馮 立,鄺育軍,代澤洋,付新川
?
異構(gòu)認知網(wǎng)中基于能效的協(xié)作技術(shù)研究
馮 立1, 2,鄺育軍1,代澤洋1,付新川1
(1. 電子科技大學通信與信息工程學院 成都 611731;2. 四川廣播電視大學工程技術(shù)學院 成都 610073)
針對異構(gòu)認知網(wǎng)絡(luò)場景,提出了一種主次系統(tǒng)“雙贏”的高能效協(xié)作通信機制。在滿足主次系統(tǒng)“雙重”速率QoS要求下,該機制允許次級用戶在接入主系統(tǒng)協(xié)助主用戶傳輸數(shù)據(jù)的同時,換取一部分授權(quán)頻譜資源來實現(xiàn)自身數(shù)據(jù)在異構(gòu)網(wǎng)中的傳輸分流,以此提升次級能效。本文研究了該機制的次級加權(quán)能效最大化非凸資源優(yōu)化問題,結(jié)合參數(shù)化的分式規(guī)劃算法和黃金分割法提出了一種資源分配的迭代算法。仿真結(jié)果表明,所提機制在不降低主用戶通信性能的情況下,提升了次級系統(tǒng)傳輸能效,實現(xiàn)了主次系統(tǒng)傳輸“雙贏”的目的。
認知無線電; 能量效率; 異構(gòu)網(wǎng)絡(luò); 資源分配; 中繼傳輸
在當今倡導構(gòu)建環(huán)境友好與資源節(jié)約社會的大背景下,高能量效率通信已受到業(yè)界關(guān)注。特別是在考慮用戶更高傳輸速率需求的前提下,實現(xiàn)高能效傳輸就變得尤為關(guān)鍵[1]。眾所周知,無線通信網(wǎng)絡(luò)中可利用空間分集來減小時變信道的影響,從而提高通信可靠性。協(xié)作通信能有效地提升分集增益,并通過分布式的傳輸與信號處理技術(shù)來提高能量效率和減少信息的傳輸時間[2]。同時,由于認知無線電技術(shù)內(nèi)在的感知能力,使次級用戶能共享主用戶的授權(quán)頻譜,從而有效地改善次級傳輸性能[3-4]。本文在異構(gòu)認知網(wǎng)絡(luò)(heterogeneous cognitive radio networks, Het-CRNs)中研究了利用認知與協(xié)作傳輸技術(shù)來實現(xiàn)節(jié)能通信。與文獻[5]類似,本文所考慮的Het-CRNs環(huán)境中共存兩類用戶設(shè)備(user equipment, UE):單模用戶設(shè)備(single-mode UE, SUE)和多模用戶設(shè)備(multimode UE, MUE)。其中,SUE只配備單個無線接入技術(shù)(radio access technologies, RAT),而MUE配備多個RAT。
從現(xiàn)有研究文獻來看,認知與協(xié)作技術(shù)相結(jié)合可以降低網(wǎng)絡(luò)能耗。文獻[6]中提出了一種在滿足主系統(tǒng)最小能耗約束條件下的頻譜共享策略,其核心思想是通過對多個頻段拍賣機制來提高次級系統(tǒng)的吞吐量。文獻[7]針對頻譜共享網(wǎng)絡(luò),在最低服務(wù)質(zhì)量約束下,提出了一種總系統(tǒng)能耗最小的時間和功率分配方案。在保證系統(tǒng)QoS要求的前提下,文獻[8]研究了一種自適應(yīng)傳輸業(yè)務(wù)負荷的最優(yōu)資源開/關(guān)策略來減小網(wǎng)絡(luò)傳輸能耗。與文獻[8]不同,文獻[9]通過在不同網(wǎng)絡(luò)之間利用數(shù)據(jù)分流處理來實現(xiàn)節(jié)能通信。文獻[10]提出在上行數(shù)據(jù)鏈路中讓兩個MUE相互協(xié)作傳輸策略。研究表明,相比非合作傳輸機制,該網(wǎng)絡(luò)協(xié)作傳輸模型能大幅降低能耗。文獻[11]中應(yīng)用合同理論模型,研究了次級用戶作為中繼來協(xié)助主用戶傳輸數(shù)據(jù),從而換取一部分授權(quán)頻譜來傳輸自身數(shù)據(jù)的頻譜共享機制。文獻[12]中作者盡管研究了同樣的模型并提出了相類似的傳輸機制,但沒有從能量效率角度來開展分析,也沒從實現(xiàn)主次系統(tǒng)傳輸“雙贏”的局面來考慮。事實上,文獻[6-12]主要關(guān)心通過主次用戶控制其發(fā)射功率來降低網(wǎng)絡(luò)能耗,而本文采用能量效率指標更全面地反映吞吐量和能耗之間的折衷[3]。
為此,本文在Het-CRNs環(huán)境中,提出了一種高能效認知協(xié)作(energy-efficient cognitive cooperation, ECC)通信機制。在ECC傳輸機制中,次級用戶借助認知無線電智能的頻譜共享技術(shù),使其能接入主系統(tǒng)協(xié)助主用戶傳輸數(shù)據(jù)來換取一部分頻譜資源,實現(xiàn)自身業(yè)務(wù)數(shù)據(jù)在異構(gòu)網(wǎng)中的傳輸分流,進而提升次級系統(tǒng)能效。與文獻[11-12]不同,為了實現(xiàn)主次傳輸系統(tǒng)的“雙贏”局面,ECC通信機制對主次級用戶的傳輸質(zhì)量施加了“雙重”QoS需求約束?;诖?,建模了ECC傳輸機制的次級加權(quán)能效最大化問題,利用非線性分式規(guī)劃理論,并結(jié)合黃金分割法,提出了一種高能效的迭代算法,實現(xiàn)了在保障主傳輸QoS的同時提升次級系統(tǒng)傳輸?shù)哪苄А?/p>
圖1 Het-CRNs系統(tǒng)模型
圖2 ECC傳輸幀結(jié)構(gòu)
算法1:ECC機制下的資源分配算法
Repeat
算法2:功率分配算法
Repeat
End while
圖3 不同次級最大發(fā)射功率限制下的次級能效
圖4 不同次級最大發(fā)射功率限制下的傳輸功耗
圖5 不同次級最小速率限制下的次級能效
圖6 不同次級最小速率限制下的次級功耗
圖7 不同主用戶發(fā)射功率下的次級能效
圖8 不同授權(quán)頻譜帶寬下的次級能效
本文研究了Het-CRNs環(huán)境中的高能效認知協(xié)作傳輸問題,提出了一種稱為ECC高能效認知傳輸機制。ECC機制借助認知無線電技術(shù),使次級傳輸數(shù)據(jù)可在異構(gòu)網(wǎng)絡(luò)中實現(xiàn)傳輸分流,進而提高了次級傳輸能效。基于該機制,建模了次級能效最大化的非凸資源優(yōu)化問題,通過非線性分式規(guī)劃理論的等價轉(zhuǎn)換,并結(jié)合黃金分割法提出了一種高效的迭代求解算法。仿真分析表明,所提的方案在不降低主用戶通信性能的前提下,提升了次級系統(tǒng)傳輸能量效率,實現(xiàn)了主次用戶“雙贏”的局面。
本文研究工作得到了華為公司項目(YB2014110120)的資助,在此表示感謝。
[1] FENG L, KUANG Y J, WU B W. Energy-efficient configuration of power resource for OFDM-based opportunistic regenerative relay links[J]. Chinese Journal of Electronics, 2016, 25(2): 341-347.
[2] RONG B Y, EPHREMIDES A. Cooperative access in wireless networks: Stable throughput and delay[J]. IEEE Transactions on Information Theory, 2012, 58(9): 5890-5907.
[3] HUANG X Q, HAN T, ANSARI N. On green energy powered cognitive radio networks[J]. IEEE Communications Surveys & Tutorials, 2015, 17(2): 827-842.
[4] FENG L, KUANG Y J, WU B W, et al. Energy-efficient distributed spectrum sensing with combined censoring in cognitive radios[J]. IEICE Transactions on Communications, 2016, 99(2): 455-464
[5] GHOSH C, ROY S, CAVALCANTI D. Coexistence challenges for heterogeneous cognitive wireless networks in TV white spaces[J]. IEEE Wireless Communications, 2011, 18(4): 22-31.
[6] LIU D, WANG W, GUO W. Green cooperative spectrum sharing communication[J]. IEEE Communications Letters, 2013, 17(3): 459-462.
[7] Cao B, Mark J W, Zhang Q, et al. On optimal communication strategies for cooperative cognitive radio networking[C]//IEEE International Conference on Computer Communications, 2013: 1726-1734.
[8] ISMAIL M, ZHUANG W. Network cooperation for energy saving in green radio communications[J]. IEEE Wireless Communications, 2011, 18(5): 76-81.
[9] MA X, SHENG M, ZHANG Y. Green communications with network cooperation: a concurrent transmission approach[J]. IEEE Communications Letters, 2012, 16(12): 1952-1955.
[10] ZOU Y, ZHU J, ZHANG R. Exploiting network cooperation in green wireless communication[J]. IEEE Transactions on Wireless Communications, 2013, 61(3): 999-1010.
[11] DUAN L, GAO L, HUANG J. Cooperative spectrum sharing: a contract-based approach[J]. IEEE Transactions on Mobile Computing, 2014, 13(1): 174-187.
[12] DAI Z, LIU J, WANG C, et al. Exploiting network cooperation for green communications in cognitive radio networks[C]//IEEE Global Communications Conference, 2013: 4554-4559.
[13] DINKELBACH W. On nonlinear fractional programming [J]. Management Science, 1967, 13(7): 492-498.
[14] BOYD S, VANDENBERGHE L. Convex optimization[M]. Cambridge: Cambridge University Press, 2004.
編 輯 葉 芳
Network Cooperation for Energy-Efficient Communication in Multi-RAT Heterogeneous Cognitive Radio Networks
FENG Li1, 2, KUANG Yu-jun1, DAI Ze-yang1,and FU Xin-chuan1
(1. School of Communication and Information Engineering, University of Electronic Science and Technology of China Chengdu 611731; 2. Engineering and Technology College, Sichuan Radio and TV University Chengdu 610073)
An innovative EE-oriented ‘win-win’ cooperative transmission scheme in heterogeneous cognitive radio networks (Het-CRNs), called energy-efficient cognitive cooperation (ECC), in which primary system release a part of its radio spectrum to secondary system in exchange for secondary relay (SR) served as a relay to assist transmission of primary user’s traffic under the dual quality of service (QoS) requirements. Then, secondary user’s traffic ?ow is split into the unlicensed spectrum and the released licensed spectrum to improve EE in Het-CRNs. Based on ECC, we formulate a weighted EE maximization non-convex problem for secondary users. By employing parametric fractional programming and golden section search (GSS) method, an efficient resource allocation policy is developed. Simulation results show that the proposed strategy can gain significantly higher EE without reducing performance of primary transmission, and thus, a ‘win-win’ goal is achieved.
cognitive radio; energy efficiency; multi-rat heterogeneous networks; resource allocation; relay transmission
TN92
A
10.3969/j.issn.1001-0548.2017.05.005
2016-03-28;
2017-05-02
國家自然科學基金(61471089, 61071099); 四川省教育廳科研項目(16ZB0504)
馮立(1981-),男,博士生,主要從事認知無線電,協(xié)作通信系統(tǒng)中的資源管理方面研究.