• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic analysis of spinning solar sails at deployment process

    2017-11-17 08:31:54XinxingZHANGChunyanZHOU
    CHINESE JOURNAL OF AERONAUTICS 2017年5期

    Xinxing ZHANG,Chunyan ZHOU

    School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

    Dynamic analysis of spinning solar sails at deployment process

    Xinxing ZHANG,Chunyan ZHOU*

    School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

    The spinning deployment process of solar sails is analyzed in this study.A simplified model is established by considering the out-of-plane and in-plane motions of solar sails.The influences of structure parameters,initial conditions,and feedback control parameters are also analyzed.A method to build the geometric model of a solar sail is presented by analyzing the folding process of solar sails.Thefinite element model of solar sails is the n established,which contains continuous cables and sail membranes.The dynamics of the second-stage deployment of solar sails are simulated by using ABAQUS software.The influences of the rotational speed and out-of-plane movement of the hub are analyzed by different tip masses,initial velocities,and control parameters.Compared with the results from the oretical models,simulation results show good agreements.

    1.Introduction

    Solar sails have gained widespread attention for several decades because of the ir significant advantages,including small package volume,low energy consumption,and low cost.1–4The development of a solar sail spacecraft involves a wide range of technologies,and the manner in which to deploy a large area sail in space is a key design issue.5Among the proposed several deployment methods,the spinning deployment of solar sails is an ideal technique that utilizes centrifugal force to deploy sail membranes.6As a successful case,the Japan Aerospace Exploration Agency launched a spinningdeployable spacecraft named IKAROS on May 21,2010.7IKAROS succeeded in deploying a 20 m span solar sail from a wrapped status and managed to pass by Venus with the help of solar radiation pressure.8

    Given the high flexibility of the membrane structure,rigorous control strategies must be used to avoid the entanglements or yo-yo-like oscillations caused by the repeated coiling and uncoiling of membranes to and from the hub.9–11Gardsback et al.12reviewed the existing control strategies for the centrifugal deployment of space webs.They concluded that stable deployment can be obtained by using the method of applying torque to the center hub,namely,the Melnikov–Koshelev law.10Gardsback and Tibert presented a simplified hubcable-mass model to qualitatively analyze the deployment dynamics in which out-of-plane motions were neglected.13Finite Element(FE)calculation using LSDYNA was proposed to simulate the dynamical response of the real deployment system.14Shirasawa et al.applied the Multi-Particle Method(MPM)to the dynamic analysis of IKAROS,and approximated the solar membrane by using the network of springs with lumped masses.15Haraguchi et al.used the model of MPM to validate the control laws for the spinning deployment of a solar sail system.16,17

    A two-step deployment strategy was applied for the IKAROS.First,the four folded arms were slowly released from the tip by rotating the stopper relative to the hub.At the second stage,the four stoppers were released to deploy the entire membrane.A large disturbance at the beginning of the second-stage deployment was observed,which caused significant oscillations during the second-stage deployment.18Miyazaki et al.developed an FE model to analyze the nutation motion at firststage deployment.18,19Severe out-of-plane oscillations were also observed at the beginning of the second stage during the ground simulation tests conducted by Zhou et al.20

    This study aims to analyze the deployment dynamics during the second stage under the initial perturbation of the instantaneous spreading out of the membrane.Following the work of Gardsback and Tibert13,a simplified hub-cable-mass model,including out-of-plane motion,is established to qualitatively analyze the effect of control parameters.An FE model of the solar sail is the n established.This model contains continuous cables and sail membranes.The second-stage deployment of a solar sail is simulated by using ABAQUS software.The influences of the rotational speed and out-of-plane movement of the hub are analyzed under different tip masses,initial velocities,and other factors.

    2.Analytical model analysis

    At the end offirst-stage deployment,the membrane arms togethe r with the center hub rotate stably with the same rotational speed.At the beginning of the second-stage deployment,the membrane is instantaneously deployed when the stopper is released.For the conservation of angular momentum,the rotational speed of the membrane becomes lower than that of the center hub,thus causing the in-plane oscillations of the system.When the membrane is spread from a zigzag folding pattern to a plane,out-of-plane motion is produced.To stabilize the deploying process,the system is controlled by applying a torque to the center hub with torque control law.This law implies that the torque increases when the hub angular velocity decreases and vice versa.To estimate the oscillations and control method,a simple analytical model is used to describe the deployment dynamics qualitatively.The development of our analytical model follows the model presented by Gardsback and Tibert.13The out-of-plane motions are included in our analytical model.The following assumptions are also made:

    Fig.1 Analytical model for a point mass.

    (1)The mass of the hub is higher than the sum of attached membrane,cable,and tip mass;hence,the hub is assumed fixed except its rational freedom in OZ axis.

    (2)The motion of the membrane,cable,and tip mass is dominated by the cable and tip mass.The effect of membrane motion is equivalent to the additional mass at cable tip.

    (3)Each part of the sail motion is the same(symmetric).

    The analytical model is described in Fig.1.With the assumption of symmetric motion,only one part of the sail is considered for analysis.The entire sail consists offour parts.The coordinate system OXYZ is fixed with the center hub of the solar sail.In this model,the center hub is only free in its rotational motion by the OZ axis.The distancefrom the tip to the center hub edge is the length of the cable.This model can describe the relative position and motion of the center and sails by lengths,angles,and velocities.The system can be described by three degrees offreedom,the angular velocity of center hub ω,the relative in-plane rotational angle of the cable φ,and the out-of-plane rotational angle ψ.In this study,r is the hub radius and L is the cable length.

    2.1.Equations of system dynamics

    According to Lagrange’s law of motion,the dynamic equations of the system can be described as follows20:where g is the gravity coefficient for ground tests,which is zero on orbit;m is the equivalent mass of the membrane,cable,and tip mass system,and F is the tension force in the cable.The equivalent mass is determined by total inertial moment of the membrane,cable,and tip mass system.

    During the deployment,an external moment M is applied to the center hub by the actuators that are installed on the hub edge.Accordingly,the hub dynamic equation can be described as

    where J is the moment ofinertia of the center hub,M is a control torque,n is the number of cables.An appropriate M should be set to ensure successful and steady deployment.Several control strategies have been discussed.13One of the successful control laws involve increasing the torque applied to the hub as the hub angular velocity decreases;this approach was proposed by Melnikov and Koshelev for the deployment of the Znamya-2 reflector.10In our model,the external torque M applied to the hub is correlated with the error of the hub current angular velocity:

    where k is the proportional gain,and ω*is the target hub rotational speed.

    To analyze the effect of physical parameters on the dynamic response of the system,the non-dimensional parameters are introduced as follows:

    Thus,the dynamics of this system are described as follows:

    2.2.Results of numerical simulation

    Numerical calculations are conducted to assess the effect of design parameters on the dynamic stability of the system,such as the torque and power requirements for the given deployment times with different masses and sizes of the hub and membrane.For the experimental system used by Zhou et al.20,the radius of the center hub is r=0.075 m,tip mass is m=0.02 kg,the moment ofinertia of the center hub is J=0.0281 kg·m2,the number offolded arms is n=4,the length of the cables is L=0.66 m,the center hub is controlled by a motor,the target rotational speed is set as ω*=20 rad/s,and the control gain is set as k=-0.06 N ·m ·s/rad.Thus,the non-dimensional parameters defined by Eq.(6)are=62.44,=8.8,and=-6.67.The dynamic response of the system can be calculated from Eqs.(7)–(10).

    2.2.1.Effect of target hub rotational speed

    ~ω0denotes the ratio of the hub speed at the beginning of the second-stage deployment to that of the target speed at the end of deployment.Fig.2 shows the curves of the in-plane relative rotational anglewith four different initial angular velocityvalues.When=0.1,the angle parameter~φ increases unacceptably,and thus sails coil on the hub in the deployment process.Hence,target hub rotational speed lower than the initial speed should be considered for the control of the second-stage deployment.

    2.2.2.Effect ofinitial relative rotational speed of membrane on that of hub

    At the beginning of the second-stage deployment,as stopper is released,the membrane is instantaneously deployed.One of the aftereffects is that the rotational speed of the membrane becomes lower than that of center hub,which means a negative initial value of.Fig.3 shows the curves ofin-plane relative rotational anglewith four different initial values ofWhen the initialis as large as=-8,the membrane will become stable at=2π,thus entangling the whole system.Notably,when=-1,increases rapidly with time,and thus sails coil forward on the hub in the deployment process.Therefore,the initial in-plane relative rotational speed is important for system dynamics.Careful control parameters should be designed with a full consideration of the relative initial rotation caused by the sudden spread out of membrane.

    Fig.2 Response of- under different values of=8.8,=-6.67=62.44=0,=-0.628=0.048=-0.314).

    Fig.3 Response of under different values of=8.8,=-6.67,=62.44,=0.5,=0,=0.048,=-0.314).

    2.2.3.Effect ofinitial out-of-plane angle

    The other aftereffect of the sudden spread out of the membrane is small out-of-plane disturbance.Figs.4 and 5 show the curves of the in-plane and out-of-plane relative motions with three different initial values of.The results of stability analysis are confirmed by the calculation assumption that the out-of-plane motion has a small influence on in-plane motion and the torque control on the hub cannot damp out-of-plane motion.

    3.Finite element analysis

    The qualitative dynamic prediction of the deployment process can be studied by analyzing the analytical model,and an accurate prediction should be studied in the FE method.The interactions between four petals of membranes can be included by FE Analysis(FEA).

    A 3D FE model including a center hub,membrane,cables,and four corner masses was implemented.The center hub was constrained to rotate around its center axis;hence,the center hub motion was one-dimensional.The geometry and connectivity of the node and element were generated in ABAQUS.The equations of motion were the n solved in ABAQUS by using the central-difference method for explicit time integration.The main differences compared with the analytical model are that the influence of the membrane motion can be studied with the FE model and that the cables are unnecessarily straight during the deployment.

    Fig.4 Response of- and- with different values of=8.8,=0.5,=62.44=0.5=0.5,=-0.628,=0.048).

    Fig.5 Response of with different values of=8.8,=0.5=62.44=0.5=0.5=-0.628=0.048).

    3.1.Model setup for folded membrane

    The accuracy of an FE model is strongly dependent on how well the modeled folded configuration coincides with the real one.A good geometry model must befirst obtained before the finite analysis of the deployment processes.As shown in Fig.6,a square plane OABC in plane OXY is folded to OA′B′C′.The constraints in the folding process are as follows:(A)Point A is in plane OXZ;(B)Point B is in plane X=Y;(C)Point C is in plane OYZ.

    The relationship of angle θ and α can be expressed as follows:

    According to the relationship of angle θ and α and the dimensions of plane OABC,the position offolded plane OA′B′can be obtained,which is shown in Fig.6.Position of the ith folding point in OXZ planeis determined by

    Fig.6 Folding process of a square plane.

    where Δl is the width of each folded strip.And position of the ith folding point in X=Z planeis determined by

    Fig.7 Folding process of solar sail model.

    Fig.8 Establishment process of solar sail model.

    Table 1 Structural properties of solar sail model.

    Fig.9 Comparison of experimental and simulation results for the second-stage deployment process.

    By referring to several similar schemes of solar sail folded models8,9,a folding scheme is shown in Fig.7.

    Fig.10 Curves of hub rotational speed for free deployment with different initial rotational speeds(tip mass=0.1 kg).

    Fig.11 Curves of hub rotational speed for free deployment with different tip masses(ω0=10 rad/s).

    Fig.12 Scheme of positions of tip masses.

    According to the proposed fold scheme,a solar sail model is established,as shown in Fig.8.This model includes a center hub,cables,sail membranes,and tip masses.In this model,a cable is used to connect the sail membrane and center hub.Moreover,four tip masses are present and each of the m is located at the corner of the membrane.

    This model is not folded completely and can be used to describe the initial status for the second-stage deployment.The center hub is modeled as a cylinder with rigid material,cables are modeled as beam element,and sail membrane is modeled as shell element.The details of the FE model are listed in Table 1.

    Fig.13 Time history of φ1to φ4with various initial rotational speeds(tip mass=0.1 kg).

    Simulations have been conducted by applying ABAQUS via the explicit integration method.During the analysis,the contact of each part is calculated by using the general contact method supported by ABAQUS.

    An FEA model is established according to ground tests conducted by the same research group of the present study.20As shown in Fig.9,simulation results can simulate high comparability for the second-stage deployment process.

    3.2.FEA results for free deployment without control

    Contrary to the the oretical straight cable assumption,severe oscillations are observed because of the elastic retrieval and stretching of the cable with tip mass before the system becomes stable.For a 0.1 kg tip mass,Fig.10 shows the time history curves of the hub rotational speed with different initial rotational speeds at the end of first-stage deployment.Higher initial rotational speeds lead to higher vibrations.Fig.11 shows the time history curves of the hub rotational speed with different tip masses.The oscillations become more severe with heavier tip mass.

    During the deployment process,the relative rotational angle of the membrane to the hub φ and out-of-plane motion angle ψ can be obtained by positioning the tip masses relative to the hub.Fig.12 shows the positions of four tip masses P1to P4.φ1to φ4are the relative rotational angles between the tip mass and the hub.Z1to Z4are the out-of-plane displacements of the four tip masses.

    Figs.13 and 14 demonstrate the in-plane rotational angles φ1to φ4with various initial rotational speeds and various tip masses,respectively.Fig.15 shows the out-of-plane positions of the tip masses with various initial rotational speeds.Both the in-plane and out-of-plane vibrations increase with higher initial rotational angle and heavier tip masses because more elastic energy is stored in the cable.Because of gravitational acceleration,out-of-plane motion appears at the end of first stage.Small amplitude vibrations continue after the severe flexible vibrations of the cable damping off.However,for smaller initial rotational angle and lighter tip masses,the motions of the membrane lose synchronization because the motion of the system is dominated by unordered flexible waves in the membrane at low centrifugal forces.

    Fig.16 demonstrates that out-of-plane vibration will not decay with time;this finding agrees with the analytical estimations in the previous section.Fig.16 shows out-of-plane vibration frequencies with various stable vibration speeds of the system ωstable.The out-of-plane vibration frequencies are near the stable vibration speed of the system ωstable;this finding also agrees with the theoretical estimation and experimental results.20

    Fig.14 Time history of φ1to φ4with various tip masses(ω0=10 rad/s).

    Fig.15 Time history of Z1to Z4with various initial rotational speeds(tip mass=0.2 kg).

    Fig.16 Out-of-plane vibration frequencies vs stable vibration speed of system ωstable.

    3.3.FEA results for deployment with control

    To evaluate the effect of the control method proposed in Section 2,a torque is applied to the center hub with torque control law.This law implies that the torque increases when the hub angular velocity decreases and vice versa.This analysis is realized in ABAQUS with subprogram VUAMP.

    Fig.17 Time history of hub rotational speed with different control gains k(tip mass=0.2 kg,ω0=20 rad/s,ω*=15 rad/s).

    A torque M=k(ω - ω*)is applied to the hub.Fig.17 shows the motion of a hub with different proportional gains k.Simulation results reveal that the in-plane vibration will continue for a long time if no control is applied.The in-plane vibration amplitude is lower with torque control.Furthermore,high proportional gains k indicate that the in-plane motion is suppressed quickly.

    4.Conclusions and discussion

    In this paper,a simplified model considering the out-of-plane motion of a solar sail is established to qualitatively analyze the dynamics of spinning solar sail at the second stage.The influences of structure parameters,initial conditions,and feedback control parameters are also analyzed to stabilize the deploying process.Theoretical analysis reveals that ratio of membrane size to hub size is important for ensuring successful deployment.An excessive size ratio will induce severe yo-yolike vibration in the system even with torque control.Moreover,a high ratio of membrane moment ofinertia to that of the hub may cause long in-plane vibration time even with torque control.For small initial perturbations,in-plane vibration may be ceased by the torque control applied to the hub,whereas out-of-plane vibration will succeed without a special damping strategy.Lower target rotational speed than the initial hub speed is preferred to obtain stable control.Notably,for finite initial in-plane relative rotation,the membrane may be secured to the hub with some combination of control parameters.

    The second-stage deployment of the solar sail is simulated by using ABAQUS software.Thefolded configuration of the solar sail membrane model is established first,and dynamic simulations are conducted with explicit solutions.Severe vibration caused by the elastic flexibility of the cable system is observed.Non-synchronous motions of the four petals appear for small initial rotational speed and tip mass.

    Interestingly,cables made of woven wire strands have small elastic flexibility,and this type is often used in the design of solar sail.The dynamic performance of the cable material may influence the dynamics of spinning solar sail deployment,which should be analyzed in future study.

    Acknowledgments

    This study was supported in part by the National Natural Science Foundation of China(Nos.11290151 and 51075032).

    1.Catharine CF,Stoakley DM,Clair AK.Molecularly oriented films for space applications. High Perform Polym 1999;11(1):145–56.

    2.Darooka DK,Jensen DW.Advanced space structure concepts and the ir development.Proceedings of the 42th AIAA/ASME/ASCE/AHS/ASC structures,structural dynamics,and materials conference and exhibit;2001 Apr.16–19;Seattle,USA.Reston:AIAA;2001.p.1257.

    3.Hiroshi F,Makiko N,Satoshi M,Jodoi D,Terada Y,Takadamak K.Concept of inflatable tensegrity for large space structures.Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC structures,structural dynamics,and materials conference and exhibit;2006 May 1–4;Newport,Rhode Island.Reston:AIAA;2006.p.1700.

    4.Nakasuka S,Aoki T,Ikeda I,Tsuda Y,Kawakatsu Y.‘Furoshiki satellite”—A large membrane structure as a novel space system.Acta Astronaut 2001;48(5–12):461–8.

    5.Macdonald M.Advances in solar sailing.Chichester:Springer Praxis Books;2014.p.961-76.

    6.Matunaga S,Yabe H,Nakaya K,Iai M,Omagari K,Mori O.Membrane deployment for spinning formation flight solar sail.Proceedings of the 14th ISAS/JAXA workshop on astrodynamics and flight mechanics;2004 July;Tokyo,Japan.Tokyo:Japan Aerospace Exploration Agency;2004.p.A-11.

    7.Mori O,Sawada H,Funase R,Morimoto M,Endo T,Yamamoto T,et al.First solar power sail demonstration by IKAROS.Trans Japanese Soc Artif Intell,Aerospace Technol Japan 2011;8(27):425–31.

    8.Tsuda Y,Mori O,Funase R,Sawada H,Yamamoto T,Saiki T,et al.Flight status of IKAROS deep space solar sail demonstrator.Acta Astronaut 2011;69(9):833–40.

    9.Hedgepeth JM.Dynamics of a large spin-stiffened deployable paraboloidal antenna.J Spacecraft Rock 1970;7(9):1043–8.

    10.Melnikov VM,Koshelev VA.Large space structures formed by centrifugal forces.1st ed.New York:CRC Press;1998.p.21–61.

    11.Miyazaki Y,Iwai Y.Dynamics model of solar sail membrane.14th workshop on astrodynamics and flight mechanics;2004 Jul 26–27;Kanagawa,Japan.Tokyo:Institute of Space and Astronautical Science,Japan Aerospace Exploration Agency;2005.p.32–7.

    12.Gardsback M,Tibert G,Izzo D.Design considerations and deployment simulations of spinning space webs.48th AIAA/ASME/ASCE/AHS/ASC structures,structuraldynamics,and materials conference;2007 Apr.23–26;Honolulu,Hawaii.Reston:AIAA;2007.p.1503–12.

    13.Gardsback M,Tibert G.Deployment control of spinning space webs.J Guid Control Dynam 2009;32(1):40–50.

    14.Gardsback M,Tibert G.Optimal deployment control of spinning space webs and membranes.J Guid Control Dynam 2009;32(5):1519–30.

    15.Shirasawa Y,Mori O,Miyazaki Y,Miyazaki Y,Sakamoto H,Hasome M,et al.Analysis of membrane dynamics using multi-particle model for solar sail demonstrator ‘IKAROS”.Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC structure,structural dynamics,and materials conference;2011 Apr.4–7;Denver,USA.Reston:AIAA;2011.p.1890.

    16.Haraguchi D,Sakamoto H,Shirasawa Y,Mori O.Design criteria for spin deployment of gossamer structures considering nutation dynamics.Proceedings of AIAA guidance,navigation,and control conference;2010 Aug 2–5;Toronto,Canada.Reston:AIAA;2010.p.8072.

    17.Sakamoto H,Shirasawa Y,Haraguchi D,Sawada H,Mori O.A spin up control schemefor contingency deployment of the sailcraft IKAROS.Proceedings of 52nd AIAA/ASME/ASCE/AHS/ASC structures,structural dynamics and materials conference;2011 Apr.4–7;Denver,USA.Reston:AIAA;2011.p.1892.

    18.Sakamoto H,Miyazaki Y,Mori O.Transient dynamic analysis of gossamer-appendage deployment using nonlinear finite element method.J Spacecraft Rockets 2011;48(5):881–90.

    19.Miyazaki Y,Shirasawa Y,Mori O,Sawada H.Finite element analysis of deployment of gossamer space structure.Proceedings of the ECCOMAS the matic conference on multibody dynamics 2011;2011 Jul 4–7;Brussels,Belgium.Melville:International Center for Numerical Methods in Engineering;2011.

    20.Zhou XJ,Zhou CY,Zhang XX,Hu HY.Ground simulation tests of spinning deployment dynamics of a solar sail.J Vib Eng 2015;28(2):175–82[Chinese].

    16 June 2016;revised 3 March 2017;accepted 25 May 2017

    Available online 23 August 2017

    Deployment;

    Dynamics;

    Solar sail;

    Spinning;

    Stability

    *Corresponding author.

    E-mail address:cyzhou@bit.edu.cn(C.ZHOU).

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2017.08.006

    1000-9361?2017 Production and hosting by Elsevier Ltd.on behalf of Chinese Society of Aeronautics and Astronautics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?2017 Production and hosting by Elsevier Ltd.on behalf of Chinese Society of Aeronautics and Astronautics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    99精品久久久久人妻精品| 久久香蕉国产精品| 天天躁夜夜躁狠狠躁躁| 国产亚洲精品一区二区www| 中文在线观看免费www的网站 | 一进一出好大好爽视频| 老汉色∧v一级毛片| 一级黄色大片毛片| 人人妻,人人澡人人爽秒播| 久久精品91蜜桃| 欧美乱色亚洲激情| 国产精品一区二区免费欧美| 亚洲欧美激情综合另类| 麻豆成人午夜福利视频| 日本a在线网址| 国产一区二区在线av高清观看| 两个人免费观看高清视频| 免费看a级黄色片| 妹子高潮喷水视频| 老司机深夜福利视频在线观看| 欧美一级a爱片免费观看看 | 好男人在线观看高清免费视频 | 成人18禁高潮啪啪吃奶动态图| 最新在线观看一区二区三区| 久久久久久久精品吃奶| 老汉色av国产亚洲站长工具| 亚洲片人在线观看| 亚洲精品在线观看二区| 亚洲中文字幕一区二区三区有码在线看 | 成人一区二区视频在线观看| 99久久综合精品五月天人人| 精品熟女少妇八av免费久了| a在线观看视频网站| 黄频高清免费视频| 老汉色av国产亚洲站长工具| 校园春色视频在线观看| 大香蕉久久成人网| 亚洲黑人精品在线| 一个人免费在线观看的高清视频| 国产午夜精品久久久久久| 久久精品aⅴ一区二区三区四区| 久久国产乱子伦精品免费另类| 每晚都被弄得嗷嗷叫到高潮| 动漫黄色视频在线观看| 国产精品98久久久久久宅男小说| 老司机深夜福利视频在线观看| 精品卡一卡二卡四卡免费| 黑人欧美特级aaaaaa片| 国产精品 欧美亚洲| 免费在线观看成人毛片| 免费在线观看黄色视频的| 亚洲成av人片免费观看| 十八禁人妻一区二区| 色精品久久人妻99蜜桃| 最近最新中文字幕大全免费视频| 少妇裸体淫交视频免费看高清 | 国产成人欧美| 国产亚洲av高清不卡| 白带黄色成豆腐渣| www日本在线高清视频| 人人妻人人看人人澡| 真人做人爱边吃奶动态| 日日夜夜操网爽| 久久国产亚洲av麻豆专区| 精品国产乱子伦一区二区三区| 久久草成人影院| 狂野欧美激情性xxxx| 熟女少妇亚洲综合色aaa.| 欧美成人免费av一区二区三区| 国产亚洲欧美98| 国产日本99.免费观看| 三级毛片av免费| 女警被强在线播放| 精品一区二区三区四区五区乱码| 免费看日本二区| 亚洲免费av在线视频| 精品熟女少妇八av免费久了| 可以在线观看的亚洲视频| 别揉我奶头~嗯~啊~动态视频| 99热6这里只有精品| 久久这里只有精品19| 十分钟在线观看高清视频www| 欧美黄色淫秽网站| 久久久久久亚洲精品国产蜜桃av| 精品熟女少妇八av免费久了| 一进一出抽搐动态| 一进一出抽搐动态| av片东京热男人的天堂| 国产视频内射| 国产区一区二久久| www.精华液| 欧美国产日韩亚洲一区| 国产精品 欧美亚洲| 精品一区二区三区av网在线观看| xxx96com| 怎么达到女性高潮| 波多野结衣巨乳人妻| 久久精品国产综合久久久| 精品高清国产在线一区| 欧美绝顶高潮抽搐喷水| 欧美性长视频在线观看| 日韩精品中文字幕看吧| 精品福利观看| 国产精品免费视频内射| 午夜激情av网站| 久久久久免费精品人妻一区二区 | 精品一区二区三区视频在线观看免费| 无限看片的www在线观看| 一区二区三区国产精品乱码| 亚洲国产欧美网| 欧美 亚洲 国产 日韩一| 成人欧美大片| 亚洲在线自拍视频| 国产成人av激情在线播放| 看免费av毛片| 国产精品电影一区二区三区| 久久国产亚洲av麻豆专区| 欧美乱码精品一区二区三区| 欧美性长视频在线观看| 久久久久国产精品人妻aⅴ院| 亚洲国产日韩欧美精品在线观看 | 久久久久久久久免费视频了| 老司机福利观看| 久久精品国产99精品国产亚洲性色| 99久久精品国产亚洲精品| e午夜精品久久久久久久| 亚洲一区高清亚洲精品| 国产视频内射| 精品午夜福利视频在线观看一区| 中出人妻视频一区二区| 亚洲av片天天在线观看| 国产伦在线观看视频一区| 亚洲国产精品合色在线| 欧美成人午夜精品| 熟女电影av网| 亚洲一区中文字幕在线| 日韩精品中文字幕看吧| 99国产精品一区二区三区| 亚洲欧美日韩高清在线视频| 日日摸夜夜添夜夜添小说| 久久精品国产综合久久久| 热re99久久国产66热| 精品久久久久久久人妻蜜臀av| 真人做人爱边吃奶动态| 在线国产一区二区在线| 白带黄色成豆腐渣| 亚洲人成网站在线播放欧美日韩| 亚洲成人免费电影在线观看| 久久久久久九九精品二区国产 | 精品福利观看| 免费在线观看影片大全网站| ponron亚洲| 巨乳人妻的诱惑在线观看| 日本 av在线| 亚洲久久久国产精品| 国内毛片毛片毛片毛片毛片| 日韩高清综合在线| 18禁黄网站禁片午夜丰满| 国产区一区二久久| 日本在线视频免费播放| 啦啦啦观看免费观看视频高清| 精品国内亚洲2022精品成人| 欧美最黄视频在线播放免费| 成人一区二区视频在线观看| 久久国产亚洲av麻豆专区| 亚洲国产日韩欧美精品在线观看 | 女人爽到高潮嗷嗷叫在线视频| 国产伦一二天堂av在线观看| 黑人巨大精品欧美一区二区mp4| 12—13女人毛片做爰片一| 男女做爰动态图高潮gif福利片| АⅤ资源中文在线天堂| 99在线人妻在线中文字幕| 亚洲九九香蕉| 免费观看人在逋| 在线观看免费日韩欧美大片| 三级毛片av免费| 熟女少妇亚洲综合色aaa.| 国产精品电影一区二区三区| 精品久久久久久久久久免费视频| 国产伦在线观看视频一区| 亚洲av五月六月丁香网| 每晚都被弄得嗷嗷叫到高潮| 人人妻人人澡欧美一区二区| 久久精品国产亚洲av香蕉五月| 女生性感内裤真人,穿戴方法视频| 国产伦人伦偷精品视频| 真人一进一出gif抽搐免费| 亚洲第一欧美日韩一区二区三区| 在线播放国产精品三级| 我的亚洲天堂| 熟妇人妻久久中文字幕3abv| 日韩中文字幕欧美一区二区| 国产爱豆传媒在线观看 | 亚洲全国av大片| 波多野结衣av一区二区av| 国产私拍福利视频在线观看| 黄色视频不卡| 性色av乱码一区二区三区2| 精品欧美国产一区二区三| 欧美一级毛片孕妇| 窝窝影院91人妻| 不卡av一区二区三区| 亚洲国产欧美日韩在线播放| 村上凉子中文字幕在线| 天堂√8在线中文| 51午夜福利影视在线观看| 制服诱惑二区| 99热这里只有精品一区 | 欧美成人午夜精品| 2021天堂中文幕一二区在线观 | 成年免费大片在线观看| 久久久久久久久免费视频了| 国产熟女xx| 久久精品91蜜桃| 亚洲国产毛片av蜜桃av| 亚洲国产看品久久| 在线天堂中文资源库| 久久精品国产亚洲av高清一级| 嫁个100分男人电影在线观看| 免费在线观看成人毛片| 特大巨黑吊av在线直播 | 波多野结衣高清无吗| 日韩 欧美 亚洲 中文字幕| 变态另类丝袜制服| 午夜亚洲福利在线播放| 黄片大片在线免费观看| aaaaa片日本免费| 成熟少妇高潮喷水视频| 男女那种视频在线观看| 美女国产高潮福利片在线看| 嫩草影院精品99| 免费高清在线观看日韩| 亚洲av熟女| 99久久国产精品久久久| 91大片在线观看| 老熟妇乱子伦视频在线观看| 一区二区三区高清视频在线| 亚洲第一av免费看| 亚洲中文av在线| 久久久久久久精品吃奶| 精品熟女少妇八av免费久了| 色av中文字幕| 看免费av毛片| 777久久人妻少妇嫩草av网站| 波多野结衣高清无吗| 国产精品二区激情视频| 一夜夜www| 久久久精品国产亚洲av高清涩受| 女人被狂操c到高潮| 婷婷丁香在线五月| 亚洲成av人片免费观看| 不卡一级毛片| 后天国语完整版免费观看| 亚洲午夜精品一区,二区,三区| 国产黄色小视频在线观看| 免费高清在线观看日韩| 18禁裸乳无遮挡免费网站照片 | 最新美女视频免费是黄的| 成人永久免费在线观看视频| 欧美三级亚洲精品| 亚洲美女黄片视频| 久久久久久国产a免费观看| 99久久无色码亚洲精品果冻| 非洲黑人性xxxx精品又粗又长| 美女扒开内裤让男人捅视频| 欧美激情久久久久久爽电影| 男女午夜视频在线观看| www.999成人在线观看| av超薄肉色丝袜交足视频| 欧美中文日本在线观看视频| 亚洲中文日韩欧美视频| 夜夜看夜夜爽夜夜摸| 宅男免费午夜| 69av精品久久久久久| 色综合欧美亚洲国产小说| 香蕉久久夜色| 神马国产精品三级电影在线观看 | 久热这里只有精品99| 午夜亚洲福利在线播放| 国产精华一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲自偷自拍图片 自拍| 嫩草影视91久久| 久久亚洲精品不卡| 99久久无色码亚洲精品果冻| 免费看日本二区| 又黄又粗又硬又大视频| 神马国产精品三级电影在线观看 | 男女下面进入的视频免费午夜 | 成人手机av| 日韩欧美在线二视频| 国产伦在线观看视频一区| 精品电影一区二区在线| 长腿黑丝高跟| 给我免费播放毛片高清在线观看| 亚洲第一电影网av| 搞女人的毛片| 成人国产一区最新在线观看| АⅤ资源中文在线天堂| 制服诱惑二区| 精品国产乱子伦一区二区三区| 国产精品98久久久久久宅男小说| 午夜福利18| 久久久国产精品麻豆| 久久香蕉激情| 精品国内亚洲2022精品成人| 一二三四在线观看免费中文在| 国产男靠女视频免费网站| 19禁男女啪啪无遮挡网站| 久久久久国内视频| 午夜久久久在线观看| 又黄又爽又免费观看的视频| 国产男靠女视频免费网站| 在线天堂中文资源库| 后天国语完整版免费观看| 中文在线观看免费www的网站 | 男男h啪啪无遮挡| 欧美亚洲日本最大视频资源| 黄色女人牲交| 99国产精品一区二区蜜桃av| 中出人妻视频一区二区| 欧美乱码精品一区二区三区| 亚洲欧美日韩无卡精品| a级毛片a级免费在线| 制服诱惑二区| 国产精品 欧美亚洲| 又黄又爽又免费观看的视频| 巨乳人妻的诱惑在线观看| 亚洲精品中文字幕一二三四区| 99久久精品国产亚洲精品| 久久久久免费精品人妻一区二区 | 哪里可以看免费的av片| 久9热在线精品视频| 亚洲欧美日韩高清在线视频| 精品不卡国产一区二区三区| 婷婷六月久久综合丁香| 久久精品国产亚洲av高清一级| 久久久久久亚洲精品国产蜜桃av| 男男h啪啪无遮挡| 国产男靠女视频免费网站| 女性生殖器流出的白浆| 欧美日韩福利视频一区二区| 久久热在线av| 成年版毛片免费区| 久久精品91蜜桃| 天堂√8在线中文| 夜夜夜夜夜久久久久| 精品国产国语对白av| 国产在线观看jvid| 视频在线观看一区二区三区| 伦理电影免费视频| 国产午夜福利久久久久久| 美女高潮到喷水免费观看| 国产成人一区二区三区免费视频网站| 91九色精品人成在线观看| 亚洲成人精品中文字幕电影| 久久人妻福利社区极品人妻图片| 欧美中文日本在线观看视频| 少妇熟女aⅴ在线视频| 免费av毛片视频| 日韩有码中文字幕| 国产亚洲精品av在线| 久久狼人影院| 一边摸一边抽搐一进一小说| 日韩大尺度精品在线看网址| 精品电影一区二区在线| 香蕉丝袜av| 成人18禁高潮啪啪吃奶动态图| 免费在线观看影片大全网站| 成在线人永久免费视频| www国产在线视频色| 日韩精品中文字幕看吧| 美女高潮喷水抽搐中文字幕| 人人妻人人澡人人看| 少妇熟女aⅴ在线视频| av欧美777| 制服诱惑二区| 99久久99久久久精品蜜桃| 午夜福利在线在线| 一个人观看的视频www高清免费观看 | 国产成人精品无人区| 最新美女视频免费是黄的| 12—13女人毛片做爰片一| 黑丝袜美女国产一区| 91国产中文字幕| 一级毛片精品| 午夜福利欧美成人| 又大又爽又粗| 国产成人精品久久二区二区免费| 国产精品久久久久久亚洲av鲁大| 99久久无色码亚洲精品果冻| 窝窝影院91人妻| 丁香欧美五月| 又大又爽又粗| 精品卡一卡二卡四卡免费| 欧美黑人精品巨大| 麻豆国产av国片精品| 又黄又粗又硬又大视频| 国产一卡二卡三卡精品| 午夜老司机福利片| 成年版毛片免费区| 在线天堂中文资源库| 午夜激情福利司机影院| 99国产精品一区二区三区| avwww免费| av福利片在线| 亚洲午夜精品一区,二区,三区| 日本精品一区二区三区蜜桃| 日韩一卡2卡3卡4卡2021年| 日韩精品中文字幕看吧| 亚洲成av片中文字幕在线观看| 国产日本99.免费观看| 国产黄片美女视频| 成人免费观看视频高清| 成人亚洲精品av一区二区| 久久精品91蜜桃| 国内毛片毛片毛片毛片毛片| 中出人妻视频一区二区| 身体一侧抽搐| 国产黄色小视频在线观看| 欧美大码av| 人人妻人人澡欧美一区二区| 99riav亚洲国产免费| 中文资源天堂在线| 男女下面进入的视频免费午夜 | 制服人妻中文乱码| 最好的美女福利视频网| 日韩大码丰满熟妇| 色综合婷婷激情| 黄色女人牲交| bbb黄色大片| 国产精品一区二区精品视频观看| 亚洲精品粉嫩美女一区| 成熟少妇高潮喷水视频| 12—13女人毛片做爰片一| 啪啪无遮挡十八禁网站| 国产激情偷乱视频一区二区| 精品国产美女av久久久久小说| 两人在一起打扑克的视频| 亚洲国产精品合色在线| 中文字幕人妻丝袜一区二区| 女人被狂操c到高潮| 婷婷精品国产亚洲av| 久久久久久国产a免费观看| 正在播放国产对白刺激| 国产三级在线视频| 男人操女人黄网站| 好看av亚洲va欧美ⅴa在| 日韩精品免费视频一区二区三区| 好男人在线观看高清免费视频 | 俄罗斯特黄特色一大片| 黄色a级毛片大全视频| 97人妻精品一区二区三区麻豆 | 91老司机精品| 国产又色又爽无遮挡免费看| 久久午夜综合久久蜜桃| 国产亚洲精品一区二区www| 国产精品香港三级国产av潘金莲| 黄色片一级片一级黄色片| 国语自产精品视频在线第100页| 亚洲狠狠婷婷综合久久图片| 久久人妻av系列| 97人妻精品一区二区三区麻豆 | 午夜免费鲁丝| 美女午夜性视频免费| 女警被强在线播放| 午夜激情av网站| 叶爱在线成人免费视频播放| 精品一区二区三区av网在线观看| 亚洲国产精品999在线| 一进一出抽搐动态| 精品少妇一区二区三区视频日本电影| 亚洲九九香蕉| 免费在线观看日本一区| 日韩欧美一区二区三区在线观看| 久久久久国产一级毛片高清牌| 999久久久国产精品视频| 一本久久中文字幕| 99国产精品一区二区三区| 色综合站精品国产| 欧美久久黑人一区二区| 亚洲欧美日韩无卡精品| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品免费视频内射| 制服丝袜大香蕉在线| 啦啦啦观看免费观看视频高清| 亚洲国产看品久久| 在线看三级毛片| 亚洲成人久久性| 在线观看午夜福利视频| 成人国产综合亚洲| 91av网站免费观看| 啦啦啦韩国在线观看视频| 免费在线观看完整版高清| 欧美久久黑人一区二区| 久热这里只有精品99| 亚洲精品国产一区二区精华液| 久久精品夜夜夜夜夜久久蜜豆 | 最近最新中文字幕大全免费视频| 波多野结衣巨乳人妻| 一a级毛片在线观看| 久久久久久亚洲精品国产蜜桃av| 欧美一区二区精品小视频在线| 丝袜人妻中文字幕| 少妇熟女aⅴ在线视频| 国产精品爽爽va在线观看网站 | 免费在线观看视频国产中文字幕亚洲| 欧美激情极品国产一区二区三区| 久久热在线av| 少妇被粗大的猛进出69影院| 久久草成人影院| 神马国产精品三级电影在线观看 | 99精品久久久久人妻精品| 成人特级黄色片久久久久久久| 啪啪无遮挡十八禁网站| 黄色毛片三级朝国网站| 国产一区在线观看成人免费| 在线看三级毛片| 精品电影一区二区在线| 亚洲色图 男人天堂 中文字幕| 一二三四在线观看免费中文在| 久久精品国产亚洲av高清一级| 香蕉久久夜色| 露出奶头的视频| 国产精品野战在线观看| 亚洲久久久国产精品| 黄色a级毛片大全视频| 色综合亚洲欧美另类图片| 欧洲精品卡2卡3卡4卡5卡区| 日韩 欧美 亚洲 中文字幕| 久久草成人影院| 亚洲美女黄片视频| 在线看三级毛片| 99国产极品粉嫩在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲精品中文字幕在线视频| 一区二区三区精品91| 国产精品亚洲一级av第二区| 国产精品 国内视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲成人久久性| 成人午夜高清在线视频 | 亚洲av日韩精品久久久久久密| 亚洲精品av麻豆狂野| 成人免费观看视频高清| 色播在线永久视频| 黑丝袜美女国产一区| 国产熟女xx| 少妇裸体淫交视频免费看高清 | 国产日本99.免费观看| 亚洲av成人不卡在线观看播放网| 麻豆成人午夜福利视频| 久久久久久九九精品二区国产 | 1024手机看黄色片| 国产99白浆流出| 一级作爱视频免费观看| 午夜福利高清视频| 午夜老司机福利片| 男人舔奶头视频| aaaaa片日本免费| av中文乱码字幕在线| 欧美中文日本在线观看视频| 午夜免费成人在线视频| 精品熟女少妇八av免费久了| 好男人电影高清在线观看| 99久久国产精品久久久| 午夜福利高清视频| 精品无人区乱码1区二区| 午夜免费成人在线视频| 成人国语在线视频| 波多野结衣av一区二区av| 国产单亲对白刺激| 久久国产精品男人的天堂亚洲| 成年女人毛片免费观看观看9| 巨乳人妻的诱惑在线观看| 国产v大片淫在线免费观看| 亚洲第一av免费看| 欧洲精品卡2卡3卡4卡5卡区| 香蕉av资源在线| 国产人伦9x9x在线观看| 国产精品,欧美在线| 欧美久久黑人一区二区| 在线天堂中文资源库| 人人妻人人看人人澡| 免费看美女性在线毛片视频| 色婷婷久久久亚洲欧美| 母亲3免费完整高清在线观看| 一级a爱视频在线免费观看| 91国产中文字幕| 999精品在线视频| 99久久国产精品久久久| 国产野战对白在线观看| 91麻豆av在线| 久久精品国产亚洲av香蕉五月| 国产高清videossex| 99精品欧美一区二区三区四区| 啦啦啦韩国在线观看视频| 欧美激情极品国产一区二区三区| 色播在线永久视频| 51午夜福利影视在线观看| 国产精品98久久久久久宅男小说| 嫁个100分男人电影在线观看| 悠悠久久av| 精品一区二区三区四区五区乱码| 欧美av亚洲av综合av国产av| 亚洲av电影不卡..在线观看| 色综合亚洲欧美另类图片| 亚洲人成网站高清观看| 女生性感内裤真人,穿戴方法视频| 91在线观看av| 人成视频在线观看免费观看| 国产精品1区2区在线观看.| 亚洲成av人片免费观看| 日本免费一区二区三区高清不卡|