQ)評估太湖水體的生態(tài)環(huán)境風(fēng)險.風(fēng)險商值(RQ)為實際測定濃度(MEC)和無效應(yīng)濃度(PNEC)之間的比值,見式(1)[25-26].
RQ=MEC/PNEC (1)
表3 推導(dǎo)PNEC的數(shù)據(jù)要求和評估因子
注:EC50為半數(shù)效應(yīng)濃度;LC50為半數(shù)致死濃度;NOEC為最大無效應(yīng)濃度.
PNEC值通常由試驗所得的急性和慢性毒性數(shù)據(jù)(LC50、EC50、NOEC等)除以評估因子(AF)得到,毒性數(shù)據(jù)可通過ECTOX查詢獲得,AF的取值范圍在10~1000,具體參照歐盟《化學(xué)品的注冊、評估、授權(quán)和限制》(REACH)法規(guī)對危害評估因子的選擇方法(表3)[27].根據(jù)RQ值的大小,將環(huán)境風(fēng)險分為3個等級,即在0.01~0.1間為低環(huán)境風(fēng)險,在0.1~1.0間為中等環(huán)境風(fēng)險,大于1為高環(huán)境風(fēng)險.
為了評估太湖水體中上述目標(biāo)化合物對人體的健康風(fēng)險,采用雌激素毒性當(dāng)量(EEQ)來表征上述目標(biāo)化合物對人體的健康效應(yīng),當(dāng)EEQ> 1.0ng E2/L時,則認(rèn)為對人體健康有風(fēng)險[28].具體計算公式見式(2).
EEQt=ΣEEQ=Σ(C×EEF) (2)
式中:C是目標(biāo)物在表層水中的濃度(ng/L);EEQt是總的雌激素毒性當(dāng)量;EEF是雌激素毒性當(dāng)量因子.其中,EEF被定義為目標(biāo)物的EC50相對于17β-雌二醇的EC50的比值,EC50為目標(biāo)物產(chǎn)生50%的最大雌激素效應(yīng)的濃度.
采用Windows SPSS 19.0和獨立樣本檢驗,對試驗數(shù)據(jù)進(jìn)行差異顯著性分析,0.05為差異顯著(*).
5種目標(biāo)物在太湖及其支流表層水體中均不同程度檢出(見表4),除4-TBP檢出率較低外(18.2%),其余4種目標(biāo)物的檢出率在50.0%~ 90.9%.NP和BPA是表層水體中主要檢出組分,平均含量分別為29.6ng/L(0~121ng/L)和17.5ng/ L(0~55.1ng/L),明顯高于其他3種目標(biāo)物,即4-TBP(0~142ng/L)、OP(0~8.14ng/L)和TBBPA (0~8.55ng/L)(圖2).根據(jù)中國石油和化學(xué)工業(yè)聯(lián)合會(CPCIF)的調(diào)查數(shù)據(jù)[29],2011年NP在中國的年產(chǎn)量超過30000t,而BPA作為原料和輔助材料,年產(chǎn)量大約為26379t和26053t,這可能是NP和BPA濃度相對較高的原因之一.目前,APs在河流和湖泊水體中的污染水平報道較多,尤其是NP和OP.Lu等[21]報道太湖水體中NP和OP的濃度含量分別在262~1443ng/L和0~5.22ng/L,本課題組2015年[19]檢測到NP和OP在太湖表層水體中的濃度含量在21.2~305ng/L和109~299ng/L,且濃度大小順序為NP>4-OP>4-TBP,比本研究結(jié)果偏高,這可能與2016年太湖地區(qū)降雨量較為豐富有關(guān).此外,本研究中NP濃度含量與長江(南京段)表層水體(1.4~858ng/L)[4]大體一致,但高于云南盤龍湖表層水中NP濃度含量(3.3~17ng/ L)[30],OP的濃度含量低于松花江(1.54~45.8ng/ L)[16]、長江(南京段)(n.d.~100ng/L)[4]和珠江(1.0~2470ng/L)[31]水體中含量,同時也低于日本(10~230ng/L)[32]、德國(<10~770ng/L)[33]和西班牙(100~3980ng/L)[34]河流水體中含量,但是與云南盤龍湖表層水中濃度(1.9~4.6ng/L)[30]大體一致.BPA的濃度含量與武漢東湖(n.d.~37.1ng/ L)[35]、云南盤龍湖(12.0~79.0ng/L)[30]大體一致,但是低于本課題組2015年在太湖水體中的研究結(jié)果(27.9~565ng/L)[19].
表4 太湖水體中5種目標(biāo)物的濃度含量與DO水平
注:n.d.:未檢出;DO為表層水溶解氧.
5種目標(biāo)物在太湖及其支流表層水體中的總濃度差異較大,其中在太湖2個區(qū)域表現(xiàn)出較高的污染水平,即太湖入湖支流(采樣點S4~S8)、靠近北太湖區(qū)域(采樣點S20~S22),其中最高值出現(xiàn)在采樣點S22和S8,濃度高達(dá)148,121ng/L.根據(jù)調(diào)研數(shù)據(jù)顯示,太湖入湖支流靠近常州、宜興等工業(yè)城市,工業(yè)污水排放量較大,其中采樣點S4和S5處于漕橋河區(qū)域,兩岸約有3000家企業(yè),其中重點控制的污染企業(yè)中化工企業(yè)約占67.7%,印染行業(yè)約占21.2%,采樣點S6~S8處于太滆運河區(qū)域,周圍61家工業(yè)污染源中以紡織印染企業(yè)為主,其次是化工企業(yè).相較北太湖,南太湖為湖州的水源地,東太湖為景區(qū)供水水源,整體污染水平較低.此外,相關(guān)性分析發(fā)現(xiàn)4-TBP、NP和OP具有顯著的正相關(guān)性關(guān)系(<0.01)(表5),這在表明它們具有相似的污染源.
此外,太湖及其支流表層水中DO的含量范圍為7.08~8.21mg/L,平均含量為7.66mg/L(見表4),南太湖、東太湖與北太湖及太湖支流相比有相對較高的DO,通過相關(guān)性分析顯示,DO與BPA、TBBPA、OP和4-TBP之間具有負(fù)相關(guān)性 (表5),而已有研究表明有氧環(huán)境更利于有機(jī)化合物的生物轉(zhuǎn)化[36],這與Zhang等[37]以及本課題組前期研究結(jié)果類似.
表5 目標(biāo)物濃度含量兩兩相關(guān)性(R)
注:*在0.05水平具有顯著性關(guān)系,**在0.01水平具有極顯著性關(guān)系.
太湖及其支流沉積物中均有目標(biāo)物檢出(表6),除TBBPA的檢出率較低外(23%),其余目標(biāo)物的檢出率在90%以上(90.9%~95.5%).NP的濃度含量最高,平均值為240ng/g(n.d.~2045ng/g).其次TBBPA平均值為81.0ng/g(n.d.~901ng/g),均比其余目標(biāo)物高1~2個數(shù)量級,這可能是NP(lgow = 5.99)和TBBPA(lgow = 7.2)比其余目標(biāo)物具有較大的ow,使其更容易被吸附到表層沉積物相中所致.與水體中不同(NP>BPA>4-TBP> TBBPA>OP),沉積物中各目標(biāo)化合物對總濃度的貢獻(xiàn)率為NP>TBBPA>BPA>OP=4-TBP,這可能是由于4-TBP相對較低的辛醇/水分配系數(shù)(logow=3.42),導(dǎo)致其在沉積物上的含量較低.目前,各目標(biāo)物在其它河流和湖泊沉積物中的污染水平也有較多報道[12,16,30,38],與本課題組2015年的研究結(jié)果相比[19],NP(平均值:20.7ng/g)和TBBPA (平均值:1.44ng/g)高1~2個數(shù)量級,這表明太湖沉積物中這2種化合物污染有加劇的趨勢.
由圖3b可知,5種目標(biāo)物在S3(2301ng/g)、S7(1671ng/g)和 S5(1063ng/g) 中整體污染水平較高,這些采樣點均處于太湖支流中,周圍大片生活區(qū)及工業(yè)區(qū),大量生活污水、工業(yè)廢水匯入,造成了水體中大量目標(biāo)物富集于沉積物中.此外, BAP、NP具有與表層水體相似的空間分布特征,而其余3種目標(biāo)物(4-TBP、OP、TBBPA)在各采樣點無明顯的分布差異.由于沉積物中有機(jī)碳含量對有機(jī)化合物空間分布起到重要作用,因此將太湖中目標(biāo)物總濃度和TOC含量進(jìn)行相關(guān)性分析,結(jié)果表明目標(biāo)物總濃度和TOC含量之間呈現(xiàn)正相關(guān)(2=0.599,<0.01),此外,將各目標(biāo)物濃度與TOC含量進(jìn)行相關(guān)性分析,除4-TBP外,沉積物中各目標(biāo)物的濃度與TOC之間也呈現(xiàn)正相關(guān)(=0.156-0.816,<0.05),且BPA與TOC呈顯著性正相關(guān)(=0.816,<0.01).說明TOC含量是影響目標(biāo)物在沉積物中空間分布的主要因素之一,一方面可以通過沉積物上復(fù)雜的孔隙結(jié)構(gòu)快速吸附有機(jī)污染物,另一方面沉積物中TOC含量越高,吸附位點越多,越有利于疏水性有機(jī)污染物在表層沉積物中富集.
表6 太湖沉積物中5種目標(biāo)物的濃度含量與TOC水平
注:n.d.,未檢出;TOC,有機(jī)碳含量.
目標(biāo)物對不同水生生物的生物毒性數(shù)據(jù)見表7.太湖水體中4-TBP、OP、NP的RQ在0.00~0.60之間(圖5a),表現(xiàn)為中度風(fēng)險.TBPPA的RQ均小于0.01,對環(huán)境風(fēng)險不顯著.由圖5b可見,每個采樣點總的RQ值范圍為0.00~0.62(均值0.16),在采樣點S4~S6、S8、S14、S16~S22的RQt值0.13~0.62,其水體中殘留的目標(biāo)物水平可能會對水生生物有急性或慢性毒性風(fēng)險.目標(biāo)物的聯(lián)合毒性風(fēng)險熵范圍為0.02~3.26,主要是NP的貢獻(xiàn),整體上看,目標(biāo)物對太湖水生生物表現(xiàn)出低至中度風(fēng)險.因此,目標(biāo)污染物對整個水環(huán)境的生態(tài)風(fēng)險不能忽視.
表7 目標(biāo)物對應(yīng)最敏感物種的毒性數(shù)據(jù)
太湖及其支流水體中各目標(biāo)物的EEQ見表8,EEQt為0.198ng/L,其中NP的貢獻(xiàn)最大(57.5%).與其他研究相比,本研究中EEQt要低于廈門水體(20ng/L)[41]、江蘇駱馬湖水體(19.3ng/L)[12]的研究結(jié)果,但與歐洲國家水體中EEQt水平(3ng/L)相近[44].
表8 5種目標(biāo)物的EEF值
表9 中國兒童和成人的體重,攝水量*
注:* EPA, 2011.
圖6 兒童和成年人通過攝水途徑的EEQ水平
通過將目標(biāo)物每日攝入量的總和與E2的可接受每日攝入量(ADI)進(jìn)行比較,以評估其對人體健康的風(fēng)險.根據(jù)糧農(nóng)組織/世衛(wèi)組織食品添加劑聯(lián)合專家委員會(JECFA)的數(shù)據(jù),E2的ADI為0.05μg/ kg dw(JECFA, 1999).如圖6所示,年齡較大的兒童EEQt水平普遍高于幼兒,男性的EEQt值略高于女性,此外,EEQt的濃度城市>城郊>鄉(xiāng)村.整體來說,本研究估算結(jié)果遠(yuǎn)低于最大允許值,對當(dāng)?shù)鼐用窠】禌]有潛在的不良影響.
3.1 5種目標(biāo)物在太湖及其支流表層水體中均不同程度檢出,NP和BPA為主要檢出組分,其中太湖入湖支流和靠近北太湖區(qū)域整體污染水平較高.
3.2 太湖及其支流沉積物中均有目標(biāo)物檢出, NP的濃度含量最高,其中太湖入湖支流整體污染水平較高.除了4-TBP外,沉積物中其余目標(biāo)物的濃度含量與TOC呈正相關(guān),而且BPA與TOC呈顯著性正相關(guān).
3.3 運用RQ模型對5種目標(biāo)物進(jìn)行生態(tài)風(fēng)險評價,結(jié)果發(fā)現(xiàn)太湖水體中NP的RQ值較大,存在中度風(fēng)險,其余目標(biāo)物的RQ值基本都小于0.1,說明其對太湖的生態(tài)風(fēng)險不顯著,但是,5種目標(biāo)物的聯(lián)合毒性風(fēng)險熵相對較高;
3.4 5種目標(biāo)物對于人體健康風(fēng)險評估表明健康風(fēng)險總EEQt值<1ng E2/L,對于人體健康不具有明顯的風(fēng)險.其中,年齡較大的兒童EEQt水平普遍高于幼兒,男性的EEQt值略高于女性,EEQt的濃度城市>城郊>鄉(xiāng)村.
[1] An B S, Ahn H J, Kang H S, et al. Effects of estrogen and estrogenic compounds, 4-tert-octylphenol, and bisphenol A on the uterine contraction and contraction-associated proteins in rats [J]. Molecular & Cellular Endocrinology, 2013,375(1/2):27–34.
[2] Wu C, Huang X, Lin J, et al. Occurrence and Fate of Selected Endocrine-Disrupting Chemicals in Water and Sediment from an Urban Lake [J]. Archives of Environmental Contamination & Toxicology, 2015,68(2):225-236.
[3] Goeppert N, Dror I, Berkowitz B. Detection, fate and transport of estrogen family hormones in soil [J]. Chemosphere, 2014,95(1): 336-345.
[4] Liu Y H, Zhang S H, Ji G X, et al. Occurrence, distribution and risk assessment of suspected endocrine-disrupting chemicals in surface water and suspended particulate matter of Yangtze River (Nanjing section) [J]. Ecotoxicology & Environmental Safety, 2017,135:90-97.
[5] Jakimska A, Huerta B, Bargańska ?, et al. Development of a liquid chromatography-tandem mass spectrometry procedure for determination of endocrine disrupting compounds in fish from Mediterranean rivers. [J]. Journal of Chromatography A, 2013, 1306:44-58.
[6] Chen Y, Cheng F, Sun L, et al. Computational models to predict endocrine-disrupting chemical binding with androgen or oestrogen receptors. [J]. Ecotoxicology & Environmental Safety, 2014,110C:280-287.
[7] Tabassum H, Parvez S, Raisuddin S. Melatonin abrogates nonylphenol-induced testicular dysfunction in Wistar rats [J]. Andrologia, 2017,49(5):26-48.
[8] Liao C, Kannan K. A survey of alkylphenols, bisphenols, and triclosan in personal care products from China and the United States [J]. Archives of Environmental Contamination & Toxicology, 2014,67(1):50-59.
[9] Dodson R E, Nishioka M, Standley L J, et al. Endocrine Disruptors and Asthma-Associated Chemicals in Consumer Products [J]. Environmental Health Perspectives, 2012,120(7): 935-943.
[10] Asimakopoulos A G, Thomaidis N S, Koupparis M A. Recent trends in biomonitoring of bisphenol A, 4-t-octylphenol, and 4-nonylphenol [J]. Toxicology Letters, 2012,210(2):141–154.
[11] Liu J, Wang R, Huang B, et al. Distribution and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in wild fish species from Dianchi Lake, China [J]. Environmental Pollution, 2011,159(10):2815-2822.
[12] Liu D, Wu S M, Xu H Z, et al. Distribution and bioaccumulation of endocrine disrupting chemicals in water, sediment and fishes in a shallow Chinese freshwater lake: Implications for ecological and human health risks [J]. Ecotoxicology & Environmental Safety, 2017,140:222-229.
[13] álvarezMu?oz D, Rodríguezmozaz S, Maulvault A L, et al. Occurrence of pharmaceuticals and endocrine disrupting compounds in macroalgaes, bivalves, and fish from coastal areas in Europe. [J]. Environmental Research, 2015,143(2):56-64.
[14] Zhang M, Shi Y, Lu Y, et al. The relative risk and its distribution of endocrine disrupting chemicals, pharmaceuticals and personal care products to freshwater organisms in the Bohai Rim, China [J]. Science of the Total Environment, 2017,s590–591:633-642.
[15] Yang Y, Cao X, Zhang M, et al. Occurrence and distribution of endocrine-disrupting compounds in the Honghu Lake and East Dongting Lake along the Central Yangtze River, China [J]. Environmental Science and Pollution Research, 2015, 22(22): 17644-17652.
[16] Zhang Z, Ren N, Kannan K, et al. Occurrence of Endocrine- Disrupting Phenols and Estrogens in Water and Sediment of the Songhua River, Northeastern China [J]. Archives of Environmental Contamination & Toxicology, 2014,66(3):361- 369.
[17] Luigi V, Giuseppe M, Claudio R. Emerging and priority contaminants with endocrine active potentials in sediments and fish from the River Po (Italy) [J]. Environmental Science and Pollution Research, 2015,22(18):14050-14066.
[18] Ye X, Wong L Y, Kramer J, et al. Urinary Concentrations of Bisphenol A and Three Other Bisphenols in Convenience Samples of U.S. Adults during 2000~2014 [J]. Environmental Science & Technology, 2015,49(19):11834-11839.
[19] Liu D, Liu J, Guo M, et al., Occurrence, distribution, and risk assessment of alkylphenols, bisphenol A, and tetrabromobisphenol A in surface water, suspended particulate matter, and sediment in Taihu Lake and its tributaries [J]. Marine Pollution Bulletin, 2016,112(1/2):142-150.
[20] Liu Y, Xu Y, Wang Z, et al. Dominance and succession of Microcystis, genotypes and morphotypes in Lake Taihu, a large and shallow freshwater lake in China [J]. Environmental Pollution, 2016,219:399-408.
[21] Lu G., Yan Z., Wang Y., et al. Assessment of estrogenic contamination and biological effects in Lake Taihu. Ecotoxicology, 2011,20,974-981.
[22] Zhou L, Yuan X Y, Zhao X Q, et al. Temporal-Spatial Distribution and Risk Assessment of Estrogenic Compounds in the Rivers around the Northern Taihu Lake. Applied Mechanics and Materials, 2014,522-524,111-116.
[23] Wang Y, Wang Q, Hu L, et al. Occurrence of estrogens in water, sediment and biota and their ecological risk in Northern Taihu Lake in China. Environ Geochem Health, 2015,37:147-156.
[24] Liu Y H, Zhang S H, Song N H, et al. Occurrence, distribution and sources of bisphenol analogues in a shallow Chinese freshwater lake (Taihu Lake): Implications for ecological and human health risk [J]. Science of the Total Environment, 2017, 599-600:1090-1098.
[25] 王 丹,隋 倩,呂樹光,等.黃浦江流域典型藥物和個人護(hù)理品的含量及分布特征[J]. 中國環(huán)境科學(xué), 2014,34(7):1897-1904.
[26] Franco A, Price O R, Marshall S, et al. Toward refined environmental scenarios for ecological risk assessment of down- the-drain chemicals in freshwater environments [J]. Integrated Environmental Assessment & Management, 2016,13(2):233-248.
[27] 張怡婷,王 蕾,劉濟(jì)寧,等.應(yīng)用不同毒理學(xué)終點評估酚類物質(zhì)的生態(tài)危害和風(fēng)險[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報, 2016,32(2): 326-331.
[28] Camacho-Mu?oz D, Martín J, Santos L, et al. Distribution and Risk Assessment of Pharmaceutical Compounds in River Sediments from Do?ana Park (Spain) [J]. Water, Air, & Soil Pollution, 2013,224(10):1-15.
[29] Zhang Y Z, Tang C Y, Song X F, et al. Concentrations, potential sources and behavior of organochlorines and phenolic endocrine- disrupting chemicals in surficial sediment of the Shaying River, eastern China [J]. Environmental Earth Sciences, 2013,70(5): 2237-2247.
[30] Wang B, Dong F, Chen S, et al. Phenolic endocrine disrupting chemicals in an urban receiving river (Panlong river) of Yunnan- Guizhou plateau: Occurrence, bioaccumulation and sources. [J]. Ecotoxicology & Environmental Safety, 2016,128:133-142.
[31] Zhao J L, Ying G G, Wang L, et al. Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography-negative chemical ionization-mass spectrometry. [J]. Science of the Total Environment, 2009,407(2):962-974.
[32] Watanabe M, Takano T, Nakamura K, et al. Water quality and concentration of alkylphenols in rivers used as source of drinking water and flowing through urban areas [J]. Environmental Health and Preventive Medicine, 2007,12(1):17-24.
[33] Quednow K, Püttmann W. Endocrine disruptors in freshwater streams of Hesse, Germany: Changes in concentration levels in the time span from 2003 to 2005 [J]. Environmental Pollution, 2008,152(2):476-483.
[34] Céspedes R, Lacorte S, Ginebreda A, et al. Occurrence and fate of alkylphenols and alkylphenol ethoxylates in sewage treatment plants and impact on receiving waters along the Ter River (Catalonia, NE Spain) [J]. Environmental Pollution, 2008,153(2): 384-392.
[35] Shi X, Zhou J L, Zhao H, et al. Application of passive sampling in assessing the occurrence and risk of antibiotics and endocrine disrupting chemicals in the Yangtze Estuary, China. [J]. Chemosphere, 2014,111:344-351.
[36] Ying G G, Williams B, Kookana R. Environmental fate of alkylphenols and alkylphenol ethoxylates--a review [J]. Environment International, 2002,28(3):215-226.
[37] Zhang X, Gao Y, Li Q, et al. Estrogenic compounds and estrogenicity in surface water, sediments, and organisms from Yundang Lagoon in Xiamen, China. [J]. Arch Environ Contam Toxicol, 2011,61(1):93-100.
[38] Gong J, Ran Y, Chen D Y, et al. Occurrence of endocrine- disrupting chemicals in riverine sediments from the Pearl River Delta, China [J]. Marine Pollution Bulletin, 2011,63(5–12):556- 563.
[39] Little A G, Seebacher F. Temperature determines toxicity: bisphenol A reduces thermal tolerance in fish. [J]. Environmental Pollution, 2015,197:84-89.
[40] Kalasekar S M, Zacharia E, Kessler N, et al. Identification of environmental chemicals that induce yolk malabsorption in zebrafish using automated image segmentation. [J]. Reproductive Toxicology, 2014,55:20-29.
[41] Staples C, Mihaich E, Carbone J. A Weight of Evidence Analysis of the Chronic Ecotoxicity of Nonylphenol Ethoxylates, Nonylphenol Ether Carboxylates, and Nonylphenol [J]. Human & Ecological Risk Assessment, 2004,10(6):999-1017.
[42] Rhee J S, Kim B M, Lee B Y, et al. Cloning of circadian rhythmic pathway genes and perturbation of oscillation patterns in endocrine disrupting chemicals (EDCs)-exposed mangrove killifish Kryptolebias marmoratus. [J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology Cbp, 2014,164: 11-20.
[43] Lee K W, Raisuddin S, Hwang D S, et al. Two-generation toxicity study on the copepod model species Tigriopus japonicus. [J]. Chemosphere, 2008,72(9):1359-1365.
[44] Salgueiro-González N, Turnes-Carou I, Besada V, et al. Occurrence, distribution and bioaccumulation of endocrine disrupting compounds in water, sediment and biota samples from a European river basin [J]. Science of the Total Environment, 2015,529:121-130.
[45] Aschberger K, Munn S, Olsson H, et al. Updated European Union risk assessment report: 4, 4’-isopropylidenediphenol (bisphenol- A). European Commission, Brussels, 2008:119–120.
[46] Metcalfe C D, Kleywegt S, Letcher R J, et al. A multi-assay screening approach for assessment of endocrine-active contaminants in wastewater effluent samples [J]. Science of the Total Environment, 2013,132(5):454-455.
Occurrence and distribution of typical endocrine disruptors in surface water and sediments from Taihu Lake and its tributaries.
CHEN Mei-hong1,2, GUO Min2, LIU Dan2,3, LI Jiang1, ZHANG Sheng-hu2*, SHI Li-li2*
(1.College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China;2.Nanjing Institute of Environmental Sciences, Nanjing 210042, China;3.College of Chemistry and Molecular Engineering, Nanjing University, Nanjing 211816, China)., 2017,37(11):4323~4332
The concentration and distribution of bisphenol A, tetrabromobisphenol A and three kinds of alkylphenols in surface water and sediments from Taihu Lake and its tributaries were investigated by solid phase extraction and high liquid chromatography-electrospray tandem mass spectrometry (SPE-HPLC-MS/MS). The results showed that NP and BPA were the main Contaminants with an average content of 29.6ng/L (0~121ng/L) and 17.5ng/L (0~55.1ng/L) in surface water, respectively. The average concentration of NP in sediment was 240ng/g (0~2045ng/g), followed by TBBPA, with an average of 81.0ng/g (0~901ng/g). The correlation analysis showed that the total of the targets was positively correlated with the TOC in sediments. Overall, the pollution of its tributary and North Taihu Lake were more serious. In addition, the ecological risk assessment results showed that the entropy risk entropy of the targets in Taihu Lake and its tributaries was relatively high, and its ecological risk can’t be ignored. However, the risk assessment for human health showed that the EEQt<1ng E2/L, which does not have a significant risk.
Bisphenol A;Tetrabromobisphenol A;Alkylphenols;Taihu Lake;Pollution level
X524
A
1000-6923(2017)11-4323-10
陳玫宏(1991-),女,貴州省銅仁市人,貴州大學(xué)碩士研究生,主要研究方向為環(huán)境評價.發(fā)表論文2篇.
2017-04-24
國家自然科學(xué)基金項目(21407055);江蘇省自然科學(xué)基金項目(BK20140115);貴州大學(xué)引進(jìn)人才科研基金資助(貴大人基合字(2013)13號)
* 責(zé)任作者, 張圣虎,助理研究員, zsh@nies.org;石利利,研究員, sll@nies.org