• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Integrity enhancement of GNSS for train positioning

    2017-11-17 02:14:13CHENGuangwuWANGDiLIUShedeLIPeng
    關(guān)鍵詞:蘭州甘肅省證據(jù)

    CHEN Guang-wu, WANG Di, LIU She-de, LI Peng

    (1. Automatic Control Research Institute, Lanzhou Jiaotong University, Lanzhou 730070, China;2. Gansu Provincial Key Laboratory of Traffic Information Engineering and Control, Lanzhou 730070, China)

    Integrity enhancement of GNSS for train positioning

    CHEN Guang-wu1,2, WANG Di1,2, LIU She-de1,2, LI Peng1,2

    (1. Automatic Control Research Institute, Lanzhou Jiaotong University, Lanzhou 730070, China;2. Gansu Provincial Key Laboratory of Traffic Information Engineering and Control, Lanzhou 730070, China)

    The global navigation satellite systems (GNSS) can be applied in railway field to provide real-time location information for the train running control system, which requires that the train localization function comply with certain safety standards. Therefore, it is important to improve the integrity of GNSS to ensure the safety of train location information. First, some principles of train localization are compared for the understanding the proposed solutions. Second, a new method for improving the integrity monitoring of GNSS in train positioning is described, which compromises the Dempster-Shafer (D-S) evidence theory with the train track satellites database. The D-S evidence theory is applied to the information processing of satellite navigation message, and the train location information was predicted by satellite ephemeris information. Finally, the integrity monitoring of the proposed method is experimentally examined and verified by simulations. The comparison with the traditional RAIM algorithm shows that this method greatly improves the integrity of the GNSS, and can provide some references for satellite-based railway applications.

    GNSS; train positioning; signal integrity; D-S evidence; train track satellite database

    Global Navigation Satellite Systems (GNSS) have been widely used in surface transportation, for example,vehicle navigation, railway fleet management, and train station passenger information[1]. In recent years, the positioning technologies based on satellite navigation are gradually introduced in the railway field. Using satellite navigation system to realize the train localization function can reduce the track equipment. In addition, Doppler radar and odometer can be used together to deliver more accurate and safe train locations. These sensors are installed on the train instead of along the track, which reduce the system construction and decrease the maintenance work along the track. It is known that GNSS receiver is not able to provide a safe navigation solution,particularly in urban and forest area where GNSS signals are subject to multipath effects[2]. Integrity is the core factor to determine the safety of train positioning, which describes the ability to issue an alarm when the positionning error exceeds a predetermined limit value and the desired function is not available[3]. Therefore, it is important to improve the integrity of GNSS to ensure the safety of train location information. Researchers have been doing GNSS for railway safe-related applications. Debiao et al analyzed the GNSS performance and established a stochastic Petri net to illustrate the GNSS receiver location states,but the protection level pertaining to safety critical application is not discussed in detail. Neri et al analyzed the real raw GNSS data and integrity issue for railway application, but the amount of raw data is relatively small[4].

    In this study, we analyzed traditional localization systems such as track circuit, odometer and Doppler radar in railway safe-related applications. A new method to enhance the integrity of GNSS was proposed. On the one hand, the information pseudo-range residual, the distribution shape and the number of visible satellites from navigation message were fused by Dempster-Shafer(D-S) evidence theory. On the other hand, the message from train track satellite database such as number of visible satellites and distribution shape were fused by D-S evidence theory. Finally the threshold was calculated by probability of fault alarm.

    1 Principles of train localization

    Before presenting our method to evaluate the safety of a satellite-based localization system and the proposed integrity monitoring algorithm, some concepts must be explained for the understanding of the proposed solutions.

    1.1 Positioning system for track circuit

    The track circuit, as a traditional positioning method,uses two rails as conductors, and we can train the train by testing the track occupancy of the train segment. The circuit provides the power and constitutes the electrical equipment, as shown in Figure 1.

    Fig.1 Railway track circuit

    Track circuit can only locate approximate location of the train in sections, and it cannot get the specific location information. In Figure 1, L is the length of the section. At this time, the positioning error of the train is the circle area of the radiusR=L2. This positioning method needs to install a number of track equipments and maintain regularly, while also has a large error. Therefore,this method cannot meet the needs of train positioning.

    1.2 Positioning system for odometer

    An odometer is a device fitted on train bogie axles,which provides the distance travelled by a vehicle. Classically, it is composed of an incremental encoder, which measures elementary motions of the vehicle in the form of impulses[5]. Figure 2 is the positioning principle of the odometer.

    Fig.2 The principle of odometer

    The system can process the odometer’s output information in real time and get the location information of the train. A dead reckoning process using the position information of the odometer will be converted into pulse train distance information. Sometimes, however, the wheel may slip and wear, which may cause a lot of errors in positioning. To make matters worse, the location error will continue to accumulate, as shown in Figure 3.

    Fig.3 Cumulative errors in a railway context

    1.3 Positioning system for Doppler radar

    Doppler radar velocity measurement is a direct method to measure the speed of the train. It can get the actual speed of the train, which doesn’t need to measure the rotation speed of the wheel. The train is placed at the bottom of radar to emit electromagnetic waves when the train is running. Due to the relative motion between the train and the rail surface, we can calculate the running speed of the train according to the Doppler frequency shift effect principle. But its precision is influenced by the algorithm and device, so it is also difficult to meet the needs of railway positioning.

    1.4 Satellite localization system

    With the continuous development of satellite positionning technology, satellite positioning service has begun to be applied into the railway field, which has an important impact on the way of train positioning. At present, the main GNSS includes the United States’ GPS,Russia’s GLONASS, Europe’s Galileo, as well as China’s Compass. A GNSS provides a global positioning service which is not limited to a given area. By allowing the reduction of the number of balises along the track, the satellite technology can contribute to reducing the costs of the infrastructure and enhancing the performances of the ETCS odometry in new trains without impacting on equipped lines[6]. The principle of GNSS-based train localization is shown in Figure 4.

    Fig.4 Principle of GNSS-based localization

    GNSS positioning is based on the distance between the user and the visible satellite in the sky. The pseudo range can express as:

    This distance is unknown for GNSS user. The GNSS location information can be obtained from the satellite ephemeris. We need to determine the 4 unknowns, which include three position coordinates x, y, zand clock offset. Therefore, four pseudo-ranges are needed at least.

    Although GNSS can improve the positioning accuracy of the train and realize the autonomous positioning,the positioning accuracy is affected by many factors, for example, satellite clock error, ionospheric delay, tropospheric delay, multipath error, etc. In order to meet the safety requirements of the railway, the primary problem of the GNSS application in the railway field is to solve the integrity.

    2 Train GNSS integrity monitoring method

    This subsection is intended to explain our proposed integrity monitoring method through compromise the D-S evidence theory with train track satellites database.Figure 5 shows the proposed integrity monitoring method.

    Fig.5 The proposed integrity monitoring method

    There are two parts: GNSS system and integrity monitoring. Data collection and transmission are completed by GNSS system. The integrity monitoring method is mainly divided into the following three steps:

    ① Extract the pseudo-range residual, the distribution shape and the number of visible satellites through the navigation message. The pseudo-range residual can measure the volatility of the positioning data. Distribution shape is measured by HDOP value. HDOP is the horizontal dilution of precision. Each GNSS location contains an index of accuracy measurement information, i.e. HDDP.is regarded as the threshold for satellite geometry availability[7]. The number of visible satellites is another parameter to measure the level of positioning. In general, the positioning function can be achieved when the number of available satellites is four at least. The D-S evidence theory integrates the parameters of the pseudorange residual, the distribution shape and the number of visible satellites. The threshold T can be gotten by the probability of fault alarm.

    ② Set up train track satellite databases. The number of visible satellites and the distribution shape will be predicted through database information when the train passes through a position. The D-S evidence theory will be extracted to form the effective integration of the three parameters, and the threshold T can be gotten by the probability of fault alarm.

    ③ The threshold can be achieved through the two steps before the security fault alarm for reducing the error alarm and improving the integrity of GNSS positioning.

    2.1 Principle of integrity monitoring

    Even if there is no fault satellite, the environmental noise may also cause abnormal observation data, which may lead to the existence of the fault satellite’s false or miss detection. According to the definition of the measurement model of the total least squares (TLS) residual method, the total least squares method can be obtained[8]:

    The pseudo-range residual vectorand the pseudo-range residual square sum of error (SSE)are respectively:

    Fault detection algorithm usually uses fixed false alarm rateto adjust the detection threshold. Under the normal condition of the system, the individual components of the pseudo-range residual vectorare mutually from the normal distribution random errors.According to statistical theory, no fault hasa fault has

    In the absence of failure, the system should be in the normal detection area. In this case, if there is a detection alarm, then a false alarm, they will seriously affect the performance and reliability of RAIM. Therefore, given the probability of false alarmthe Eq.(8) could be set up, and the thresholdgotten. Suppose

    When there is a fault, the test statisticshould be greater thanwhich indicates that the fault has been detected. Ifis less thanit indicates that the detection is missed. The missed detection will seriously affect the reliability of RAIM, endangering the safety of train operation. Given the failure probability ofthe following probability equation should be satisfied:

    Fig.6 Density probability function FSSE of normalised sum of squared errors

    2.2 Data processing model based on D-S evidence theory

    The Dempster-Shafer (D-S) evidence theory algorithm is one of the statistical algorithms in the information fusion. It can deal with the uncertainty results from the shortage of information, and it is one of practical algorithms for data fusion[9]. In D-S evidence theory, Letbe the set of all possible values of the variable, andelements are mutually exclusive, thenis called as a sample space. If the number of elements in theis,then the set of all subsets incan be described byFor any subset ofthat belongs to, it corresponds to a number of and meets:

    The basic belief of impossible proposition is zero,i.e.is an empty set;

    According to the D-S evidence theory, the fusion belief assignment of propositionis:

    This fusion algorithm can be used in multisensory measurement.

    Deviation maximization method can automatically determine the weighted coefficient of each evaluation index, and the result is accurate. This paper uses this method to establish the basic probability of D-S evidence.

    ① Calculation model of pseudo-range residual evaluation factor

    At a certain location, the pseudo-range residual should satisfy a certain range. The following non-dimensional treatment of its data and the calculation model of the evaluation factorof the pseudo-range residual are obtained:

    ② HDOP evaluation factor calculation model

    At a certain location, the HDOP should satisfy a certain range. The non-dimensional treatment of its data and the calculation model of evaluation factor of the HDOP are obtained:

    ③ Evaluation factor calculation model for number of visible satellites

    At a certain location, the number of visible satellites should satisfy a certain range. The non-dimensional treatment of its data and the calculation model of evaluation factorof the number of visible satellites are obtained:

    Suppose the basic probability of (12)-(14) isestablish the following evaluation decision function[10-11]:

    According to the (16) and the evaluation probability,the normalized decision matrixis constructed as:

    for the optimal solution and the normalization process.The assessment of the probability of

    The data fusion process based on D-S evidence theory is shown in Figure 7.

    Fig.7 Data fusion process based on D-S evidence theory

    Hypothesize that the first i measurement parameters in thetime on the thresholdfusion probability iswhereThe cumulative uncertainty assigned to the fusion target is[12-15]:

    Fig.8 Basic probability assignment of evidence source

    Figure 8 is the basic probability assignment of evidence source, where (a) is the basic probability assignment of evidence pseudo-range residual, (b) is the basic probability assignment of evidence distribution shape,and (c) is the basic probability assignment of evidence number of visible satellites.

    By using the Dempster combination rule, the basic probabilityand the uncertainty ofmoments can be obtained:

    ?q≠j, mij( k-1)miqkis the conflict coefficient between i and j. By using the Dempster combination rule,the basic probability of getting the target threshold value

    According to the Eq.(22), we can calculate the target threshold whenfusion is uncertain:

    Finally, according to the basic calculation probability and the target fusion model (12)-(23), the threshold value can be obtained by.

    2.3 Database of train track satellites

    As the train runs to different locations, the number of visible satellites used for positioning is different. Therefore,the number of visible satellites at different locations on the train can be predicted with the use of the satellite database information. The number of visible satellites is analyzed when the train runs to a certain location, which can improve the integrity of the positioning by combining with the real-time satellite navigation message. Vehicular GNSS system can be used to obtain the track tracing satellite database, update the database and calculate the satellite distribution data in the area in front of the track. The satellite coverage area is based on the satellite ephe- meris calculation function. All GNSS satellites in orbit on the ground elevation are greater than 8° of the coverage area.The train, based on the track database information, can predict the satellite distribution of the train after 10 min according to the information of the train track database.The whole process is shown in Figure 9.

    Fig.9 Process of satellite prediction

    Where μ=3.986 005×1014m3/s2is the constant of the earth gravitation. Then, the mean anomalymoment can be calculated from the mean anomalyat reference moment

    Iterative calculation of anomaly

    According to the ephemeris given in the argument of perigee calculation, we can calculate the ascending node distance

    Then we can get the coordinates of the satellite in the orbit plane:

    The derived satellite coordinates are:

    According to the formula (32), we can calculate the satellite position:

    If the geocentric angle between a point and pacific satellite is less than, then the point is in the coverage of this satellite .

    3 Integrity enhancement results

    3.1 Simulation and test

    In order to validate the integrity enhancement method of GNSS for train positioning in this paper, a positioning and simulation platform based on GNSS is established, which includes GNSS satellite positioning receiver, GNSS antenna, D-S evidence theory processing module, satellite data storage database, and the integrity monitoring module. The positioning and simulation platform based on GNSS are shown in Figure 10, where 10(a)is GNSS receiver device, 10(b) is processing module,and 10(c) is AT300 GNSS antenna.

    Fig.10 Positioning and simulation platform based on GNSS

    GNSS receiver has three systems (BDS B1, GPS L1,GLONASS L1) and uses single frequency. The sampling rate of GNSS receiver is 2 Hz. Table 1 lists the main perfor- mance characteristics of GNSS receiver.

    Tab.1 Main performance characteristics of GNSS receiver

    Due to the constraints of the railway line environment, the test distance of the Changsha Maglev line is about 18.55 km. Field test and trajectory is shown in Figure 11. The test time is about 11 min.

    Fig.11 Field test and trajectory

    According to the data collected by the GNSS receiver on the test line, the error distribution is shown in Figure 11(c). The HDOP value and the number of satellites are shown in Figure 12(a) and 12(b), respectively.The GNSS receiver signal may be missing due to the impact of housing construction.

    Fig.12 Relevant data of GNSS receiver output in test line

    3.2 Forecast analysis on train track satellite database

    In this paper, the train track satellite database is proposed to predict the future location of distribution shape and the number of satellites. These data can be compared with real measurement data, which can improve the positioning of the integrity. The prediction results of the distribution shape and the number of satellites during the test period are shown in Figure 13(a) and 13(b).Table 2 is the true and predictive values of the average distribution of seven points in the test line. It can be seen that the predicted value is close to the true value.

    Fig.13 Prediction results for distribution shape and the number of satellites during test period

    Tab.2 Comparison between predictive value and true value

    3.3 Integrity enhancement analysis

    In order to verify the advantages of this method, this paper introduces horizontal position error (HPE) and horizontal protection level (HPL)[23-24].

    Fig.14 Distribution of horizontal position errors and horizontal protection levels

    Figure 15 shows the relationship between the probability of false alarm and the number of satellites. The blue line is calculated by the proposed method in this paper. It can be seen that the false alarm rate began to decline when the number of satellites is 1, and the probability of false alarm is almost 0 when the number of satellites exceeds 8.The black line is the result of the traditional RAIM algorithm. But the probability of false alarm is almost 0 when the number of satellites exceeds 15.

    Fig.15 Relationship between the probability of false alarm and the number of satellites

    Figure 16 is the distribution probability of the missed detection on the test line. It can be seen from Figure 16 that the proposed method has low misseddetection probability than the RAIM algorithm.

    Fig.16 Distribution probability of missed detection

    4 Conclusion

    Integrity is a key performance index in the application of train positioning based on satellite navigation system.It is different from the conventional RAIM algorithm. In this paper, a D-S evidence theory based information fusion method and a train track satellite database are proposed to enhance the integrity of GNSS for train positioning. The D-S evidence theory is applied to the information processing of satellite navigation message,and the corresponding mathematical model is given. At the same time, the train orbit satellite database was established and the train location information was predicted by satellite ephemeris information.

    In order to verify the feasibility of the method, a positioning device based on GNSS is built, and the data are calculated and analyzed. The comparison with the traditional RAIM algorithm shows that this method greatly improves the integrity of the GNSS, and can provide some references for enhancing the integrity of GNSS in train positioning.

    [1]Lu D, Schnieder E. Performance evaluation of GNSS for train localization[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 1054-1059.

    [2]Marais J, Nahimana D F, Viandier N, et al. GNSS accuracy enhancement based on pseudo range error estimation in an urban propagation environment[J]. Expert Systems with Applications, 2013, 40(15): 5956-5964.

    [3]Kaplan E, Hegarty C. Understanding GPS: Principles and

    applications[M]. Artech House, 2005.

    [4]Neri A, Rispoli F, Salvatori P, et al. A train integrity solution based on GNSS double-difference approach[C]//Proceedings of the 27th International Technical Meeting of the ION Satellite Division. 2014: 34-50.

    [5]Legrand C, Beugin J, Marais J, et al. From extended integrity monitoring to the safety evaluation of satellitebased localization system[J]. Reliability Engineering &System Safety, 2016, 155: 105-114.

    [6]Yan X H, Cai B G, Ning B, et al. Online distributed cooperative model predictive control of energy-saving trajectory planning for multiple high-speed train movements[J].Transportation Research Part C: Emerging Technologies,2016, 69: 60-78.

    [7]Grimes J G. Global positioning system standard positioning service performance standard[J]. GPS & Its Augmentation Systems, 2008, 35(2): 197-216.

    [8]Yang C S, Xu X H, Liu R H, et al. An improved RAIM algorithm based on the total least squares[C]//2008 International Conference on Computational Intelligence and Security. 2008, Vol.2: 319-324.

    [9]Zhang Y H, Xu J, Du K. Information fusion algorithm for electromechanical equipment based on DS evidence theory[J]. Applied Mechanics and Materials, 2013: 1125-1128.

    [10]Houston S W, Anselmo C S, Sullivan D P. Method and system for providing satellite coverage using fixed spot beams and scanned spot beams: US Patent 6,272,317[P].2001-08-07.

    [11]Teunissen P J G, Odolinski R, Odijk D. Instantaneous BeiDou+GPS RTK positioning with high cut-off elevation angles[J]. Journal of Geodesy, 2014, 88(4): 335-350.

    [12]Feng R, Che S, Wang X, et al. Trust management scheme based on DS evidence theory for wireless sensor networks[J]. International Journal of Distributed Sensor Networks,2013, 9(6): 948-952.

    [13]Han Y, Chen Q, Wang J X. An enhanced DS theory cooperative spectrum sensing algorithm against SSDF attack[C]//2012 IEEE 75th Vehicular Technology Conference.2012: 1-5.

    [14]Wu G Q, Li L, Li L, et al. Web news extraction via tag path feature fusion using DS theory[J]. Journal of Computer Science and Technology, 2016, 31(4): 661-672.

    [15]Xu Li-jia. Improvement of DS theory in an information fusion system[J]. Systems Engineering and Electronics,2004, 26(6): 717-720.

    [16]Gao H M, Liu H. Design of regional coverage resource satellite constellation based on analytical method[J]Modern Defence Technology, 2014, 45(2): 1894-1897.

    [17]Mushet G, Mingotti G, Colombo C, et al. Self-organising satellite constellation in geostationary earth orbit[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015,51(2): 910-923.

    [18]Kassabian N, Lo P L, Rispoli F. Augmented GNSS differrential corrections minimum mean square error estimation sensitivity to spatial correlation modeling errors[J]. Sensors,2014, 14(6): 10258-10272.

    [19]Mushet G, Mingotti G, Colombo C, et al. Self-organising satellite constellation in geostationary earth orbit[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015,51(2): 910-923.

    [20]Chiang K W, Lin C A, Kuo C Y. A feasibility analysis of land-based SINS/GNSS gravimetry for groundwater resource detection in Taiwan[J]. Sensors, 2015, 15(10):25039-25054.

    [21]Liu J, Cai B, Wang J. Particle swarm optimization for integrity monitoring in BDS/DR based railway train positioning[C]//2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2014: 792-797.

    [22]Senesi F. Satellite application for train control systems:The test site in Sardinia[J]. Journal of Rail Transport Planning & Management, 2012, 2(4): 73-78.

    [23]Blanch J, Walter T, Enge P, et al. Advanced RAIM user algorithm description: Integrity support message processing, fault detection, exclusion, and protection level calculation[C]//Proceedings of the 25th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2012). 2012: 2828-2849.

    [24]Roturier B, Chatre E, Ventura-Traveset J. The SBAS integrity concept standardised by ICAO: Application to EGNOS[J]. Navigation, 2001, 49: 65-77.

    [25]Filip A, Maixner V, Mocek H, et al. Fault diagnosis in high integrity GNSS based train position locator[C]//Proceedings of 2nd European Space Agency Workshop on Satellite Navigation User Equipment Technologies. 2004:78-87.

    [26]Toledo-Moreo R, Bétaille D, Peyret F. Lane-level integrity provision for navigation and map matching with GNSS,dead reckoning, and enhanced maps[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(1):100-112.

    [27]Sabatini R, Moore T, Hill C. A new avionics-based GNSS integrity augmentation system: Part 1 - Fundamentals[J].Journal of Navigation, 2013, 66(3): 363-384.

    [28]Sabatini R, Moore T, Hill C. A new avionics-based GNSS integrity augmentation system: Part 2 - Integrity flags[J].Journal of Navigation, 2013, 66(4): 501-522.

    [29]Vartziotis D, Goudas I, Savvas S, et al. Roadscanner:feasibility study and development of a GNSS-probe for creating digital maps of high accuracy and integrity[J].Procedia - Social and Behavioral Sciences, 2012, 48:2473-2481.

    1005-6734(2017)04-0500-10

    10.13695/j.cnki.12-1222/o3.2017.04.014

    2017- 04-17;修回日期:2017-07-22

    甘肅省基礎(chǔ)研究創(chuàng)新群體計(jì)劃項(xiàng)目(1606RJIA327);西部之光青年學(xué)者計(jì)劃(2016ZKX03);博士后科學(xué)基金面上項(xiàng)目(2017M613242);隴原青年創(chuàng)新人才扶持計(jì)劃(G16038)

    陳光武(1976—),男,教授,碩士生導(dǎo)師,從事慣導(dǎo)和組合導(dǎo)航研究。E-mail: cgwyjh1976@126.com

    基于GNSS的列車定位信號(hào)完好性提高方法

    陳光武1,2,王 迪1,2,劉射德1,2,李 鵬1,2

    (1. 蘭州交通大學(xué) 自動(dòng)控制研究所,蘭州 730070;2. 甘肅省高原交通信息工程及控制重點(diǎn)實(shí)驗(yàn)室,蘭州 730070)

    全球?qū)Ш叫l(wèi)星系統(tǒng) (GNSS) 應(yīng)用于鐵路領(lǐng)域,能夠?yàn)榱熊囘\(yùn)行控制系統(tǒng)提供實(shí)時(shí)的位置信息。同時(shí)列車定位應(yīng)當(dāng)滿足一定的安全標(biāo)準(zhǔn),因此如何提高基于GNSS列車定位的完好性就顯得尤為重要。首先,介紹了目前傳統(tǒng)的列車定位方式和應(yīng)用方法;其次,基于D-S證據(jù)理論和列車軌道衛(wèi)星數(shù)據(jù)庫(kù)提出了一種新的提高列車定位完好性的方法。最后,通過仿真和實(shí)驗(yàn)驗(yàn)證表明:該方法對(duì)GNSS在鐵路領(lǐng)域的應(yīng)用具有重要的參考價(jià)值。

    GNSS;列車定位;信號(hào)完好性;D-S證據(jù);列車軌道衛(wèi)星數(shù)據(jù)庫(kù)

    U284

    A

    猜你喜歡
    蘭州甘肅省證據(jù)
    致敬甘肅省腹腔鏡開展30年
    甘肅省機(jī)械工程學(xué)會(huì)
    甘肅省發(fā)布第1號(hào)總林長(zhǎng)令
    我的蘭州夢(mèng)
    黃河之聲(2021年8期)2021-07-23 03:34:32
    蘭州石化推進(jìn)改革正當(dāng)時(shí)
    甘肅省天水市泰安縣橋南初級(jí)中學(xué)
    蘭州瑣記
    我憶蘭州好
    對(duì)于家庭暴力應(yīng)當(dāng)如何搜集證據(jù)
    紅土地(2016年3期)2017-01-15 13:45:22
    手上的證據(jù)
    免费久久久久久久精品成人欧美视频 | 亚洲精华国产精华液的使用体验| 国产精品久久久久久精品电影小说| 男女国产视频网站| 欧美日韩在线观看h| 热99久久久久精品小说推荐| 亚洲婷婷狠狠爱综合网| 国产精品一区二区在线不卡| 亚洲国产av新网站| 大香蕉久久成人网| 欧美精品人与动牲交sv欧美| 老司机影院毛片| 伊人久久精品亚洲午夜| 午夜免费观看性视频| 丝瓜视频免费看黄片| 免费看av在线观看网站| 欧美3d第一页| 高清不卡的av网站| 国国产精品蜜臀av免费| 亚洲综合色网址| 街头女战士在线观看网站| 精品国产露脸久久av麻豆| 亚洲无线观看免费| 久久久欧美国产精品| 日韩一区二区视频免费看| 丝袜喷水一区| 中文字幕人妻熟人妻熟丝袜美| 中文字幕免费在线视频6| 国产精品99久久99久久久不卡 | 亚洲综合色网址| 久久久久精品久久久久真实原创| 男人操女人黄网站| 成年美女黄网站色视频大全免费 | 午夜久久久在线观看| 69精品国产乱码久久久| 亚洲国产精品一区二区三区在线| 欧美激情国产日韩精品一区| kizo精华| 中文字幕久久专区| 一级爰片在线观看| av线在线观看网站| 亚洲精品乱码久久久v下载方式| 99久久人妻综合| 中文字幕免费在线视频6| 女的被弄到高潮叫床怎么办| 一本一本综合久久| 一级毛片我不卡| 好男人视频免费观看在线| 一二三四中文在线观看免费高清| 激情五月婷婷亚洲| 自拍欧美九色日韩亚洲蝌蚪91| 黄片无遮挡物在线观看| 一级,二级,三级黄色视频| 在线看a的网站| 国产成人精品无人区| 最近中文字幕2019免费版| 蜜桃在线观看..| 日韩精品免费视频一区二区三区 | 高清午夜精品一区二区三区| 97超碰精品成人国产| 久久久欧美国产精品| 欧美人与善性xxx| 亚洲欧美成人精品一区二区| 日韩电影二区| 精品视频人人做人人爽| 欧美精品高潮呻吟av久久| 国产爽快片一区二区三区| 97精品久久久久久久久久精品| 免费日韩欧美在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲国产最新在线播放| 夜夜骑夜夜射夜夜干| 能在线免费看毛片的网站| 日韩成人av中文字幕在线观看| 一级二级三级毛片免费看| a级毛片免费高清观看在线播放| 精品一区在线观看国产| 黑人高潮一二区| 亚洲av.av天堂| 日韩伦理黄色片| 亚洲av成人精品一二三区| 色吧在线观看| 日韩大片免费观看网站| 菩萨蛮人人尽说江南好唐韦庄| 国产永久视频网站| 久久久久久久久久久久大奶| 插逼视频在线观看| 大陆偷拍与自拍| 最近中文字幕2019免费版| 在线天堂最新版资源| 大话2 男鬼变身卡| 人成视频在线观看免费观看| 国产免费一级a男人的天堂| 久久99一区二区三区| 午夜日本视频在线| 亚洲精品日韩在线中文字幕| 亚洲精品亚洲一区二区| 如日韩欧美国产精品一区二区三区 | 久久国产精品男人的天堂亚洲 | 国产无遮挡羞羞视频在线观看| 国产69精品久久久久777片| 丝袜在线中文字幕| 亚洲五月色婷婷综合| 亚洲精品456在线播放app| 婷婷成人精品国产| 熟女人妻精品中文字幕| 亚洲国产精品成人久久小说| 欧美日韩国产mv在线观看视频| 最近手机中文字幕大全| 男男h啪啪无遮挡| 亚洲国产精品一区三区| 亚洲精品久久午夜乱码| 插阴视频在线观看视频| 高清欧美精品videossex| 曰老女人黄片| 日本黄色片子视频| 91精品国产九色| 欧美成人精品欧美一级黄| 成人二区视频| 男人操女人黄网站| 欧美xxxx性猛交bbbb| av女优亚洲男人天堂| 婷婷成人精品国产| 中文字幕免费在线视频6| av黄色大香蕉| 亚洲人成网站在线播| 久久国产精品男人的天堂亚洲 | 国产日韩欧美亚洲二区| 午夜影院在线不卡| 18+在线观看网站| 日本黄色日本黄色录像| 人妻制服诱惑在线中文字幕| 制服丝袜香蕉在线| 亚洲精品乱码久久久久久按摩| 国产精品偷伦视频观看了| 亚洲美女黄色视频免费看| 美女国产视频在线观看| 一级片'在线观看视频| 色哟哟·www| 男女边吃奶边做爰视频| 免费观看性生交大片5| 欧美日韩国产mv在线观看视频| 亚洲欧美中文字幕日韩二区| 韩国高清视频一区二区三区| 乱人伦中国视频| 一级毛片aaaaaa免费看小| 午夜视频国产福利| 极品少妇高潮喷水抽搐| 国产在视频线精品| 国产精品不卡视频一区二区| 色婷婷久久久亚洲欧美| 天美传媒精品一区二区| 久久精品久久久久久久性| 国产 精品1| 亚洲人与动物交配视频| 中文字幕免费在线视频6| 高清在线视频一区二区三区| 青春草视频在线免费观看| 91精品三级在线观看| 性高湖久久久久久久久免费观看| 人体艺术视频欧美日本| 国产黄频视频在线观看| 国产成人免费观看mmmm| 男女边吃奶边做爰视频| 国产日韩一区二区三区精品不卡 | 亚洲精品av麻豆狂野| 嫩草影院入口| 亚洲欧美一区二区三区国产| 最近的中文字幕免费完整| 热re99久久精品国产66热6| 女的被弄到高潮叫床怎么办| 少妇精品久久久久久久| 亚洲,欧美,日韩| 国产av精品麻豆| 这个男人来自地球电影免费观看 | 天天操日日干夜夜撸| 亚洲av中文av极速乱| 国产伦精品一区二区三区视频9| 夫妻午夜视频| 色视频在线一区二区三区| 2021少妇久久久久久久久久久| 欧美3d第一页| 日本欧美视频一区| 免费大片黄手机在线观看| 欧美日韩一区二区视频在线观看视频在线| 日韩av在线免费看完整版不卡| 一级毛片 在线播放| 国产亚洲最大av| 欧美少妇被猛烈插入视频| 亚洲高清免费不卡视频| 狂野欧美白嫩少妇大欣赏| 三级国产精品片| 久久精品国产a三级三级三级| 少妇被粗大的猛进出69影院 | 国语对白做爰xxxⅹ性视频网站| 简卡轻食公司| 高清毛片免费看| 国产精品人妻久久久久久| 不卡视频在线观看欧美| 99国产综合亚洲精品| 国产永久视频网站| 3wmmmm亚洲av在线观看| 中文精品一卡2卡3卡4更新| 亚洲精品久久午夜乱码| 99久国产av精品国产电影| 一级黄片播放器| 纯流量卡能插随身wifi吗| av在线老鸭窝| 欧美激情 高清一区二区三区| 午夜福利在线观看免费完整高清在| 欧美精品一区二区免费开放| 国产国拍精品亚洲av在线观看| 午夜福利视频精品| 超碰97精品在线观看| 久久久a久久爽久久v久久| 91精品三级在线观看| 美女大奶头黄色视频| 亚洲美女黄色视频免费看| 国产亚洲欧美精品永久| 卡戴珊不雅视频在线播放| 亚洲人与动物交配视频| 黑人巨大精品欧美一区二区蜜桃 | 国产精品麻豆人妻色哟哟久久| 亚洲国产精品999| 高清午夜精品一区二区三区| av在线观看视频网站免费| 日韩中文字幕视频在线看片| 欧美日韩视频高清一区二区三区二| 婷婷色综合www| av线在线观看网站| 99国产精品免费福利视频| 母亲3免费完整高清在线观看 | 激情五月婷婷亚洲| 日日爽夜夜爽网站| 婷婷色av中文字幕| 久久婷婷青草| 日本免费在线观看一区| 国产一区二区在线观看日韩| 伦理电影免费视频| 亚洲成人手机| 蜜桃国产av成人99| 97超碰精品成人国产| 狠狠婷婷综合久久久久久88av| 美女主播在线视频| 国产国拍精品亚洲av在线观看| 久久97久久精品| 国产一级毛片在线| 国产在线视频一区二区| 精品国产露脸久久av麻豆| 国产精品 国内视频| 日韩不卡一区二区三区视频在线| 99九九线精品视频在线观看视频| 国内精品宾馆在线| 国产精品.久久久| 久久99一区二区三区| 精品国产一区二区久久| 一级二级三级毛片免费看| 亚洲国产精品成人久久小说| 午夜福利视频在线观看免费| 久久久久久久久久人人人人人人| 国产午夜精品久久久久久一区二区三区| 啦啦啦在线观看免费高清www| 午夜91福利影院| 国产69精品久久久久777片| 午夜免费男女啪啪视频观看| 制服丝袜香蕉在线| 国产伦精品一区二区三区视频9| 日韩成人av中文字幕在线观看| 久久精品国产亚洲网站| 久久久久久久亚洲中文字幕| 波野结衣二区三区在线| 亚洲精品日韩在线中文字幕| 中文精品一卡2卡3卡4更新| 少妇猛男粗大的猛烈进出视频| 午夜激情福利司机影院| 久久久a久久爽久久v久久| 欧美人与善性xxx| 国产永久视频网站| 日本vs欧美在线观看视频| 久久ye,这里只有精品| 久久久久精品性色| 国产精品麻豆人妻色哟哟久久| 亚洲国产精品999| 国产黄色免费在线视频| √禁漫天堂资源中文www| 水蜜桃什么品种好| 新久久久久国产一级毛片| 日本黄色日本黄色录像| av有码第一页| 大香蕉久久成人网| 久久久久人妻精品一区果冻| 精品一区二区三区视频在线| videos熟女内射| 少妇高潮的动态图| av在线观看视频网站免费| 久久影院123| 日韩亚洲欧美综合| av在线老鸭窝| 国产男女超爽视频在线观看| 国产一区二区在线观看日韩| av天堂久久9| 一边摸一边做爽爽视频免费| 一个人免费看片子| 成人亚洲欧美一区二区av| 美女主播在线视频| 视频中文字幕在线观看| 韩国高清视频一区二区三区| 国产伦理片在线播放av一区| 亚洲精品亚洲一区二区| 狂野欧美激情性xxxx在线观看| 熟女人妻精品中文字幕| 大又大粗又爽又黄少妇毛片口| 亚洲精品aⅴ在线观看| 国产一区亚洲一区在线观看| av国产久精品久网站免费入址| 纯流量卡能插随身wifi吗| 日本黄色日本黄色录像| 观看av在线不卡| 亚洲色图综合在线观看| 如何舔出高潮| 国产精品99久久久久久久久| av免费观看日本| 国精品久久久久久国模美| 亚洲精品国产av蜜桃| 国产精品99久久久久久久久| 国产极品天堂在线| 男女国产视频网站| 久久精品夜色国产| 99久久精品一区二区三区| 交换朋友夫妻互换小说| 2018国产大陆天天弄谢| 亚洲欧美中文字幕日韩二区| av视频免费观看在线观看| freevideosex欧美| 狂野欧美激情性xxxx在线观看| 青春草国产在线视频| 国产探花极品一区二区| 看非洲黑人一级黄片| 大片免费播放器 马上看| 精品亚洲成a人片在线观看| 精品国产露脸久久av麻豆| 亚洲精品色激情综合| 久久国内精品自在自线图片| 欧美一级a爱片免费观看看| 国产成人精品久久久久久| 亚洲国产欧美在线一区| 精品一区二区三区视频在线| 国产av一区二区精品久久| 蜜臀久久99精品久久宅男| 亚洲国产精品一区三区| 青春草国产在线视频| 91精品三级在线观看| 99热国产这里只有精品6| 国语对白做爰xxxⅹ性视频网站| 久久久久久人妻| 高清午夜精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 最近的中文字幕免费完整| kizo精华| 哪个播放器可以免费观看大片| 精品少妇内射三级| 大又大粗又爽又黄少妇毛片口| 久久久久久久久久久久大奶| 成人18禁高潮啪啪吃奶动态图 | 亚洲av不卡在线观看| 国产高清不卡午夜福利| 少妇的逼好多水| 国产69精品久久久久777片| 人人妻人人澡人人爽人人夜夜| 中国三级夫妇交换| a级毛片黄视频| 国产伦理片在线播放av一区| 免费播放大片免费观看视频在线观看| 欧美 亚洲 国产 日韩一| 国产乱人偷精品视频| 99国产综合亚洲精品| 少妇的逼好多水| 欧美亚洲日本最大视频资源| 国产在线免费精品| 欧美日韩精品成人综合77777| 国产熟女午夜一区二区三区 | 免费看光身美女| 成人国产麻豆网| 中文乱码字字幕精品一区二区三区| 少妇被粗大的猛进出69影院 | 欧美日韩综合久久久久久| 一级片'在线观看视频| 麻豆精品久久久久久蜜桃| 欧美人与善性xxx| 国产伦精品一区二区三区视频9| 亚洲国产精品成人久久小说| 亚洲精品国产色婷婷电影| 亚洲精品久久久久久婷婷小说| 搡老乐熟女国产| videos熟女内射| 久久热精品热| 国产黄片视频在线免费观看| 午夜影院在线不卡| 午夜福利网站1000一区二区三区| 搡老乐熟女国产| 国产日韩欧美亚洲二区| 日韩av在线免费看完整版不卡| 最近中文字幕高清免费大全6| 免费少妇av软件| 免费人妻精品一区二区三区视频| 毛片一级片免费看久久久久| 国产精品麻豆人妻色哟哟久久| 久久99蜜桃精品久久| 成人无遮挡网站| 久久狼人影院| 日本色播在线视频| 春色校园在线视频观看| 熟女av电影| 国产精品国产三级国产av玫瑰| 久久人人爽人人片av| 欧美日韩综合久久久久久| 制服人妻中文乱码| 精品99又大又爽又粗少妇毛片| 成年美女黄网站色视频大全免费 | 美女中出高潮动态图| 2022亚洲国产成人精品| 一区二区三区免费毛片| 免费人成在线观看视频色| 亚洲精品日韩av片在线观看| 亚洲欧美清纯卡通| 国产成人一区二区在线| 五月玫瑰六月丁香| 亚洲精品456在线播放app| 成年美女黄网站色视频大全免费 | kizo精华| 少妇人妻久久综合中文| 黑人高潮一二区| 777米奇影视久久| 欧美亚洲日本最大视频资源| 狠狠婷婷综合久久久久久88av| 91久久精品国产一区二区三区| 18禁观看日本| 日韩av在线免费看完整版不卡| 少妇猛男粗大的猛烈进出视频| 日韩欧美一区视频在线观看| 国产国语露脸激情在线看| 亚洲五月色婷婷综合| 熟女电影av网| 欧美日韩视频高清一区二区三区二| 欧美精品高潮呻吟av久久| 中文欧美无线码| 简卡轻食公司| 国产成人精品在线电影| 中文字幕最新亚洲高清| 又黄又爽又刺激的免费视频.| 91国产中文字幕| 高清欧美精品videossex| 久久久久国产网址| 日本猛色少妇xxxxx猛交久久| 国产深夜福利视频在线观看| 亚洲精品久久久久久婷婷小说| 美女cb高潮喷水在线观看| 久久久久国产网址| 97在线视频观看| 国产日韩欧美亚洲二区| 国产午夜精品久久久久久一区二区三区| 午夜91福利影院| 日韩,欧美,国产一区二区三区| 日韩av免费高清视频| 狠狠精品人妻久久久久久综合| 日韩人妻高清精品专区| 亚洲国产最新在线播放| 不卡视频在线观看欧美| 九色成人免费人妻av| 丁香六月天网| 日本午夜av视频| 秋霞在线观看毛片| 精品国产一区二区三区久久久樱花| 日本av手机在线免费观看| 久久精品熟女亚洲av麻豆精品| 国产国语露脸激情在线看| 欧美3d第一页| a级毛片在线看网站| 亚洲欧美清纯卡通| 五月开心婷婷网| 欧美性感艳星| 久久这里有精品视频免费| 美女国产视频在线观看| 国产欧美日韩一区二区三区在线 | 99久久精品国产国产毛片| 黄色配什么色好看| 久久久精品94久久精品| 国产成人精品一,二区| 搡女人真爽免费视频火全软件| 久久精品久久久久久久性| 一级,二级,三级黄色视频| 日韩免费高清中文字幕av| 国产成人精品福利久久| 国产精品一区二区在线不卡| h视频一区二区三区| 我的女老师完整版在线观看| 久久精品国产a三级三级三级| 欧美日韩精品成人综合77777| 国产精品一区www在线观看| 欧美最新免费一区二区三区| 最近中文字幕高清免费大全6| 日韩视频在线欧美| 日日撸夜夜添| 性色av一级| 中文天堂在线官网| 岛国毛片在线播放| 黑人猛操日本美女一级片| 亚洲av成人精品一区久久| 久久久久久伊人网av| 欧美日韩亚洲高清精品| 汤姆久久久久久久影院中文字幕| 性色avwww在线观看| 女人久久www免费人成看片| 久久人人爽av亚洲精品天堂| 久久久欧美国产精品| 亚洲国产欧美在线一区| 高清在线视频一区二区三区| 免费播放大片免费观看视频在线观看| 嘟嘟电影网在线观看| 日本与韩国留学比较| 麻豆乱淫一区二区| 男的添女的下面高潮视频| 啦啦啦视频在线资源免费观看| 精品一区二区三卡| 最新的欧美精品一区二区| 欧美国产精品一级二级三级| 国产精品国产三级国产专区5o| 日韩在线高清观看一区二区三区| 男的添女的下面高潮视频| 国产成人免费观看mmmm| 美女xxoo啪啪120秒动态图| av女优亚洲男人天堂| www.av在线官网国产| 精品久久久久久久久av| videos熟女内射| 精品国产一区二区久久| 久久久久久久大尺度免费视频| 成人手机av| 建设人人有责人人尽责人人享有的| 午夜日本视频在线| 简卡轻食公司| 三级国产精品欧美在线观看| 人妻人人澡人人爽人人| 成人免费观看视频高清| 美女xxoo啪啪120秒动态图| 午夜视频国产福利| 爱豆传媒免费全集在线观看| 少妇精品久久久久久久| 亚洲怡红院男人天堂| 九九爱精品视频在线观看| 日本午夜av视频| 国产无遮挡羞羞视频在线观看| 超色免费av| 精品人妻熟女av久视频| 成年美女黄网站色视频大全免费 | 伦精品一区二区三区| 狂野欧美激情性xxxx在线观看| 两个人免费观看高清视频| 免费久久久久久久精品成人欧美视频 | 99国产综合亚洲精品| 毛片一级片免费看久久久久| 成人免费观看视频高清| 国产成人a∨麻豆精品| 亚洲成人av在线免费| 午夜91福利影院| 一级毛片黄色毛片免费观看视频| 亚洲高清免费不卡视频| 国产成人精品在线电影| 国产免费一区二区三区四区乱码| 久久久久久久久久久免费av| 大片免费播放器 马上看| 大香蕉久久网| 好男人视频免费观看在线| 女人久久www免费人成看片| 午夜福利视频精品| 久久精品人人爽人人爽视色| 最后的刺客免费高清国语| av.在线天堂| 老司机亚洲免费影院| 在线天堂最新版资源| 最近手机中文字幕大全| 精品熟女少妇av免费看| 大香蕉97超碰在线| 母亲3免费完整高清在线观看 | 国产在线视频一区二区| 亚洲色图综合在线观看| 久久久国产精品麻豆| 夜夜骑夜夜射夜夜干| 我的老师免费观看完整版| 亚洲精品日本国产第一区| 日韩av在线免费看完整版不卡| a级毛色黄片| 一区在线观看完整版| 18禁观看日本| 最近最新中文字幕免费大全7| 欧美一级a爱片免费观看看| 女性生殖器流出的白浆| 青青草视频在线视频观看| 日本黄色日本黄色录像| 亚洲婷婷狠狠爱综合网| 久久人妻熟女aⅴ| 国产精品一区www在线观看| 汤姆久久久久久久影院中文字幕| 亚洲精品456在线播放app| 精品国产一区二区久久| 国产精品麻豆人妻色哟哟久久| 大片电影免费在线观看免费| 男人添女人高潮全过程视频| √禁漫天堂资源中文www| 国产av一区二区精品久久| 国产高清国产精品国产三级| 不卡视频在线观看欧美| 午夜91福利影院| 两个人的视频大全免费| 少妇人妻精品综合一区二区|