• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly Elastic and Flexible Phosphor Film for Flexible LED Lighting and Display Applications

    2017-11-21 11:43:03,-,*,-,*,-,-,U-,
    發(fā)光學(xué)報 2017年11期
    關(guān)鍵詞:熒光粉白光理工大學(xué)

    , -,*, -,*, -, -, U -,

    (1. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; 2. Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, China; 3. College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; 4. College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China)*Corresponding Authors, E-mail: jiahusheng_tyut@163.com; zaq6014567@126.com

    HighlyElasticandFlexiblePhosphorFilmforFlexibleLEDLightingandDisplayApplications

    JIAJing1,JIAHu-sheng1,2*,ZHANGAi-qin2,3*,SHENQian-qian1,LIDong-xin1,LIUXu-guang2,4

    (1.CollegeofMaterialsScienceandEngineering,TaiyuanUniversityofTechnology,Taiyuan030024,China;2.KeyLaboratoryofInterfaceScienceandEngineeringinAdvancedMaterials,TaiyuanUniversityofTechnology,Taiyuan030024,China;3.CollegeofTextileEngineering,TaiyuanUniversityofTechnology,Taiyuan030024,China;4.CollegeofChemistryandChemicalEngineering,TaiyuanUniversityofTechnology,Taiyuan030024,China)
    *CorrespondingAuthors,E-mail:jiahusheng_tyut@163.com;zaq6014567@126.com

    Flexible LEDs have attracted significant interest in recent years for lighting and display applications. We present a polydimethylsiloxane based phosphor film that is capable of high elasticity and flexibility while actively emitting light. It not only exhibits good thermal stability in a wide range of -50-230℃, but also retains the optical properties as raw phosphors. The prepared transparent PDMS thin film and the corresponding phosphor film enable complete flexibility and elasticity, the largest elongation is up to400% and275%, respectively. Besides, white LEDs were fabricated using prepared YAG-doped phosphor film, showing averageTcof6925K, CRI of71and mean luminous efficiency of115.7lm/W. Furthermore, the proposed photoluminescent films in two colors and a flexible3×3LED array glowing with three colors were fabricated using thin elastic and transparent rubber and subjected to stretching, rolling and folding to demonstrate their promising use in flexible lighting and display applications.

    light-emitting diodes; flexible design; phosphor film; optical properties

    1 Introduction

    The future is a world for screen. Not only televisions, computers, mobile phones and open-air large screens, but also the surface of tables or walls, and the displays inside vehicles will become various screens showing information. Though thin-film transistor liquid crystal display (TFT-LCD) technology applications have been commonplace, active matrix organic light-emitting diode displays (OLEDs) using glass or plastic substrates have been produced. As the optimal display technology at this stage[1-2], OLEDs have already been seen in smart phones, televisions, tablets and a new generation of wearable application. Apparently, TFT-LCD is being replaced with OLEDs step by step. As such, the luminescence mechanism of LEDs is the same as that of OLEDs,i.e., RGB color signals are emitted directly from diodes when a current passes through. Nevertheless, to date there are few real LEDs based self-luminous displays with small screen size and very high price on the market. Thus LEDs are applied more in lighting field, correspondingly, different colors and sorts of phosphor powders excited by blue or near ultraviolet (NUV) LED chips have been constantly exploited.

    On the other hand, flexible displays, which can be bent, rolled, or even folded, are developing in fast speed because of the mega market demand for personal mobile devices. The most common approach to obtain flexible LEDs is to employ stretchable transparent electrodes[3]or flexible substrates[4-6], for example, electrodes based on indium tin oxide (ITO) films[7], graphene[8], single- or multi-walled carbon nanotubes (SWNTs or MWNTs)[9-10], polyethylene-dioxythiophene∶polystyrene-sulfonate(PEDOT∶PSS)[11], or nanowires[12]. In addition, colloidal quantum dot (QD) flexible sheets of CdSe/ZnS have recently appeared in flexible LEDs for lighting and display applications[13-15].

    To our knowledge, the literature regarding stretchable transparent phosphor-based film hybridized with light emitting diodes to achieve flexible high performance lighting and displays is rare. Consequently, a highly stretchable and transparent hydroxyl-terminated polydimethylsiloxane(PDMS) film is prepared through bulk polymerization and heat curing without filler or catalyst, and then a flexible multicolor phosphor membrane based on alphabet templates is presented, which enables both flexibility and high elasticity. Array of tiny flexible fluorescent film panels, each emitting different color (such as red, green and blue) through selective blending of photoluminescence phosphor, could be a new class of display technique for LED display devices with NUV excitation light. Besides that, the proposed flexible phosphor film can be utilized as remote phosphor agents for the packaging structure of chip-on-board (COB) LEDs and flip chip LEDs. Most notably a major change in conventional lamps design concept may occur since super elastic, flexible and self-adhesive phosphor film can wrap around LED excitation sources in any shape or form.

    2 Experiments

    2.1 Materials

    Octamethylcyclotetrasiloxane (D4, 98%), potassium hydroxide (KOH, 82%), ethyl orthosilicate (TEOS,40% SiO2), tetrahydrofuran (THF, 99%). All chemicals were used without further purification. Ce-doped yttrium aluminum garnet (YAG∶Ce3+) and oxy-nitride red phosphors (ZYP630H, Beijing Nakamura-Yuji), teflon (PTFE) coagulating molds with alphabet template slot, which have three sizes of 28 mm×28 mm×1 mm, 60 mm×60 mm×0.5 mm and 40 mm×40 mm×4 mm, and nine-block moulds with 40 mm×40 mm made by a 3D printer using polypropylene (PP), 1 W blue LED chips withλpof 445 nm (made in China) were used in this work.

    2.2 Synthesis of Transparent PDMS Rubber and Preparation of Multicolor Phosphor Films

    The silicone oil and TEOS were blended at the ratio of 5∶1 in weight in the presence of a little THF acting as diluent. Afterwards, inorganic phosphor powder accounting for 10% of mass of silicone oil was mixed into it, or directly injected into character template slots. Subsequently, the uniform mixture was filled into PTFE molds and small air bubbles were removed under vacuum. Finally, phosphor film was baked and cured at 110 ℃ for 5 h and then dried in oven at 47 ℃ for 7 d. The fully dried films were peeled off from the mold surface and used as flexible free-standing sheets of phosphors ready for further experiments. The synthesis route of proposed transparent PDMS elastomer is shown in Fig.2.

    Fig.1 GPC chromatogram of synthetic hydroxyl silicone oil

    Fig.2 Synthesis route of the transparent PDMS

    2.3 Characterization

    The molecular weight of synthetic hydroxyl silicone oil was determined using gel permeation chromatography (GPC, TDAmax, Malvern). Qualitative analysis of the structures of prepared silicone oil and crosslinked PDMS was taken using Fourier transform infrared spectrometer (FTIR, Tensor 27, Bruker). The kinetics of degradation for prepared PDMS elastic membrane was measured using thermogravimetric/differential thermal analysis instrument(TG/DTA, STA409C, Netzsch). Differential scanning calorimetry(DSC) curves on transparent PDMS films were detected using Q2000 apparatus (TA Instruments). The tensile testing was conducted at an electronic universal testing machine with rectangular specimen sheets that had a gauge length of 20 mm, a width of 10 mm and a thickness of 2 mm. Light transmittance and absorption spectrum were collected using Hitachi-3900 UV-Vis spectrometer (the slit width was 2 nm). Fluorescence spectra were measured on an Edinburgh LFS-920 spectrometer and the absolute quantum yield of different samples was determined through an absolute method by employing an integrating sphere. Electroluminescence(EL) spectra were analyzed using a computer controlled PMS-80 UV-Vis-near IR spectrometer with an integrating sphere. All measurements were made at room temperature unless otherwise stated.

    3 Results and Discussion

    3.1 FTIR Spectroscopy

    The IR spectra of synthetic silicone oil and cross linked PDMS are given in Fig.3. It is quite clear that the band shape and wavenumber of silicone oil are basically in accordance with those of cross linked PDMS, although the absorbance for the latter is much higher as a result of more sample quantities. The wide absorption band containing two O—H stretching vibrations at 3 449 and 3 132 cm-1can be observed, which may be due to the formation of intermolecular hydrogen bond between end OH groups of PDMS, and then the O—H stretching vibration frequencies decrease to become a wide band[16]. As for crosslinked PDMS, the same two absorption bands are not obvious rather than disappeared because of different tick label. Furthermore, the band intensities remain unchanged for the reason that the number of terminal hydroxyl groups drops by 50% after the crosslinking reaction in spite of more sample quantities.

    The characteristic asymmetrical stretching vibration of —CH3occurs at 2 965 cm-1. In addition to this vibration, another weaker absorption band at 2 905 cm-1is caused by the —CH3rotamer in crosslinked network structure, as shown in Fig.3(b). And the symmetrical bending vibration of —CH3is located at 1 402 and 1 400 cm-1for silicone oil and crosslinked PDMS, respectively. Moreover, the backbone of PDMS is made up of inorganic siloxane (Si—O—Si), whose asymmetrical stretching vibration band is split into two bands at 1 096 and 1 022 cm-1or so, and the corresponding symmetrical stretching vibration is at 800 cm-1. Absorption bands at 866 and 700 cm-1are assigned to the stretching vibration of Si—C. Besides, absorption bands at 1 261 and 482 cm-1may be caused by impurities in testing samples. The above results indicate that the synthesized polymer has the chemical structure depicted in Fig.2.

    Fig.3 IR spectra of synthetic silicone oil (a) and crosslinked PDMS in the solid state(b)

    3.2 Thermal Analysis

    The thermal properties of prepared PDMS film were investigated by thermogravimetric (TG) analysis and differential thermal gravimetric (DTG) analysis, differential scanning calorimetry (DSC) under nitrogen atmosphere. As shown in Fig. 4, the onset decomposition temperature (Tonset) of the polymer is 231.8 ℃, as determined from the intersection of extended baseline and line composed of point of 5% weight loss and point of 50% weight loss[17]. No weight loss occurs between 100 ℃ andTonset, showing that there is no coordination water in polymer. The maximum decomposition rate occurs at 472 ℃ with a weight loss of 31.5%, and eventually complete decomposition of sample is reached at 527 ℃ with residue of 1.88%.

    The glass transition temperature (Tg) of the polymer is not apparent on the second heating curve in the range of -50-400 ℃, as seen from Fig.4(b). The exothermic peak on cooling curve is attributed to new cohesional entanglement formed from the shifts of local molecular chain segments to lower state and the corresponding energy release. The above results confirm that prepared PDMS film has good thermal stability in a wide range of -50-230 ℃, and is thermally stable enough for fabrication of LEDs, given that the junction temperature of LED is generally less than 150 ℃[18-19].

    Fig.4 Thermal properties analysis of prepared PDMS elastic membrane. (a) TG (square) and DTG (circle) curves at 10 ℃/min in N2. (b) DSC results at 10 ℃/min in N2.

    3.3 Optical Properties

    The light transmittance of prepared PDMS film in visible wavelength is more than 70% and even 80% especially in blue and green regions between 464-547 nm (refer to Fig. 5), completely transparent glass slides are as the blank control sample, indicating that synthesized PDMS elastomer has high transparency. Hence, YAG particles inside proposed phosphor film can obtain enough exciting light that passes through transparent PDMS matrix. Moreover, there is one characteristic absorption peak at 455 nm in the absorption spectrum of YAG phosphor film, demonstrating it can be excited by blue light to emit yellow light as original YAG phosphors.

    The solid-state excitation and emission spectra of prepared YAG phosphor film and raw YAG phosphor recorded at room temperature are presented in Fig.6(a) and (b). Their peak shapes are very similar for either photoluminescence excitation (PLE) spectra or photoluminescence (PL) spectra. The excitation spectra for both show a double-peak structure. Along with the sub-highest peaks at around 344 nm due to the transitions from2F5/2→2D5/2of Ce3+, the highest peaks appear at 467 and 451 nm in blue light region are related to the2F7/2→2D5/2transitions of Ce3+and ensures that the prepared YAG phosphor film can match blue chips withλpof 451 nm or so.

    Fig.5 Light transmittance of prepared PDMS film (square) and absorption spectrum of YAG phosphor film (circle) in visible wavelength

    On the other hand, the red curve in Fig.6(b) displays typical emission band centered at 541 nm when excited at 450 nm, which is compounded of emission bandsvia2D3/2→2F7/2and2D3/2→2F5/2transitions of Ce3+[20], the corresponding yellow-green fluorescence of prepared phosphor film can mix with unconverted blue light to produce white light, and the correlated 1931 Commission Internationale de L’Eclairage(CIE) coordinates for the YAG phosphor film (0.408 8, 0.566 4) are closer to the green light region than that for raw YAG phosphor powders (0.430 4, 0.546 6), as marked in Fig.6(c). In addition, the absolute quantum yield for YAG phosphor film (0.60) is slightly smaller than that for raw YAG phosphors (0.72) excited at 450 nm.

    Fig.6 PLE and PL spectra of raw YAG phosphor (a), YAG phosphor film (b) and the CIE chromaticity coordinates (c) for raw YAG phosphor (1) and YAG phosphor film (2).

    3.4 Appearance

    PDMS is commonly used for packaging materials with high transparency, good thermal stability and gas-permeability. In particular, in this study it is introduced for the elasticity and flexibility. Fig.7(a) and (b) show the appearance of prepared transparent PDMS film and YAG-doped phosphor film under natural light. Obviously, both have good flexibility. The proposed flexible phosphor film with silicone and YAG phosphor at mass ratio of 10∶1 can allow sufficient blue light pass through to mix with converted yellow light for white light, and also can scatter the incident blue light efficiently[21]. The real glowing effect of proposed multicolor phosphor film under NUV illumination or over high-power blue COB LEDs is displayed in Fig.7(c) and (d), corresponding scalability can be seen clearly from Fig.7(e) and (f).

    Fig.7 High elasticity and flexibility multicolor photoluminescence film. (a) Photograph of transparent PDMS film (under natural light). (b) Visual appearance of YAG-doped phosphor film (under natural light). (c) Multicolor fluorescent film under NUV illumination of 365 nm. (d) Multicolor fluorescent film over high-power blue COB LEDs of 452 nm. (e) and (f) Scalability of transparent multicolor film under NUV illumination of 365 nm.

    3.5 Mechanical Properties

    Fig.8 Tensile fracture behavior of synthetic PDMS and corresponding YAG phosphor film under uniaxial stretching at 5 mm/min

    The most convenient techniques to solve the problem on low strength of rubber are to add reinforce fillers, for instance, white carbon black, clay and calcium carbonate[22-24], or to prepare interpenetrating polymer networks(IPNs) structure generally composed of immiscible polymers, which leads to phase separation so that the resulting material is normally opaque[25-27]. Therefore, the future challenge is to improve the weak mechanical strength of proposed phosphor film without sacrificing its trans-parency.

    3.6 White LED Devices

    The fabricated LED lamp beads made of standard blue chips and slices from prepared YAG phosphor film are driven at 2.9 V. One drop of commercial silicone (Dow Corning) is used to fasten phosphor film while not influencing transmission of blue light within the packaging. The median is determined by means of 5 sets of data. When blue emission with peak wavelength of 445 nm is radiated from LED chip to excite YAG phosphor film, some of incident blue light is converted into yellow light, and the rest is diffused, finally these rays are blended to generate white light. The measured electroluminescence (EL) spectra and relevant CIE coordinates are shown in Fig.9. The CIE chromaticity coordinates corresponding to assembled white-LED with YAG phosphor film (0.308 5, 0.311 8) are close to standard white light (0.33, 0.33) according to the 1931 CIE coordinate diagram[28-30].

    Fig.9 (a) EL spectra of assembled LEDs with or without YAG phosphor film. The mosaic photo shows visible emissions from different LED lamp beads. (b) Corresponding CIE chromaticity coordinates.

    As given in Tab.1, the mean color temperature (Tc) of fabricated WLED is 6 925 K, the mean color rendering index (CRI) is 71.1, and the mean luminous efficiency is 115.7 lm/W (for naked blue LED chip it is only 13.96 lm/W), meaning that prepared YAG-doped phosphor film can absolutely be applied in white lighting applications as a result of good optical properties. The three main reasons why the luminous efficiency of white LEDs can be improved largely compared to that of naked blue LED are as follow. First, white light is a mixture of blue light radiated from blue chip and yellow-green light emitted by YAG phosphor, and the calculation equation of total luminous flux of a white LED[31]is:

    (1)

    whereKm(lm/W) is the maximum spectral luminous efficacy of eyes on light,Φeλ(W) is the radiant flux of a light source, andVλis the relative luminous

    efficiency function of visible light. In other words, total luminous flux of a white LED is the integral of each wavelength of the spectrum multiplied by its relative luminous efficiency function. Wide yellow-green band area means relatively more luminous flux for fabricated white LED in Fig.9(a), therefore total luminous flux of a white LED and corresponding luminous efficiency are much higher than those of naked blue LED in the same drive current condition (120 mA). Second, the refractive index of GaN-based blue LED chip (2.4) is bigger than that of the air (1.0), causing most of the photons of blue light would be totally reflected at the interface between chip and air, and then lost in the chip. By contrast, phosphor film on the surface of chip can significantly increase the external quantum efficiency of blue LED chip due to higher refractive index of transparent silicone (about 1.5) and scattering by phosphor particles. At last the phosphor in the conformal film structure has good thermal conduction for blue chip[32], which leads to less heat accumulation, lower running temperature, and higher luminous efficiency of white LEDs.

    Tab.1 Optical data for different fabricated LED lamp beads driven at 2.9 V

    3.7 Flexible Phosphor-based Lighting and Displays

    As shown in Fig.10, the proposed phosphor-based photoluminescence film makes flexible lighting, which can be wrapped directly in various shapes of LED excitation sources, for example, cubes and cylinders. The background color of photograph images is basically blue due to the fluorescer inside white papers as the luminous body’s backdrop. Also, nine independent pixels of 2 mm spacing glowing with three colors under NUV excitations were fabricated using thin elastic and transparent rubber and were subjected to stretching, rolling and folding to demonstrate the potential applications of suggested phosphor film in flexible displays. Each individual pixel shows good optical emission with a size of 10 mm×10 mm.

    Fig.10 Flexible lighting using different phosphors on white papers under NUV excitations of 365 nm: (a) original toy bricks, (b) oxy-nitride red phosphors, (c) silicates gamboge phosphors. Nine pixels photoluminescent display of 5 mm thick employing proposed rubber under NUV illumination of 365 nm: (d) undeformed, (e) rolled, (f) folded.

    4 Conclusion

    A highly elastic and transparent PDMS film was prepared by a simple and pollution-free method, and then a flexible multicolor phosphor-based photoluminescence film and yellow YAG phosphor film were presented. As far as prepared YAG phosphor film be concerned, it not only retains the optical properties of raw YAG phosphors, but also exhibits good thermal stability in a wide range of -50- 230 ℃. The combination of blue chip and yellow YAG phosphor film can satisfy the requirements of white lighting applications, which shows averageTcof 6 925 K, CRI of 71 and mean luminance efficiency of

    115.7 lm/W (for naked blue chip it is only 13.9 lm/W). Moreover, the prepared transparent PDMS thin film and the corresponding phosphor film enable complete flexibility and elasticity, the largest elongation is up to 400% and 275%, respectively. Ultimately, we succeeded in utilizing the suggested highly elastic, flexible and transparent phosphor-based photoluminescence film onto flexible lighting and LED arrays display. This method provides a promising solution to realize flexible/stretchable multicolor devices having high performance and low cost, compared with existing flexible LEDs employing stretchable transparent electrodes or flexible substrates.

    [1] KRASNOV A N. High-contrast organic light-emitting diodes on flexible substrates [J].Appl.Phys.Lett., 2002, 80:3853-3855.

    [2] HELANDER M G, WANG Z B, GREINER M T,etal.. Oxidized gold thin films: an effective material for high-performance flexible organic optoelectronics [J].Adv.Mater., 2010, 22:2037-2040.

    [3] XU X Z, ZHOU J, LUBINEAU G,etal.. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics [J].Nanoscale, 2016, 8:12294-12306.

    [4] CHOI J H, CHO E H, LEE Y S,etal.. Fully flexible GaN light-emitting diodes through nanovoid-mediated transfer [J].Adv.Opt.Mater., 2014, 2:267-274.

    [5] TIAN P F, MCKENDRY J J, GU E,etal.. Fabrication, characterization and applications of flexible vertical InGaN micro-light emitting diode arrays [J].Opt.Express, 2016, 24:699-707.

    [6] SHER C W, CHEN K J, LIN C C,etal.. Large-area, uniform white light LED source on a flexible substrate [J].Opt.Express, 2015, 23:A1167-A1178.

    [7] BURROWS P E, GRAFF G L, GROSS M E,etal.. Ultra barrier flexible substrates for flat panel displays [J].Displays, 2001, 22:65-69.

    [8] HAN T H, LEE Y B, CHOI J H,etal.. Extremely efficient flexible organic light-emitting diodes with modified graphene anode [J].Nat.Photon., 2012, 6:105-110.

    [9] SEKITANI T, NAKAJIMA H, MAEDA H,etal.. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors [J].Nat.Mater., 2009, 8:494-499.

    [10] SHIN M K, OH J Y, BAUGHMAN R H,etal.. Elastomeric conductive composites based on carbon nanotube forests [J].Adv.Mater., 2010, 22:2663-2667.

    [11] WHITE M S, KALTENBRUNNER M, GLOWACKI E D,etal.. Ultrathin, highly flexible and stretchable PLEDs [J].Nat.Photon., 2013, 7:811-816.

    [12] HU L, KIM H S, LEE J Y,etal.. Scalable coating and properties of transparent, flexible, silver nanowire electrodes [J].ACSNano, 2010, 4: 2955-2963.

    [13] DEMIR H V, NIZAMOGLU S, ERDEM T,etal.. Quantum dot integrated LEDs using photonic and excitonic color conversion [J].NanoToday, 2011, 6:632-647.

    [14] YANG X, DIVAYANA Y, LECK K S,etal.. A bright cadmium-free, hybrid organic/quantum dot white light-emitting diode [J].Appl.Phys.Lett., 2012, 101:233110.

    [15] ALTINTAS Y, GENC S, TALPUR M Y,etal.. CdSe/ZnS quantum dot films for high performance flexible lighting and display applications [J].Nanotechnology, 2016, 27:295604.

    [16] WENG S F.FourierTransformInfraredSpectroscopy[M]. 2nd ed. Beijing: Chemical Industry Press, 2014.

    [17] E1641—Standard test method for decomposition kinetics by thermogravimetry [S]. US: ASTM, 2007.

    [18] WANG H H, HE P, YAN H G,etal.. Synthesis, characteristics and luminescent properties of a new europium(Ⅲ) organic complex applied in near UV LED [J].Sens.ActuatorsB, 2011, 156:6-11.

    [19] FISCHER A, KOPRUCKI T, GRTNER K,etal.. Feel the heat: nonlinear electrothermal feedback in organic LEDs [J].Adv.Funct.Mater., 2014, 24:3367-3374.

    [20] JACOBS R R, KRUPKE W F, WEBER M J. Measurement of excited-state-absorption loss for Ce3+in Y3A15O12and implications for tunable 5d→4f rare-earth lasers [J].Appl.Phys.Lett., 1978, 33:410-412.

    [21] JIA J, ZHANG A Q, JIA H S,etal.. Preparation and properties of the flexible remote phosphor film for blue chip-based white LED [J].Mater.Design, 2016, 102:8-13.

    [22] HATANALKA H, SUAANUNIA N. Room-temperature-curable organopolysiloxane composition: US: 5405889 [P]. 1995-04-11.

    [23] 魏緒玲, 付含琦, 鄭聚成, 等. 橡膠補(bǔ)強(qiáng)填料的研究進(jìn)展 [J]. 高分子通報, 2014, 2:31-35.

    WEI X L, FU H Y, ZHENG J C,etal.. Progress of reinforcing filler of rubber [J]. PolymerBull., 2014, 2:31-35. (in Chinese).

    [24] 田軍濤, 許炳才. 非炭黑橡膠補(bǔ)強(qiáng)填料的應(yīng)用研究進(jìn)展 [J]. 橡膠工業(yè), 2006, 53:52-61.

    TIAN J T, XU B C. Research progress and application of non-carbon black reinforce filler for rubber [J].ChinaRubberIndustry, 2006, 53:52-61. (in Chinese)

    [25] SPERLING L H. Joined and sequential interpenetrating polymer networks based on poly(dimethylsiloxane) [J]. J.Appl.Polym.Sci., 1972, 16:3041-3046.

    [26] HE X W, WIDMAIER J M, HERZ J E,etal.. Polydimethylsiloxane/poly (methylmethacrylate) interpenetrating polymer networks: 2. Synthesis and properties [J].Polymer, 1992, 33:866-871.

    [27] URAGAMI T, SUMIDA I, MIYATA T,etal.. Pervaporation characteristics in removal of benzene from water through polystyrene-poly(dimethylsiloxane) IPN membranes [J].Mater.Sci.Appl., 2011, 2:169-179.

    [28] GUILD J. The colorimetric properties of the spectrum [J].Philos.Trans.R.Soc.Lond., 1932, 230:149-187.

    [29] FORSTER T. Transfer mechanism of electronic excitation [J].Discuss.FaradaySoc., 1959, 27:7-17.

    [30] GUO T F, WEN T C, HUANG Y S,etal.. White-emissive tandem-type hybrid organic/polymer diodes with (0.33,0.33) chromaticity coordinates [J].Opt.Express, 2009, 17:21205-21215.

    [31] Nichia Application Guide. Light measurement and units [R]. Japan: Nichia, 2016.

    [32] CHEN K J, LIN B C, KUO H C,etal.. Effect of the thermal characteristics of phosphor for the conformal and remote structures in white light-emitting diodes [J].IEEEPhoton.J., 2013, 5:8200508.

    賈靜(1987-),女,山西原平人,博士研究生,2013年于太原理工大學(xué)獲得碩士學(xué)位,主要從事柔性熒光薄膜的研究。

    E-mail: jiajing.chn@icloud.com張愛琴(1974-),女,山西臨猗人,副教授,碩士生導(dǎo)師,2012年于太原理工大學(xué)獲得博士學(xué)位,主要從事有機(jī)光電材料的研究。

    E-mail: zaq6014567@126.com賈虎生(1964-),男,山西太原人,教授,博士生導(dǎo)師,1996年于西北工業(yè)大學(xué)獲得博士學(xué)位,主要從事白光LED熒光粉與器件、半導(dǎo)體異質(zhì)結(jié)設(shè)計(jì)及光電化學(xué)行為等方面的研究。

    E-mail: jiahusheng_tyut@163.com

    2017-04-13;

    2017-06-13

    山西省科技攻關(guān)計(jì)劃項(xiàng)目(201603D121017,201601D102020); 山西省自然科學(xué)基金(2015021075); 山西省高??萍紕?chuàng)新項(xiàng)目(2016124); 山西省科技創(chuàng)新重點(diǎn)團(tuán)隊(duì)(201513002-10); 山西省研究生教育創(chuàng)新項(xiàng)目(2016BY055)資助

    LED柔性照明及顯示用超彈性柔性熒光膜

    賈 靜1, 賈虎生1,2*, 張愛琴2,3*, 申倩倩1, 李棟信1, 劉旭光2,4
    (1. 太原理工大學(xué) 材料科學(xué)與工程學(xué)院, 山西 太原 030024;2. 太原理工大學(xué) 新材料界面科學(xué)與工程教育部重點(diǎn)實(shí)驗(yàn)室, 山西 太原 030024;3. 太原理工大學(xué) 輕紡工程學(xué)院, 山西 太原 030024; 4. 太原理工大學(xué) 化學(xué)化工學(xué)院, 山西 太原 030024)

    柔性LED是近年來照明及顯示領(lǐng)域研究的熱點(diǎn)之一。本文提出了一種新的基于有機(jī)硅膠(PDMS)制備的兼具超彈性和柔性的熒光薄膜,它不僅在-50~230 ℃這一較寬的溫度范圍內(nèi)展現(xiàn)了良好的熱穩(wěn)定性,還保持了原料熒光粉的光學(xué)性能。所制備的透明PDMS基質(zhì)膜和相應(yīng)的熒光膜具有完全的柔性和超彈性,其最大伸長率分別高達(dá)400%與275%。此外,采用所制摻Y(jié)AG熒光膜和普通商用1 W藍(lán)光芯片簡單封裝的白光LED燈珠滿足日常白光照明的應(yīng)用要求,呈現(xiàn)出約6 925 K的平均色溫,約71的平均顯色指數(shù),115.7 lm/W左右的平均發(fā)光效率。最后,基于所提出熒光膜成膜工藝而制備的三色3×3柔性陣列顯示,可以輕易被拉伸、卷曲和折疊,顯示了它在柔性照明及顯示器件方面具有應(yīng)用價值和潛力。

    LED; 柔性設(shè)計(jì); 熒光膜; 光學(xué)性能

    Supported by Program for Science and Technology Development of Shanxi(201603D121017,201601D102020); Natural Science Foundation of Shanxi Province(2015021075); Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2016124); Shanxi Provincial Key Innovative Research Team in Science and Technology(201513002-10); Graduate Innovation Program of Shanxi Province(2016BY055)

    O482.31DocumentcodeA

    10.3788/fgxb20173811.1493

    猜你喜歡
    熒光粉白光理工大學(xué)
    昆明理工大學(xué)
    寬帶激發(fā)BaBi2(MoO4)4:Eu3+熒光粉的制備與發(fā)光性能
    昆明理工大學(xué)
    昆明理工大學(xué)
    浙江理工大學(xué)
    白光LED無線通信的研究進(jìn)展
    白光(選頁)
    中國房地產(chǎn)業(yè)(2016年9期)2016-03-01 01:26:18
    硼酸、Li+摻雜對YAG:Ce3+熒光粉的影響
    XPS在YAG∶Ce3+熒光粉中Ce3+半定量分析方面的應(yīng)用
    免费大片18禁| 欧美日本亚洲视频在线播放| 人妻丰满熟妇av一区二区三区| 一个人观看的视频www高清免费观看| 国产av在哪里看| 婷婷亚洲欧美| 可以在线观看的亚洲视频| 久久久久久久久大av| 伦理电影大哥的女人| 91麻豆av在线| 90打野战视频偷拍视频| 日韩中文字幕欧美一区二区| 久久精品国产99精品国产亚洲性色| 久久精品夜夜夜夜夜久久蜜豆| 韩国av一区二区三区四区| 精品人妻熟女av久视频| 91麻豆精品激情在线观看国产| 国产精品99久久久久久久久| 亚洲人成网站在线播| 深爱激情五月婷婷| 日本与韩国留学比较| 久久久久久久久久成人| 欧美日韩亚洲国产一区二区在线观看| 国产黄色小视频在线观看| 亚洲精品成人久久久久久| 欧美激情国产日韩精品一区| 一级av片app| 国产精品女同一区二区软件 | 亚洲成人免费电影在线观看| 特大巨黑吊av在线直播| 露出奶头的视频| 国产一区二区三区视频了| 蜜桃久久精品国产亚洲av| 亚洲黑人精品在线| 国产蜜桃级精品一区二区三区| 国产一级毛片七仙女欲春2| 国产伦精品一区二区三区四那| 国产精品亚洲av一区麻豆| 岛国在线免费视频观看| 久久久久久久久大av| 日本与韩国留学比较| 夜夜看夜夜爽夜夜摸| 99国产精品一区二区三区| 十八禁国产超污无遮挡网站| 一级黄片播放器| 色精品久久人妻99蜜桃| 午夜福利免费观看在线| 国产精品av视频在线免费观看| 女同久久另类99精品国产91| 啦啦啦观看免费观看视频高清| 无人区码免费观看不卡| 色播亚洲综合网| 欧美精品国产亚洲| 国产午夜精品久久久久久一区二区三区 | 俺也久久电影网| 日韩高清综合在线| 成人高潮视频无遮挡免费网站| 好男人在线观看高清免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 极品教师在线视频| 亚洲成人久久爱视频| 亚洲av熟女| 亚洲av电影在线进入| 国产精品av视频在线免费观看| 日本黄大片高清| 伦理电影大哥的女人| 亚洲午夜理论影院| 亚洲人成网站高清观看| 午夜激情福利司机影院| 欧美成人一区二区免费高清观看| 天堂√8在线中文| 国产一区二区在线观看日韩| 两个人的视频大全免费| 亚洲av五月六月丁香网| 看片在线看免费视频| 欧美成人免费av一区二区三区| 欧美色视频一区免费| 久久亚洲真实| 18禁在线播放成人免费| 天堂√8在线中文| 男人舔女人下体高潮全视频| 国产高清视频在线播放一区| 精品不卡国产一区二区三区| 熟女电影av网| 久久精品国产亚洲av涩爱 | 日本a在线网址| 欧美黄色片欧美黄色片| 色在线成人网| 黄色日韩在线| 中文资源天堂在线| 国产精品伦人一区二区| 最近中文字幕高清免费大全6 | 内地一区二区视频在线| 久久午夜亚洲精品久久| 日本a在线网址| 国产私拍福利视频在线观看| av天堂在线播放| 亚洲人成网站在线播放欧美日韩| 日本熟妇午夜| 精品一区二区三区av网在线观看| 在线看三级毛片| 在现免费观看毛片| 免费搜索国产男女视频| 国产伦人伦偷精品视频| 变态另类丝袜制服| 日韩欧美一区二区三区在线观看| 国产精品久久久久久亚洲av鲁大| www日本黄色视频网| 热99在线观看视频| 乱人视频在线观看| 国产成人影院久久av| 亚洲精品乱码久久久v下载方式| 波野结衣二区三区在线| 久久中文看片网| 别揉我奶头~嗯~啊~动态视频| 亚洲av中文字字幕乱码综合| 精品国产三级普通话版| 精品一区二区三区视频在线| 亚洲欧美日韩东京热| 欧美bdsm另类| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站高清观看| 嫩草影视91久久| 国内毛片毛片毛片毛片毛片| 国产久久久一区二区三区| 久久香蕉精品热| 亚洲国产欧洲综合997久久,| 国内精品久久久久久久电影| 成人国产综合亚洲| 天堂动漫精品| 久久久国产成人精品二区| 国产毛片a区久久久久| 亚洲激情在线av| 久9热在线精品视频| 午夜日韩欧美国产| 一进一出好大好爽视频| 中文字幕精品亚洲无线码一区| 成人永久免费在线观看视频| 久久精品国产亚洲av香蕉五月| 一本一本综合久久| 免费看光身美女| 九九久久精品国产亚洲av麻豆| 亚洲av免费高清在线观看| 午夜视频国产福利| av欧美777| 亚洲欧美清纯卡通| 真人做人爱边吃奶动态| 久久这里只有精品中国| 麻豆国产av国片精品| 99热这里只有是精品50| 麻豆成人av在线观看| www.999成人在线观看| 亚洲精品影视一区二区三区av| 一卡2卡三卡四卡精品乱码亚洲| 全区人妻精品视频| av在线天堂中文字幕| 午夜福利成人在线免费观看| 国内少妇人妻偷人精品xxx网站| 欧美日韩乱码在线| 国内精品久久久久精免费| av在线观看视频网站免费| 亚洲av熟女| 精品久久久久久久久久免费视频| 亚洲成人中文字幕在线播放| 99精品久久久久人妻精品| 欧美日本视频| 国产精品av视频在线免费观看| 麻豆国产av国片精品| 欧美乱色亚洲激情| www.999成人在线观看| 色视频www国产| 一级黄色大片毛片| 极品教师在线免费播放| 免费黄网站久久成人精品 | 99热这里只有是精品在线观看 | 简卡轻食公司| .国产精品久久| 国产成年人精品一区二区| 美女 人体艺术 gogo| 亚洲av五月六月丁香网| 嫩草影院精品99| 亚洲久久久久久中文字幕| 日本黄色视频三级网站网址| а√天堂www在线а√下载| 一本精品99久久精品77| 18禁黄网站禁片免费观看直播| 99riav亚洲国产免费| 亚洲中文日韩欧美视频| 亚洲,欧美精品.| 夜夜夜夜夜久久久久| 在线观看免费视频日本深夜| 深爱激情五月婷婷| 淫妇啪啪啪对白视频| 亚洲成人精品中文字幕电影| 1024手机看黄色片| 伊人久久精品亚洲午夜| 精品久久国产蜜桃| 中文字幕人妻熟人妻熟丝袜美| 国产三级中文精品| 一个人免费在线观看电影| 天堂影院成人在线观看| 日韩欧美精品v在线| 久久久久九九精品影院| 日日摸夜夜添夜夜添av毛片 | 国模一区二区三区四区视频| 午夜免费男女啪啪视频观看 | 亚洲乱码一区二区免费版| 亚洲国产精品成人综合色| 免费看日本二区| 一级黄色大片毛片| 听说在线观看完整版免费高清| 中文字幕人妻熟人妻熟丝袜美| 99国产极品粉嫩在线观看| 欧美成人性av电影在线观看| 国产精品人妻久久久久久| 九九久久精品国产亚洲av麻豆| 无人区码免费观看不卡| 永久网站在线| 久久亚洲真实| 9191精品国产免费久久| 国产成年人精品一区二区| 久久草成人影院| 亚洲成人久久性| 丝袜美腿在线中文| 中文资源天堂在线| 亚洲熟妇中文字幕五十中出| 精品99又大又爽又粗少妇毛片 | 欧美黄色片欧美黄色片| 国产v大片淫在线免费观看| 亚洲成人久久性| 亚洲黑人精品在线| 国产精品99久久久久久久久| 亚洲无线在线观看| 亚洲在线自拍视频| 搡老岳熟女国产| 成人性生交大片免费视频hd| 精品不卡国产一区二区三区| 欧美zozozo另类| 日日摸夜夜添夜夜添小说| 久久精品国产亚洲av香蕉五月| 国内精品久久久久久久电影| ponron亚洲| 久久午夜福利片| 好看av亚洲va欧美ⅴa在| 男女床上黄色一级片免费看| 国产69精品久久久久777片| 中文亚洲av片在线观看爽| 听说在线观看完整版免费高清| 男女那种视频在线观看| 国产精品久久久久久精品电影| 99热6这里只有精品| 亚洲 欧美 日韩 在线 免费| 欧美成人a在线观看| 在线观看舔阴道视频| 美女高潮喷水抽搐中文字幕| 又爽又黄a免费视频| 日本五十路高清| 午夜精品在线福利| 天堂网av新在线| 18禁黄网站禁片免费观看直播| 精品熟女少妇八av免费久了| 亚洲一区二区三区色噜噜| 啪啪无遮挡十八禁网站| 内射极品少妇av片p| АⅤ资源中文在线天堂| 国产 一区 欧美 日韩| av国产免费在线观看| 成人性生交大片免费视频hd| 国内精品美女久久久久久| 毛片一级片免费看久久久久 | 婷婷精品国产亚洲av| 综合色av麻豆| 国产激情偷乱视频一区二区| 国产av不卡久久| 亚洲美女搞黄在线观看 | 成人av一区二区三区在线看| 日本 欧美在线| 日日摸夜夜添夜夜添av毛片 | 18禁黄网站禁片午夜丰满| 国产亚洲精品久久久久久毛片| 观看美女的网站| 精品久久久久久久人妻蜜臀av| 在线免费观看的www视频| 成人亚洲精品av一区二区| 亚洲精品在线观看二区| 可以在线观看的亚洲视频| 一区二区三区激情视频| 久久久久国内视频| 国产精品一区二区三区四区免费观看 | 亚洲中文字幕一区二区三区有码在线看| 日韩av在线大香蕉| 欧美日韩瑟瑟在线播放| а√天堂www在线а√下载| 在线国产一区二区在线| 哪里可以看免费的av片| 九色国产91popny在线| 欧美bdsm另类| 欧美极品一区二区三区四区| 3wmmmm亚洲av在线观看| 精品午夜福利视频在线观看一区| 美女大奶头视频| 免费在线观看成人毛片| 一区二区三区高清视频在线| 麻豆成人午夜福利视频| 成人av一区二区三区在线看| 久久久国产成人免费| 欧美区成人在线视频| av在线天堂中文字幕| 亚洲av中文字字幕乱码综合| 九色国产91popny在线| 日韩欧美在线乱码| 中文字幕av在线有码专区| av在线蜜桃| 熟妇人妻久久中文字幕3abv| 国内精品一区二区在线观看| ponron亚洲| 久久精品久久久久久噜噜老黄 | 午夜精品久久久久久毛片777| 国产麻豆成人av免费视频| 成人亚洲精品av一区二区| 看免费av毛片| 特级一级黄色大片| 我的老师免费观看完整版| 日本五十路高清| 亚洲精品色激情综合| 丝袜美腿在线中文| 国产亚洲欧美98| 日韩欧美国产在线观看| 一个人看视频在线观看www免费| 波多野结衣高清无吗| www.色视频.com| 亚洲七黄色美女视频| 美女 人体艺术 gogo| 国产探花在线观看一区二区| 看十八女毛片水多多多| 国产三级在线视频| 亚洲av.av天堂| 性色av乱码一区二区三区2| 午夜亚洲福利在线播放| 禁无遮挡网站| 久9热在线精品视频| 桃色一区二区三区在线观看| 成人一区二区视频在线观看| 白带黄色成豆腐渣| 无遮挡黄片免费观看| 变态另类丝袜制服| 毛片女人毛片| 久久久精品大字幕| 国产视频一区二区在线看| 日韩中字成人| 日本a在线网址| 成年免费大片在线观看| 亚洲中文日韩欧美视频| 日韩免费av在线播放| 精品久久国产蜜桃| 日韩有码中文字幕| 国内精品久久久久精免费| 日本黄色视频三级网站网址| 色吧在线观看| 一边摸一边抽搐一进一小说| 欧洲精品卡2卡3卡4卡5卡区| 国产精品永久免费网站| 最近最新中文字幕大全电影3| 国产老妇女一区| 婷婷六月久久综合丁香| 国产成人影院久久av| 精品人妻一区二区三区麻豆 | 我的老师免费观看完整版| 欧美黑人欧美精品刺激| 欧美xxxx性猛交bbbb| 少妇高潮的动态图| 久久久久久久久久黄片| 亚洲欧美清纯卡通| 欧美国产日韩亚洲一区| 精品福利观看| 久久婷婷人人爽人人干人人爱| 日韩av在线大香蕉| 直男gayav资源| 日本成人三级电影网站| 国产精品一及| 欧美成狂野欧美在线观看| 欧美一级a爱片免费观看看| 我的老师免费观看完整版| 国产一区二区激情短视频| 99热6这里只有精品| 久久久久久久久久成人| 亚洲美女黄片视频| а√天堂www在线а√下载| 人妻久久中文字幕网| 亚洲色图av天堂| 丰满的人妻完整版| 国产精品嫩草影院av在线观看 | 俺也久久电影网| 午夜久久久久精精品| 亚洲精品在线美女| 有码 亚洲区| 国产日本99.免费观看| 在线十欧美十亚洲十日本专区| 久久精品国产自在天天线| 亚洲精品久久国产高清桃花| 亚洲av成人精品一区久久| 一进一出抽搐gif免费好疼| 国产精品精品国产色婷婷| 特大巨黑吊av在线直播| 亚洲人成网站在线播放欧美日韩| 国产91精品成人一区二区三区| 精品免费久久久久久久清纯| 美女高潮的动态| 少妇高潮的动态图| 美女高潮喷水抽搐中文字幕| 精品欧美国产一区二区三| 日韩大尺度精品在线看网址| 国产三级中文精品| 99国产综合亚洲精品| 亚洲欧美精品综合久久99| 国产精品乱码一区二三区的特点| 亚洲真实伦在线观看| 51午夜福利影视在线观看| 欧美日韩亚洲国产一区二区在线观看| 国内精品一区二区在线观看| 久久久久久久久大av| 最近在线观看免费完整版| 9191精品国产免费久久| 亚洲成人中文字幕在线播放| 精品久久久久久久末码| 男女那种视频在线观看| 久久精品人妻少妇| 69人妻影院| 国产综合懂色| 亚洲精品亚洲一区二区| 国产在视频线在精品| 欧美区成人在线视频| 午夜福利免费观看在线| 99久国产av精品| 久久香蕉精品热| 床上黄色一级片| 欧美丝袜亚洲另类 | 国产综合懂色| 嫩草影视91久久| 欧美在线一区亚洲| 国产 一区 欧美 日韩| 欧美+亚洲+日韩+国产| 日本a在线网址| 国产精品电影一区二区三区| 日本与韩国留学比较| 99久久无色码亚洲精品果冻| 亚洲在线观看片| 久久人人精品亚洲av| 男插女下体视频免费在线播放| 天堂av国产一区二区熟女人妻| 男人舔女人下体高潮全视频| 在现免费观看毛片| 内射极品少妇av片p| 欧美黑人欧美精品刺激| 很黄的视频免费| 欧美区成人在线视频| 国产精品精品国产色婷婷| 别揉我奶头 嗯啊视频| 亚洲专区中文字幕在线| 成人午夜高清在线视频| 三级毛片av免费| 99热精品在线国产| 村上凉子中文字幕在线| www.www免费av| 欧美乱色亚洲激情| 亚州av有码| 老司机福利观看| 三级国产精品欧美在线观看| 国产一区二区三区在线臀色熟女| www.熟女人妻精品国产| 亚洲专区中文字幕在线| 性插视频无遮挡在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 日韩精品青青久久久久久| 夜夜爽天天搞| 精品久久久久久久人妻蜜臀av| 久久精品夜夜夜夜夜久久蜜豆| 久99久视频精品免费| 国产精品98久久久久久宅男小说| 久久精品综合一区二区三区| 亚洲第一电影网av| 亚洲精品一区av在线观看| 亚洲av免费高清在线观看| 日本熟妇午夜| 天堂√8在线中文| 亚洲不卡免费看| 无遮挡黄片免费观看| 99在线视频只有这里精品首页| 在线十欧美十亚洲十日本专区| 麻豆国产97在线/欧美| 高清在线国产一区| 日韩精品青青久久久久久| 俺也久久电影网| 久久久久国产精品人妻aⅴ院| 90打野战视频偷拍视频| 国产av麻豆久久久久久久| 亚洲综合色惰| 最新在线观看一区二区三区| 亚洲国产高清在线一区二区三| 亚洲七黄色美女视频| a级一级毛片免费在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产麻豆成人av免费视频| 一级黄色大片毛片| 搡老妇女老女人老熟妇| 国产av麻豆久久久久久久| 国产精品,欧美在线| 久久精品国产99精品国产亚洲性色| 三级国产精品欧美在线观看| 亚洲五月天丁香| 91九色精品人成在线观看| 亚洲精品色激情综合| 99热这里只有精品一区| 国产精品影院久久| 精品熟女少妇八av免费久了| 网址你懂的国产日韩在线| АⅤ资源中文在线天堂| 国产中年淑女户外野战色| 麻豆一二三区av精品| 精品国产亚洲在线| 国产主播在线观看一区二区| 丝袜美腿在线中文| 精品日产1卡2卡| av福利片在线观看| 日本 av在线| x7x7x7水蜜桃| 99久久久亚洲精品蜜臀av| 久久久久国内视频| 国产熟女xx| 欧美一区二区国产精品久久精品| 国产精品永久免费网站| 亚洲国产精品999在线| 亚洲欧美激情综合另类| 亚洲第一区二区三区不卡| 中亚洲国语对白在线视频| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品综合一区二区三区| 国产成人a区在线观看| 久久精品国产亚洲av香蕉五月| 午夜福利成人在线免费观看| 国产午夜精品久久久久久一区二区三区 | 亚洲美女视频黄频| 国产单亲对白刺激| av中文乱码字幕在线| 亚洲成人久久爱视频| 日本黄色视频三级网站网址| 欧美成人a在线观看| 国产精品国产高清国产av| 在线观看美女被高潮喷水网站 | 1000部很黄的大片| 国产成人影院久久av| 国产精品1区2区在线观看.| 两个人视频免费观看高清| 一本综合久久免费| 18禁在线播放成人免费| 免费av观看视频| 久久久精品欧美日韩精品| a级一级毛片免费在线观看| 哪里可以看免费的av片| 久久人妻av系列| 免费av毛片视频| 亚洲久久久久久中文字幕| 久久精品久久久久久噜噜老黄 | АⅤ资源中文在线天堂| 国产精品一区二区免费欧美| 亚洲av美国av| 国产在线精品亚洲第一网站| 国产私拍福利视频在线观看| 国产精品永久免费网站| 黄色女人牲交| 午夜久久久久精精品| 精品一区二区免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲真实伦在线观看| 国产亚洲欧美98| 色在线成人网| 女人被狂操c到高潮| 97人妻精品一区二区三区麻豆| 亚洲人成伊人成综合网2020| 午夜福利在线在线| 欧美色欧美亚洲另类二区| 亚洲精品亚洲一区二区| 午夜激情福利司机影院| 嫩草影视91久久| 亚洲欧美激情综合另类| 欧美日本亚洲视频在线播放| 99久久精品国产亚洲精品| 久久欧美精品欧美久久欧美| 国产精品美女特级片免费视频播放器| 成人毛片a级毛片在线播放| 可以在线观看的亚洲视频| 91午夜精品亚洲一区二区三区 | 别揉我奶头~嗯~啊~动态视频| 不卡一级毛片| 亚洲国产色片| 欧美一区二区精品小视频在线| 1024手机看黄色片| 我的老师免费观看完整版| 亚洲成人久久爱视频| 日韩欧美国产一区二区入口| 久久99热6这里只有精品| 国产午夜精品久久久久久一区二区三区 | 久久午夜亚洲精品久久| 12—13女人毛片做爰片一| 国产成人aa在线观看| 神马国产精品三级电影在线观看| 午夜激情欧美在线| 嫩草影视91久久| 夜夜夜夜夜久久久久| 五月伊人婷婷丁香| 日本三级黄在线观看| 精品一区二区免费观看| 夜夜躁狠狠躁天天躁| 久久久久久国产a免费观看| 91在线观看av|