• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic analysis of spinning solar sails at deployment process

    2017-11-17 08:31:54XinxingZHANGChunyanZHOU
    CHINESE JOURNAL OF AERONAUTICS 2017年5期

    Xinxing ZHANG,Chunyan ZHOU

    School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

    Dynamic analysis of spinning solar sails at deployment process

    Xinxing ZHANG,Chunyan ZHOU*

    School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

    The spinning deployment process of solar sails is analyzed in this study.A simplified model is established by considering the out-of-plane and in-plane motions of solar sails.The influences of structure parameters,initial conditions,and feedback control parameters are also analyzed.A method to build the geometric model of a solar sail is presented by analyzing the folding process of solar sails.Thefinite element model of solar sails is the n established,which contains continuous cables and sail membranes.The dynamics of the second-stage deployment of solar sails are simulated by using ABAQUS software.The influences of the rotational speed and out-of-plane movement of the hub are analyzed by different tip masses,initial velocities,and control parameters.Compared with the results from the oretical models,simulation results show good agreements.

    1.Introduction

    Solar sails have gained widespread attention for several decades because of the ir significant advantages,including small package volume,low energy consumption,and low cost.1–4The development of a solar sail spacecraft involves a wide range of technologies,and the manner in which to deploy a large area sail in space is a key design issue.5Among the proposed several deployment methods,the spinning deployment of solar sails is an ideal technique that utilizes centrifugal force to deploy sail membranes.6As a successful case,the Japan Aerospace Exploration Agency launched a spinningdeployable spacecraft named IKAROS on May 21,2010.7IKAROS succeeded in deploying a 20 m span solar sail from a wrapped status and managed to pass by Venus with the help of solar radiation pressure.8

    Given the high flexibility of the membrane structure,rigorous control strategies must be used to avoid the entanglements or yo-yo-like oscillations caused by the repeated coiling and uncoiling of membranes to and from the hub.9–11Gardsback et al.12reviewed the existing control strategies for the centrifugal deployment of space webs.They concluded that stable deployment can be obtained by using the method of applying torque to the center hub,namely,the Melnikov–Koshelev law.10Gardsback and Tibert presented a simplified hubcable-mass model to qualitatively analyze the deployment dynamics in which out-of-plane motions were neglected.13Finite Element(FE)calculation using LSDYNA was proposed to simulate the dynamical response of the real deployment system.14Shirasawa et al.applied the Multi-Particle Method(MPM)to the dynamic analysis of IKAROS,and approximated the solar membrane by using the network of springs with lumped masses.15Haraguchi et al.used the model of MPM to validate the control laws for the spinning deployment of a solar sail system.16,17

    A two-step deployment strategy was applied for the IKAROS.First,the four folded arms were slowly released from the tip by rotating the stopper relative to the hub.At the second stage,the four stoppers were released to deploy the entire membrane.A large disturbance at the beginning of the second-stage deployment was observed,which caused significant oscillations during the second-stage deployment.18Miyazaki et al.developed an FE model to analyze the nutation motion at firststage deployment.18,19Severe out-of-plane oscillations were also observed at the beginning of the second stage during the ground simulation tests conducted by Zhou et al.20

    This study aims to analyze the deployment dynamics during the second stage under the initial perturbation of the instantaneous spreading out of the membrane.Following the work of Gardsback and Tibert13,a simplified hub-cable-mass model,including out-of-plane motion,is established to qualitatively analyze the effect of control parameters.An FE model of the solar sail is the n established.This model contains continuous cables and sail membranes.The second-stage deployment of a solar sail is simulated by using ABAQUS software.The influences of the rotational speed and out-of-plane movement of the hub are analyzed under different tip masses,initial velocities,and other factors.

    2.Analytical model analysis

    At the end offirst-stage deployment,the membrane arms togethe r with the center hub rotate stably with the same rotational speed.At the beginning of the second-stage deployment,the membrane is instantaneously deployed when the stopper is released.For the conservation of angular momentum,the rotational speed of the membrane becomes lower than that of the center hub,thus causing the in-plane oscillations of the system.When the membrane is spread from a zigzag folding pattern to a plane,out-of-plane motion is produced.To stabilize the deploying process,the system is controlled by applying a torque to the center hub with torque control law.This law implies that the torque increases when the hub angular velocity decreases and vice versa.To estimate the oscillations and control method,a simple analytical model is used to describe the deployment dynamics qualitatively.The development of our analytical model follows the model presented by Gardsback and Tibert.13The out-of-plane motions are included in our analytical model.The following assumptions are also made:

    Fig.1 Analytical model for a point mass.

    (1)The mass of the hub is higher than the sum of attached membrane,cable,and tip mass;hence,the hub is assumed fixed except its rational freedom in OZ axis.

    (2)The motion of the membrane,cable,and tip mass is dominated by the cable and tip mass.The effect of membrane motion is equivalent to the additional mass at cable tip.

    (3)Each part of the sail motion is the same(symmetric).

    The analytical model is described in Fig.1.With the assumption of symmetric motion,only one part of the sail is considered for analysis.The entire sail consists offour parts.The coordinate system OXYZ is fixed with the center hub of the solar sail.In this model,the center hub is only free in its rotational motion by the OZ axis.The distancefrom the tip to the center hub edge is the length of the cable.This model can describe the relative position and motion of the center and sails by lengths,angles,and velocities.The system can be described by three degrees offreedom,the angular velocity of center hub ω,the relative in-plane rotational angle of the cable φ,and the out-of-plane rotational angle ψ.In this study,r is the hub radius and L is the cable length.

    2.1.Equations of system dynamics

    According to Lagrange’s law of motion,the dynamic equations of the system can be described as follows20:where g is the gravity coefficient for ground tests,which is zero on orbit;m is the equivalent mass of the membrane,cable,and tip mass system,and F is the tension force in the cable.The equivalent mass is determined by total inertial moment of the membrane,cable,and tip mass system.

    During the deployment,an external moment M is applied to the center hub by the actuators that are installed on the hub edge.Accordingly,the hub dynamic equation can be described as

    where J is the moment ofinertia of the center hub,M is a control torque,n is the number of cables.An appropriate M should be set to ensure successful and steady deployment.Several control strategies have been discussed.13One of the successful control laws involve increasing the torque applied to the hub as the hub angular velocity decreases;this approach was proposed by Melnikov and Koshelev for the deployment of the Znamya-2 reflector.10In our model,the external torque M applied to the hub is correlated with the error of the hub current angular velocity:

    where k is the proportional gain,and ω*is the target hub rotational speed.

    To analyze the effect of physical parameters on the dynamic response of the system,the non-dimensional parameters are introduced as follows:

    Thus,the dynamics of this system are described as follows:

    2.2.Results of numerical simulation

    Numerical calculations are conducted to assess the effect of design parameters on the dynamic stability of the system,such as the torque and power requirements for the given deployment times with different masses and sizes of the hub and membrane.For the experimental system used by Zhou et al.20,the radius of the center hub is r=0.075 m,tip mass is m=0.02 kg,the moment ofinertia of the center hub is J=0.0281 kg·m2,the number offolded arms is n=4,the length of the cables is L=0.66 m,the center hub is controlled by a motor,the target rotational speed is set as ω*=20 rad/s,and the control gain is set as k=-0.06 N ·m ·s/rad.Thus,the non-dimensional parameters defined by Eq.(6)are=62.44,=8.8,and=-6.67.The dynamic response of the system can be calculated from Eqs.(7)–(10).

    2.2.1.Effect of target hub rotational speed

    ~ω0denotes the ratio of the hub speed at the beginning of the second-stage deployment to that of the target speed at the end of deployment.Fig.2 shows the curves of the in-plane relative rotational anglewith four different initial angular velocityvalues.When=0.1,the angle parameter~φ increases unacceptably,and thus sails coil on the hub in the deployment process.Hence,target hub rotational speed lower than the initial speed should be considered for the control of the second-stage deployment.

    2.2.2.Effect ofinitial relative rotational speed of membrane on that of hub

    At the beginning of the second-stage deployment,as stopper is released,the membrane is instantaneously deployed.One of the aftereffects is that the rotational speed of the membrane becomes lower than that of center hub,which means a negative initial value of.Fig.3 shows the curves ofin-plane relative rotational anglewith four different initial values ofWhen the initialis as large as=-8,the membrane will become stable at=2π,thus entangling the whole system.Notably,when=-1,increases rapidly with time,and thus sails coil forward on the hub in the deployment process.Therefore,the initial in-plane relative rotational speed is important for system dynamics.Careful control parameters should be designed with a full consideration of the relative initial rotation caused by the sudden spread out of membrane.

    Fig.2 Response of- under different values of=8.8,=-6.67=62.44=0,=-0.628=0.048=-0.314).

    Fig.3 Response of under different values of=8.8,=-6.67,=62.44,=0.5,=0,=0.048,=-0.314).

    2.2.3.Effect ofinitial out-of-plane angle

    The other aftereffect of the sudden spread out of the membrane is small out-of-plane disturbance.Figs.4 and 5 show the curves of the in-plane and out-of-plane relative motions with three different initial values of.The results of stability analysis are confirmed by the calculation assumption that the out-of-plane motion has a small influence on in-plane motion and the torque control on the hub cannot damp out-of-plane motion.

    3.Finite element analysis

    The qualitative dynamic prediction of the deployment process can be studied by analyzing the analytical model,and an accurate prediction should be studied in the FE method.The interactions between four petals of membranes can be included by FE Analysis(FEA).

    A 3D FE model including a center hub,membrane,cables,and four corner masses was implemented.The center hub was constrained to rotate around its center axis;hence,the center hub motion was one-dimensional.The geometry and connectivity of the node and element were generated in ABAQUS.The equations of motion were the n solved in ABAQUS by using the central-difference method for explicit time integration.The main differences compared with the analytical model are that the influence of the membrane motion can be studied with the FE model and that the cables are unnecessarily straight during the deployment.

    Fig.4 Response of- and- with different values of=8.8,=0.5,=62.44=0.5=0.5,=-0.628,=0.048).

    Fig.5 Response of with different values of=8.8,=0.5=62.44=0.5=0.5=-0.628=0.048).

    3.1.Model setup for folded membrane

    The accuracy of an FE model is strongly dependent on how well the modeled folded configuration coincides with the real one.A good geometry model must befirst obtained before the finite analysis of the deployment processes.As shown in Fig.6,a square plane OABC in plane OXY is folded to OA′B′C′.The constraints in the folding process are as follows:(A)Point A is in plane OXZ;(B)Point B is in plane X=Y;(C)Point C is in plane OYZ.

    The relationship of angle θ and α can be expressed as follows:

    According to the relationship of angle θ and α and the dimensions of plane OABC,the position offolded plane OA′B′can be obtained,which is shown in Fig.6.Position of the ith folding point in OXZ planeis determined by

    Fig.6 Folding process of a square plane.

    where Δl is the width of each folded strip.And position of the ith folding point in X=Z planeis determined by

    Fig.7 Folding process of solar sail model.

    Fig.8 Establishment process of solar sail model.

    Table 1 Structural properties of solar sail model.

    Fig.9 Comparison of experimental and simulation results for the second-stage deployment process.

    By referring to several similar schemes of solar sail folded models8,9,a folding scheme is shown in Fig.7.

    Fig.10 Curves of hub rotational speed for free deployment with different initial rotational speeds(tip mass=0.1 kg).

    Fig.11 Curves of hub rotational speed for free deployment with different tip masses(ω0=10 rad/s).

    Fig.12 Scheme of positions of tip masses.

    According to the proposed fold scheme,a solar sail model is established,as shown in Fig.8.This model includes a center hub,cables,sail membranes,and tip masses.In this model,a cable is used to connect the sail membrane and center hub.Moreover,four tip masses are present and each of the m is located at the corner of the membrane.

    This model is not folded completely and can be used to describe the initial status for the second-stage deployment.The center hub is modeled as a cylinder with rigid material,cables are modeled as beam element,and sail membrane is modeled as shell element.The details of the FE model are listed in Table 1.

    Fig.13 Time history of φ1to φ4with various initial rotational speeds(tip mass=0.1 kg).

    Simulations have been conducted by applying ABAQUS via the explicit integration method.During the analysis,the contact of each part is calculated by using the general contact method supported by ABAQUS.

    An FEA model is established according to ground tests conducted by the same research group of the present study.20As shown in Fig.9,simulation results can simulate high comparability for the second-stage deployment process.

    3.2.FEA results for free deployment without control

    Contrary to the the oretical straight cable assumption,severe oscillations are observed because of the elastic retrieval and stretching of the cable with tip mass before the system becomes stable.For a 0.1 kg tip mass,Fig.10 shows the time history curves of the hub rotational speed with different initial rotational speeds at the end of first-stage deployment.Higher initial rotational speeds lead to higher vibrations.Fig.11 shows the time history curves of the hub rotational speed with different tip masses.The oscillations become more severe with heavier tip mass.

    During the deployment process,the relative rotational angle of the membrane to the hub φ and out-of-plane motion angle ψ can be obtained by positioning the tip masses relative to the hub.Fig.12 shows the positions of four tip masses P1to P4.φ1to φ4are the relative rotational angles between the tip mass and the hub.Z1to Z4are the out-of-plane displacements of the four tip masses.

    Figs.13 and 14 demonstrate the in-plane rotational angles φ1to φ4with various initial rotational speeds and various tip masses,respectively.Fig.15 shows the out-of-plane positions of the tip masses with various initial rotational speeds.Both the in-plane and out-of-plane vibrations increase with higher initial rotational angle and heavier tip masses because more elastic energy is stored in the cable.Because of gravitational acceleration,out-of-plane motion appears at the end of first stage.Small amplitude vibrations continue after the severe flexible vibrations of the cable damping off.However,for smaller initial rotational angle and lighter tip masses,the motions of the membrane lose synchronization because the motion of the system is dominated by unordered flexible waves in the membrane at low centrifugal forces.

    Fig.16 demonstrates that out-of-plane vibration will not decay with time;this finding agrees with the analytical estimations in the previous section.Fig.16 shows out-of-plane vibration frequencies with various stable vibration speeds of the system ωstable.The out-of-plane vibration frequencies are near the stable vibration speed of the system ωstable;this finding also agrees with the theoretical estimation and experimental results.20

    Fig.14 Time history of φ1to φ4with various tip masses(ω0=10 rad/s).

    Fig.15 Time history of Z1to Z4with various initial rotational speeds(tip mass=0.2 kg).

    Fig.16 Out-of-plane vibration frequencies vs stable vibration speed of system ωstable.

    3.3.FEA results for deployment with control

    To evaluate the effect of the control method proposed in Section 2,a torque is applied to the center hub with torque control law.This law implies that the torque increases when the hub angular velocity decreases and vice versa.This analysis is realized in ABAQUS with subprogram VUAMP.

    Fig.17 Time history of hub rotational speed with different control gains k(tip mass=0.2 kg,ω0=20 rad/s,ω*=15 rad/s).

    A torque M=k(ω - ω*)is applied to the hub.Fig.17 shows the motion of a hub with different proportional gains k.Simulation results reveal that the in-plane vibration will continue for a long time if no control is applied.The in-plane vibration amplitude is lower with torque control.Furthermore,high proportional gains k indicate that the in-plane motion is suppressed quickly.

    4.Conclusions and discussion

    In this paper,a simplified model considering the out-of-plane motion of a solar sail is established to qualitatively analyze the dynamics of spinning solar sail at the second stage.The influences of structure parameters,initial conditions,and feedback control parameters are also analyzed to stabilize the deploying process.Theoretical analysis reveals that ratio of membrane size to hub size is important for ensuring successful deployment.An excessive size ratio will induce severe yo-yolike vibration in the system even with torque control.Moreover,a high ratio of membrane moment ofinertia to that of the hub may cause long in-plane vibration time even with torque control.For small initial perturbations,in-plane vibration may be ceased by the torque control applied to the hub,whereas out-of-plane vibration will succeed without a special damping strategy.Lower target rotational speed than the initial hub speed is preferred to obtain stable control.Notably,for finite initial in-plane relative rotation,the membrane may be secured to the hub with some combination of control parameters.

    The second-stage deployment of the solar sail is simulated by using ABAQUS software.Thefolded configuration of the solar sail membrane model is established first,and dynamic simulations are conducted with explicit solutions.Severe vibration caused by the elastic flexibility of the cable system is observed.Non-synchronous motions of the four petals appear for small initial rotational speed and tip mass.

    Interestingly,cables made of woven wire strands have small elastic flexibility,and this type is often used in the design of solar sail.The dynamic performance of the cable material may influence the dynamics of spinning solar sail deployment,which should be analyzed in future study.

    Acknowledgments

    This study was supported in part by the National Natural Science Foundation of China(Nos.11290151 and 51075032).

    1.Catharine CF,Stoakley DM,Clair AK.Molecularly oriented films for space applications. High Perform Polym 1999;11(1):145–56.

    2.Darooka DK,Jensen DW.Advanced space structure concepts and the ir development.Proceedings of the 42th AIAA/ASME/ASCE/AHS/ASC structures,structural dynamics,and materials conference and exhibit;2001 Apr.16–19;Seattle,USA.Reston:AIAA;2001.p.1257.

    3.Hiroshi F,Makiko N,Satoshi M,Jodoi D,Terada Y,Takadamak K.Concept of inflatable tensegrity for large space structures.Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC structures,structural dynamics,and materials conference and exhibit;2006 May 1–4;Newport,Rhode Island.Reston:AIAA;2006.p.1700.

    4.Nakasuka S,Aoki T,Ikeda I,Tsuda Y,Kawakatsu Y.‘Furoshiki satellite”—A large membrane structure as a novel space system.Acta Astronaut 2001;48(5–12):461–8.

    5.Macdonald M.Advances in solar sailing.Chichester:Springer Praxis Books;2014.p.961-76.

    6.Matunaga S,Yabe H,Nakaya K,Iai M,Omagari K,Mori O.Membrane deployment for spinning formation flight solar sail.Proceedings of the 14th ISAS/JAXA workshop on astrodynamics and flight mechanics;2004 July;Tokyo,Japan.Tokyo:Japan Aerospace Exploration Agency;2004.p.A-11.

    7.Mori O,Sawada H,Funase R,Morimoto M,Endo T,Yamamoto T,et al.First solar power sail demonstration by IKAROS.Trans Japanese Soc Artif Intell,Aerospace Technol Japan 2011;8(27):425–31.

    8.Tsuda Y,Mori O,Funase R,Sawada H,Yamamoto T,Saiki T,et al.Flight status of IKAROS deep space solar sail demonstrator.Acta Astronaut 2011;69(9):833–40.

    9.Hedgepeth JM.Dynamics of a large spin-stiffened deployable paraboloidal antenna.J Spacecraft Rock 1970;7(9):1043–8.

    10.Melnikov VM,Koshelev VA.Large space structures formed by centrifugal forces.1st ed.New York:CRC Press;1998.p.21–61.

    11.Miyazaki Y,Iwai Y.Dynamics model of solar sail membrane.14th workshop on astrodynamics and flight mechanics;2004 Jul 26–27;Kanagawa,Japan.Tokyo:Institute of Space and Astronautical Science,Japan Aerospace Exploration Agency;2005.p.32–7.

    12.Gardsback M,Tibert G,Izzo D.Design considerations and deployment simulations of spinning space webs.48th AIAA/ASME/ASCE/AHS/ASC structures,structuraldynamics,and materials conference;2007 Apr.23–26;Honolulu,Hawaii.Reston:AIAA;2007.p.1503–12.

    13.Gardsback M,Tibert G.Deployment control of spinning space webs.J Guid Control Dynam 2009;32(1):40–50.

    14.Gardsback M,Tibert G.Optimal deployment control of spinning space webs and membranes.J Guid Control Dynam 2009;32(5):1519–30.

    15.Shirasawa Y,Mori O,Miyazaki Y,Miyazaki Y,Sakamoto H,Hasome M,et al.Analysis of membrane dynamics using multi-particle model for solar sail demonstrator ‘IKAROS”.Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC structure,structural dynamics,and materials conference;2011 Apr.4–7;Denver,USA.Reston:AIAA;2011.p.1890.

    16.Haraguchi D,Sakamoto H,Shirasawa Y,Mori O.Design criteria for spin deployment of gossamer structures considering nutation dynamics.Proceedings of AIAA guidance,navigation,and control conference;2010 Aug 2–5;Toronto,Canada.Reston:AIAA;2010.p.8072.

    17.Sakamoto H,Shirasawa Y,Haraguchi D,Sawada H,Mori O.A spin up control schemefor contingency deployment of the sailcraft IKAROS.Proceedings of 52nd AIAA/ASME/ASCE/AHS/ASC structures,structural dynamics and materials conference;2011 Apr.4–7;Denver,USA.Reston:AIAA;2011.p.1892.

    18.Sakamoto H,Miyazaki Y,Mori O.Transient dynamic analysis of gossamer-appendage deployment using nonlinear finite element method.J Spacecraft Rockets 2011;48(5):881–90.

    19.Miyazaki Y,Shirasawa Y,Mori O,Sawada H.Finite element analysis of deployment of gossamer space structure.Proceedings of the ECCOMAS the matic conference on multibody dynamics 2011;2011 Jul 4–7;Brussels,Belgium.Melville:International Center for Numerical Methods in Engineering;2011.

    20.Zhou XJ,Zhou CY,Zhang XX,Hu HY.Ground simulation tests of spinning deployment dynamics of a solar sail.J Vib Eng 2015;28(2):175–82[Chinese].

    16 June 2016;revised 3 March 2017;accepted 25 May 2017

    Available online 23 August 2017

    Deployment;

    Dynamics;

    Solar sail;

    Spinning;

    Stability

    *Corresponding author.

    E-mail address:cyzhou@bit.edu.cn(C.ZHOU).

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2017.08.006

    1000-9361?2017 Production and hosting by Elsevier Ltd.on behalf of Chinese Society of Aeronautics and Astronautics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?2017 Production and hosting by Elsevier Ltd.on behalf of Chinese Society of Aeronautics and Astronautics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    国产日韩欧美视频二区| 欧美成人精品欧美一级黄| 精品卡一卡二卡四卡免费| 亚洲综合色网址| av福利片在线| 国产精品 国内视频| 十分钟在线观看高清视频www| 亚洲精品一二三| 天天影视国产精品| 亚洲国产成人一精品久久久| 韩国av在线不卡| 人妻少妇偷人精品九色| 亚洲成人手机| 久久午夜综合久久蜜桃| 有码 亚洲区| 有码 亚洲区| 黑人猛操日本美女一级片| 中文字幕色久视频| 一区在线观看完整版| 男人操女人黄网站| 91午夜精品亚洲一区二区三区| 亚洲国产精品一区二区三区在线| 性高湖久久久久久久久免费观看| 亚洲,欧美,日韩| 亚洲国产看品久久| 精品亚洲成a人片在线观看| 国产深夜福利视频在线观看| 欧美成人午夜免费资源| 亚洲av综合色区一区| 三级国产精品片| 精品国产超薄肉色丝袜足j| 国产片特级美女逼逼视频| 久久国内精品自在自线图片| 免费观看性生交大片5| 国产精品一区二区在线不卡| 亚洲欧洲精品一区二区精品久久久 | 中文字幕人妻丝袜一区二区 | 五月天丁香电影| 午夜免费鲁丝| 青春草亚洲视频在线观看| 欧美少妇被猛烈插入视频| 免费不卡的大黄色大毛片视频在线观看| av福利片在线| 五月伊人婷婷丁香| 亚洲精品,欧美精品| 欧美精品一区二区大全| 久久人妻熟女aⅴ| 99国产综合亚洲精品| 国产免费现黄频在线看| 国产毛片在线视频| 国产又色又爽无遮挡免| 一区二区日韩欧美中文字幕| 亚洲国产毛片av蜜桃av| 女人被躁到高潮嗷嗷叫费观| 少妇熟女欧美另类| 亚洲五月色婷婷综合| 黄色视频在线播放观看不卡| 秋霞在线观看毛片| 久久久久网色| 亚洲av免费高清在线观看| 亚洲精品av麻豆狂野| 久久久久久久精品精品| 青青草视频在线视频观看| 欧美国产精品一级二级三级| 免费av中文字幕在线| 欧美少妇被猛烈插入视频| 成人18禁高潮啪啪吃奶动态图| 欧美国产精品一级二级三级| 男女国产视频网站| 制服人妻中文乱码| 国产视频首页在线观看| 午夜免费鲁丝| 看免费av毛片| 成人漫画全彩无遮挡| 人人澡人人妻人| 久久久久久久久免费视频了| 91在线精品国自产拍蜜月| 久久久久久久精品精品| 欧美少妇被猛烈插入视频| av天堂久久9| 最近中文字幕高清免费大全6| av在线播放精品| 毛片一级片免费看久久久久| 一二三四中文在线观看免费高清| 少妇猛男粗大的猛烈进出视频| 一二三四中文在线观看免费高清| 亚洲欧美一区二区三区久久| 日韩欧美精品免费久久| 女性被躁到高潮视频| 国产成人aa在线观看| 免费黄色在线免费观看| 日韩 亚洲 欧美在线| 久久久久精品性色| 一级黄片播放器| 另类精品久久| 日日啪夜夜爽| 午夜影院在线不卡| 男人添女人高潮全过程视频| 1024香蕉在线观看| 不卡视频在线观看欧美| 人体艺术视频欧美日本| 1024视频免费在线观看| 又大又黄又爽视频免费| 精品国产乱码久久久久久小说| 一级毛片 在线播放| 丰满乱子伦码专区| 黄片播放在线免费| 午夜老司机福利剧场| 水蜜桃什么品种好| 成人二区视频| 日本91视频免费播放| 久久这里有精品视频免费| 欧美变态另类bdsm刘玥| 18禁国产床啪视频网站| 精品人妻熟女毛片av久久网站| 久久国产精品大桥未久av| 亚洲一码二码三码区别大吗| 天堂中文最新版在线下载| 街头女战士在线观看网站| 精品一区二区免费观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲在久久综合| 免费观看在线日韩| 中文字幕人妻熟女乱码| 久久这里只有精品19| 欧美日韩亚洲国产一区二区在线观看 | 人人妻人人爽人人添夜夜欢视频| 久久精品国产亚洲av涩爱| 丝袜美腿诱惑在线| 老鸭窝网址在线观看| 哪个播放器可以免费观看大片| 免费不卡的大黄色大毛片视频在线观看| 色哟哟·www| xxxhd国产人妻xxx| av不卡在线播放| 在线免费观看不下载黄p国产| 三上悠亚av全集在线观看| 日本欧美视频一区| 在线精品无人区一区二区三| 天堂中文最新版在线下载| 91国产中文字幕| 七月丁香在线播放| 熟女少妇亚洲综合色aaa.| 男女国产视频网站| 久久99热这里只频精品6学生| 久久久久久久久免费视频了| 夜夜骑夜夜射夜夜干| 建设人人有责人人尽责人人享有的| 日本91视频免费播放| 中文字幕人妻丝袜一区二区 | 成年人免费黄色播放视频| 午夜福利在线观看免费完整高清在| 91aial.com中文字幕在线观看| 一级毛片 在线播放| 午夜激情久久久久久久| 国产av国产精品国产| 欧美日韩国产mv在线观看视频| 97精品久久久久久久久久精品| 自线自在国产av| 国产午夜精品一二区理论片| 精品国产露脸久久av麻豆| 国产精品成人在线| 亚洲精品乱久久久久久| av在线播放精品| 在线免费观看不下载黄p国产| 亚洲精品一区蜜桃| 国产成人一区二区在线| 亚洲欧美精品自产自拍| 免费在线观看黄色视频的| 国产亚洲最大av| 午夜日韩欧美国产| 日韩中文字幕欧美一区二区 | 婷婷色综合大香蕉| 成人国产av品久久久| 一区二区三区激情视频| 中文字幕制服av| 新久久久久国产一级毛片| 日韩欧美一区视频在线观看| 国产成人精品福利久久| 99精国产麻豆久久婷婷| 亚洲精品久久久久久婷婷小说| 日韩三级伦理在线观看| av天堂久久9| 亚洲婷婷狠狠爱综合网| 欧美日韩精品网址| 亚洲av综合色区一区| 男人添女人高潮全过程视频| videosex国产| 久久精品亚洲av国产电影网| 国产成人精品婷婷| 男男h啪啪无遮挡| 麻豆精品久久久久久蜜桃| 在线观看一区二区三区激情| 九草在线视频观看| 1024视频免费在线观看| 亚洲av.av天堂| 久久精品久久精品一区二区三区| 国产黄色视频一区二区在线观看| 国产野战对白在线观看| 深夜精品福利| 男女啪啪激烈高潮av片| 日韩 亚洲 欧美在线| 亚洲精品久久午夜乱码| 水蜜桃什么品种好| 在线观看一区二区三区激情| 亚洲人成77777在线视频| 久久99蜜桃精品久久| 免费av中文字幕在线| 男人爽女人下面视频在线观看| 久久久国产欧美日韩av| 精品少妇黑人巨大在线播放| 亚洲av欧美aⅴ国产| 可以免费在线观看a视频的电影网站 | 只有这里有精品99| 成人漫画全彩无遮挡| 最近2019中文字幕mv第一页| 日本91视频免费播放| 伦理电影大哥的女人| 波多野结衣一区麻豆| 欧美中文综合在线视频| 色婷婷久久久亚洲欧美| 精品亚洲成国产av| 黑丝袜美女国产一区| 欧美人与性动交α欧美精品济南到 | 国产成人精品婷婷| 久久精品国产综合久久久| 国产深夜福利视频在线观看| 免费大片黄手机在线观看| 免费人妻精品一区二区三区视频| 有码 亚洲区| 中文乱码字字幕精品一区二区三区| 丝袜喷水一区| 最近中文字幕2019免费版| 精品一区二区免费观看| 一区二区三区四区激情视频| 国产精品久久久久久久久免| 欧美+日韩+精品| 欧美精品一区二区免费开放| 亚洲欧洲精品一区二区精品久久久 | 国产熟女欧美一区二区| 欧美日韩一级在线毛片| 男女边吃奶边做爰视频| 亚洲精品日本国产第一区| 国产亚洲av片在线观看秒播厂| 女人久久www免费人成看片| 波多野结衣一区麻豆| 在线观看美女被高潮喷水网站| 一边摸一边做爽爽视频免费| 精品视频人人做人人爽| 国产免费福利视频在线观看| 99热网站在线观看| 亚洲婷婷狠狠爱综合网| 999久久久国产精品视频| www.av在线官网国产| 99香蕉大伊视频| 观看美女的网站| 亚洲成人一二三区av| 99re6热这里在线精品视频| 一区二区三区精品91| 中文字幕最新亚洲高清| 狂野欧美激情性bbbbbb| 亚洲少妇的诱惑av| 日韩熟女老妇一区二区性免费视频| 欧美精品一区二区免费开放| 校园人妻丝袜中文字幕| 丰满饥渴人妻一区二区三| 另类亚洲欧美激情| 国产精品 国内视频| 国产男女内射视频| 黄色视频在线播放观看不卡| h视频一区二区三区| 大话2 男鬼变身卡| 久久久久国产一级毛片高清牌| 我要看黄色一级片免费的| 国产又爽黄色视频| 国产免费福利视频在线观看| 亚洲成国产人片在线观看| av电影中文网址| 精品人妻一区二区三区麻豆| 大陆偷拍与自拍| 国产97色在线日韩免费| 一区二区三区乱码不卡18| 新久久久久国产一级毛片| 精品国产乱码久久久久久男人| 亚洲一级一片aⅴ在线观看| 超碰成人久久| 精品视频人人做人人爽| 母亲3免费完整高清在线观看 | 亚洲国产最新在线播放| 三上悠亚av全集在线观看| 伦理电影大哥的女人| 日韩不卡一区二区三区视频在线| 亚洲精品av麻豆狂野| 久久久久久人人人人人| www.av在线官网国产| 26uuu在线亚洲综合色| 午夜日韩欧美国产| 狠狠精品人妻久久久久久综合| 日韩在线高清观看一区二区三区| 在线观看免费日韩欧美大片| 欧美日韩视频高清一区二区三区二| 性色av一级| 亚洲国产日韩一区二区| 日韩精品有码人妻一区| 少妇猛男粗大的猛烈进出视频| 亚洲少妇的诱惑av| 亚洲av日韩在线播放| 免费av中文字幕在线| 天堂俺去俺来也www色官网| 99re6热这里在线精品视频| 女人精品久久久久毛片| 欧美精品亚洲一区二区| 亚洲精品美女久久av网站| 熟女少妇亚洲综合色aaa.| 夜夜骑夜夜射夜夜干| 欧美av亚洲av综合av国产av | 日本免费在线观看一区| 亚洲综合色网址| 欧美成人午夜精品| 美女高潮到喷水免费观看| 一级毛片 在线播放| 人妻少妇偷人精品九色| 青春草视频在线免费观看| 男女边摸边吃奶| 亚洲情色 制服丝袜| 成年av动漫网址| 中文字幕另类日韩欧美亚洲嫩草| 国产精品三级大全| 成人二区视频| 午夜福利在线免费观看网站| 18禁裸乳无遮挡动漫免费视频| 2021少妇久久久久久久久久久| av视频免费观看在线观看| 亚洲美女黄色视频免费看| 9191精品国产免费久久| 美女中出高潮动态图| 男女啪啪激烈高潮av片| 欧美另类一区| 三上悠亚av全集在线观看| 亚洲欧美一区二区三区黑人 | 午夜影院在线不卡| 午夜日本视频在线| 免费观看无遮挡的男女| 97在线人人人人妻| 午夜福利网站1000一区二区三区| 在线观看国产h片| 国产爽快片一区二区三区| 精品国产露脸久久av麻豆| 日韩av免费高清视频| 精品国产超薄肉色丝袜足j| 看免费成人av毛片| 国产一区亚洲一区在线观看| 一二三四在线观看免费中文在| 人妻一区二区av| 亚洲欧美成人综合另类久久久| 亚洲国产最新在线播放| 精品一品国产午夜福利视频| 超色免费av| 午夜福利视频精品| 啦啦啦啦在线视频资源| 精品少妇黑人巨大在线播放| 国产精品偷伦视频观看了| 午夜激情久久久久久久| 亚洲精品在线美女| 国产男女超爽视频在线观看| 色哟哟·www| 国产成人欧美| 国产熟女欧美一区二区| 国产片内射在线| 亚洲图色成人| 一级,二级,三级黄色视频| 综合色丁香网| 日本欧美视频一区| 制服诱惑二区| 99久久精品国产国产毛片| 久久av网站| 国产精品秋霞免费鲁丝片| 国语对白做爰xxxⅹ性视频网站| 久久精品aⅴ一区二区三区四区 | 伦理电影免费视频| 老汉色∧v一级毛片| 制服丝袜香蕉在线| av天堂久久9| www.自偷自拍.com| 母亲3免费完整高清在线观看 | 亚洲av综合色区一区| 精品国产露脸久久av麻豆| 男女高潮啪啪啪动态图| 18禁动态无遮挡网站| 高清黄色对白视频在线免费看| 美女xxoo啪啪120秒动态图| 亚洲国产精品国产精品| 成人毛片a级毛片在线播放| 看免费av毛片| 国产精品麻豆人妻色哟哟久久| freevideosex欧美| 中文字幕av电影在线播放| 国产又爽黄色视频| 五月伊人婷婷丁香| 老司机亚洲免费影院| 欧美+日韩+精品| 国产97色在线日韩免费| 麻豆精品久久久久久蜜桃| 成人免费观看视频高清| 黑人猛操日本美女一级片| 亚洲美女搞黄在线观看| a级毛片在线看网站| 好男人视频免费观看在线| 久久这里有精品视频免费| 中文欧美无线码| 夜夜骑夜夜射夜夜干| 1024香蕉在线观看| 亚洲综合色惰| 日韩中文字幕欧美一区二区 | 超碰成人久久| 亚洲国产日韩一区二区| 一边亲一边摸免费视频| 黄色 视频免费看| 精品国产乱码久久久久久男人| 国产男人的电影天堂91| 伊人久久大香线蕉亚洲五| 久久久亚洲精品成人影院| 天天躁日日躁夜夜躁夜夜| 国产成人午夜福利电影在线观看| 极品人妻少妇av视频| 亚洲成人一二三区av| 大话2 男鬼变身卡| 国产1区2区3区精品| 久久毛片免费看一区二区三区| 美女国产视频在线观看| 亚洲成人一二三区av| 亚洲第一区二区三区不卡| 在线观看美女被高潮喷水网站| 精品国产一区二区三区四区第35| 看非洲黑人一级黄片| 99热全是精品| 亚洲av电影在线进入| 99热网站在线观看| 高清欧美精品videossex| 极品少妇高潮喷水抽搐| 欧美成人午夜精品| 成年人免费黄色播放视频| 中文精品一卡2卡3卡4更新| 久久久久久人人人人人| 最近中文字幕2019免费版| 久久久久视频综合| 嫩草影院入口| 亚洲精品中文字幕在线视频| 亚洲三级黄色毛片| 午夜福利在线免费观看网站| 边亲边吃奶的免费视频| 最黄视频免费看| 日韩精品有码人妻一区| 亚洲,一卡二卡三卡| 国产精品香港三级国产av潘金莲 | 国产无遮挡羞羞视频在线观看| 边亲边吃奶的免费视频| 亚洲成人手机| 成年人免费黄色播放视频| 国产一区亚洲一区在线观看| 在线亚洲精品国产二区图片欧美| 18在线观看网站| 一本久久精品| 性高湖久久久久久久久免费观看| 亚洲国产精品一区三区| 男人添女人高潮全过程视频| 久久久久久伊人网av| 飞空精品影院首页| 日韩av在线免费看完整版不卡| 久久av网站| 波多野结衣一区麻豆| 一级a爱视频在线免费观看| 熟女电影av网| 国产av国产精品国产| 欧美老熟妇乱子伦牲交| 熟女少妇亚洲综合色aaa.| 日本91视频免费播放| 国产精品秋霞免费鲁丝片| 婷婷色av中文字幕| 久久99一区二区三区| 免费观看无遮挡的男女| 欧美激情 高清一区二区三区| 激情五月婷婷亚洲| 男女无遮挡免费网站观看| 十分钟在线观看高清视频www| 久久久久久人人人人人| 18在线观看网站| 黄色视频在线播放观看不卡| 国产有黄有色有爽视频| 91精品国产国语对白视频| 赤兔流量卡办理| 亚洲国产欧美在线一区| 97在线人人人人妻| 日韩伦理黄色片| 亚洲国产欧美日韩在线播放| 只有这里有精品99| 亚洲欧美一区二区三区国产| 寂寞人妻少妇视频99o| 最近手机中文字幕大全| 国产男女超爽视频在线观看| 国产成人免费无遮挡视频| 国产又色又爽无遮挡免| 色哟哟·www| 亚洲欧美色中文字幕在线| 精品一区二区免费观看| 丝瓜视频免费看黄片| 街头女战士在线观看网站| 一二三四在线观看免费中文在| 大话2 男鬼变身卡| 又黄又粗又硬又大视频| 国产男女超爽视频在线观看| 亚洲色图综合在线观看| 久久精品国产亚洲av涩爱| 久久综合国产亚洲精品| 两个人免费观看高清视频| 国产精品亚洲av一区麻豆 | 超碰97精品在线观看| 日本av免费视频播放| 精品少妇一区二区三区视频日本电影 | 欧美日韩国产mv在线观看视频| 免费大片黄手机在线观看| 亚洲精品久久午夜乱码| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 婷婷色综合www| 欧美激情高清一区二区三区 | 欧美日韩精品网址| 精品福利永久在线观看| 亚洲国产色片| 久久精品国产亚洲av高清一级| 午夜老司机福利剧场| 日韩,欧美,国产一区二区三区| 久久久久人妻精品一区果冻| 欧美97在线视频| av网站在线播放免费| 亚洲三级黄色毛片| 久久久国产一区二区| 精品一区二区三卡| 日韩中文字幕视频在线看片| 男女午夜视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美成人综合另类久久久| 狠狠精品人妻久久久久久综合| 美女主播在线视频| 亚洲精品在线美女| 青草久久国产| 超碰97精品在线观看| 男人操女人黄网站| 飞空精品影院首页| 又大又黄又爽视频免费| 成年av动漫网址| 日本wwww免费看| 亚洲图色成人| 亚洲av.av天堂| 免费黄频网站在线观看国产| 亚洲一级一片aⅴ在线观看| 久久久国产欧美日韩av| 中文字幕色久视频| 亚洲三级黄色毛片| 日韩av免费高清视频| 久久久精品免费免费高清| 国产人伦9x9x在线观看 | 亚洲av电影在线观看一区二区三区| 国产成人午夜福利电影在线观看| 久久久久人妻精品一区果冻| 亚洲成av片中文字幕在线观看 | 欧美成人精品欧美一级黄| 亚洲av国产av综合av卡| 一区二区三区激情视频| 国产精品一国产av| 久久久久久久大尺度免费视频| 成人国产麻豆网| 涩涩av久久男人的天堂| 日韩中文字幕视频在线看片| 国产淫语在线视频| 欧美另类一区| 人人妻人人爽人人添夜夜欢视频| 啦啦啦中文免费视频观看日本| 日韩,欧美,国产一区二区三区| 午夜福利视频精品| 久久久国产精品麻豆| 精品久久久精品久久久| 日本-黄色视频高清免费观看| 97人妻天天添夜夜摸| 汤姆久久久久久久影院中文字幕| 老汉色∧v一级毛片| 日韩不卡一区二区三区视频在线| 新久久久久国产一级毛片| 午夜激情久久久久久久| 午夜免费男女啪啪视频观看| 天堂8中文在线网| 性高湖久久久久久久久免费观看| 亚洲国产最新在线播放| 男女免费视频国产| 少妇人妻精品综合一区二区| 如日韩欧美国产精品一区二区三区| 国产欧美日韩一区二区三区在线| 日本vs欧美在线观看视频| 波多野结衣av一区二区av| 色哟哟·www| 欧美黄色片欧美黄色片| 免费观看无遮挡的男女| 你懂的网址亚洲精品在线观看| 9热在线视频观看99| 久久99精品国语久久久| 成人国产麻豆网| 国产亚洲精品第一综合不卡| 日本猛色少妇xxxxx猛交久久| 久久毛片免费看一区二区三区| 天美传媒精品一区二区| 女性生殖器流出的白浆| 日韩免费高清中文字幕av| 伊人亚洲综合成人网| 亚洲av综合色区一区| 成人国产麻豆网|