• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic analysis of spinning solar sails at deployment process

    2017-11-17 08:31:54XinxingZHANGChunyanZHOU
    CHINESE JOURNAL OF AERONAUTICS 2017年5期

    Xinxing ZHANG,Chunyan ZHOU

    School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

    Dynamic analysis of spinning solar sails at deployment process

    Xinxing ZHANG,Chunyan ZHOU*

    School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

    The spinning deployment process of solar sails is analyzed in this study.A simplified model is established by considering the out-of-plane and in-plane motions of solar sails.The influences of structure parameters,initial conditions,and feedback control parameters are also analyzed.A method to build the geometric model of a solar sail is presented by analyzing the folding process of solar sails.Thefinite element model of solar sails is the n established,which contains continuous cables and sail membranes.The dynamics of the second-stage deployment of solar sails are simulated by using ABAQUS software.The influences of the rotational speed and out-of-plane movement of the hub are analyzed by different tip masses,initial velocities,and control parameters.Compared with the results from the oretical models,simulation results show good agreements.

    1.Introduction

    Solar sails have gained widespread attention for several decades because of the ir significant advantages,including small package volume,low energy consumption,and low cost.1–4The development of a solar sail spacecraft involves a wide range of technologies,and the manner in which to deploy a large area sail in space is a key design issue.5Among the proposed several deployment methods,the spinning deployment of solar sails is an ideal technique that utilizes centrifugal force to deploy sail membranes.6As a successful case,the Japan Aerospace Exploration Agency launched a spinningdeployable spacecraft named IKAROS on May 21,2010.7IKAROS succeeded in deploying a 20 m span solar sail from a wrapped status and managed to pass by Venus with the help of solar radiation pressure.8

    Given the high flexibility of the membrane structure,rigorous control strategies must be used to avoid the entanglements or yo-yo-like oscillations caused by the repeated coiling and uncoiling of membranes to and from the hub.9–11Gardsback et al.12reviewed the existing control strategies for the centrifugal deployment of space webs.They concluded that stable deployment can be obtained by using the method of applying torque to the center hub,namely,the Melnikov–Koshelev law.10Gardsback and Tibert presented a simplified hubcable-mass model to qualitatively analyze the deployment dynamics in which out-of-plane motions were neglected.13Finite Element(FE)calculation using LSDYNA was proposed to simulate the dynamical response of the real deployment system.14Shirasawa et al.applied the Multi-Particle Method(MPM)to the dynamic analysis of IKAROS,and approximated the solar membrane by using the network of springs with lumped masses.15Haraguchi et al.used the model of MPM to validate the control laws for the spinning deployment of a solar sail system.16,17

    A two-step deployment strategy was applied for the IKAROS.First,the four folded arms were slowly released from the tip by rotating the stopper relative to the hub.At the second stage,the four stoppers were released to deploy the entire membrane.A large disturbance at the beginning of the second-stage deployment was observed,which caused significant oscillations during the second-stage deployment.18Miyazaki et al.developed an FE model to analyze the nutation motion at firststage deployment.18,19Severe out-of-plane oscillations were also observed at the beginning of the second stage during the ground simulation tests conducted by Zhou et al.20

    This study aims to analyze the deployment dynamics during the second stage under the initial perturbation of the instantaneous spreading out of the membrane.Following the work of Gardsback and Tibert13,a simplified hub-cable-mass model,including out-of-plane motion,is established to qualitatively analyze the effect of control parameters.An FE model of the solar sail is the n established.This model contains continuous cables and sail membranes.The second-stage deployment of a solar sail is simulated by using ABAQUS software.The influences of the rotational speed and out-of-plane movement of the hub are analyzed under different tip masses,initial velocities,and other factors.

    2.Analytical model analysis

    At the end offirst-stage deployment,the membrane arms togethe r with the center hub rotate stably with the same rotational speed.At the beginning of the second-stage deployment,the membrane is instantaneously deployed when the stopper is released.For the conservation of angular momentum,the rotational speed of the membrane becomes lower than that of the center hub,thus causing the in-plane oscillations of the system.When the membrane is spread from a zigzag folding pattern to a plane,out-of-plane motion is produced.To stabilize the deploying process,the system is controlled by applying a torque to the center hub with torque control law.This law implies that the torque increases when the hub angular velocity decreases and vice versa.To estimate the oscillations and control method,a simple analytical model is used to describe the deployment dynamics qualitatively.The development of our analytical model follows the model presented by Gardsback and Tibert.13The out-of-plane motions are included in our analytical model.The following assumptions are also made:

    Fig.1 Analytical model for a point mass.

    (1)The mass of the hub is higher than the sum of attached membrane,cable,and tip mass;hence,the hub is assumed fixed except its rational freedom in OZ axis.

    (2)The motion of the membrane,cable,and tip mass is dominated by the cable and tip mass.The effect of membrane motion is equivalent to the additional mass at cable tip.

    (3)Each part of the sail motion is the same(symmetric).

    The analytical model is described in Fig.1.With the assumption of symmetric motion,only one part of the sail is considered for analysis.The entire sail consists offour parts.The coordinate system OXYZ is fixed with the center hub of the solar sail.In this model,the center hub is only free in its rotational motion by the OZ axis.The distancefrom the tip to the center hub edge is the length of the cable.This model can describe the relative position and motion of the center and sails by lengths,angles,and velocities.The system can be described by three degrees offreedom,the angular velocity of center hub ω,the relative in-plane rotational angle of the cable φ,and the out-of-plane rotational angle ψ.In this study,r is the hub radius and L is the cable length.

    2.1.Equations of system dynamics

    According to Lagrange’s law of motion,the dynamic equations of the system can be described as follows20:where g is the gravity coefficient for ground tests,which is zero on orbit;m is the equivalent mass of the membrane,cable,and tip mass system,and F is the tension force in the cable.The equivalent mass is determined by total inertial moment of the membrane,cable,and tip mass system.

    During the deployment,an external moment M is applied to the center hub by the actuators that are installed on the hub edge.Accordingly,the hub dynamic equation can be described as

    where J is the moment ofinertia of the center hub,M is a control torque,n is the number of cables.An appropriate M should be set to ensure successful and steady deployment.Several control strategies have been discussed.13One of the successful control laws involve increasing the torque applied to the hub as the hub angular velocity decreases;this approach was proposed by Melnikov and Koshelev for the deployment of the Znamya-2 reflector.10In our model,the external torque M applied to the hub is correlated with the error of the hub current angular velocity:

    where k is the proportional gain,and ω*is the target hub rotational speed.

    To analyze the effect of physical parameters on the dynamic response of the system,the non-dimensional parameters are introduced as follows:

    Thus,the dynamics of this system are described as follows:

    2.2.Results of numerical simulation

    Numerical calculations are conducted to assess the effect of design parameters on the dynamic stability of the system,such as the torque and power requirements for the given deployment times with different masses and sizes of the hub and membrane.For the experimental system used by Zhou et al.20,the radius of the center hub is r=0.075 m,tip mass is m=0.02 kg,the moment ofinertia of the center hub is J=0.0281 kg·m2,the number offolded arms is n=4,the length of the cables is L=0.66 m,the center hub is controlled by a motor,the target rotational speed is set as ω*=20 rad/s,and the control gain is set as k=-0.06 N ·m ·s/rad.Thus,the non-dimensional parameters defined by Eq.(6)are=62.44,=8.8,and=-6.67.The dynamic response of the system can be calculated from Eqs.(7)–(10).

    2.2.1.Effect of target hub rotational speed

    ~ω0denotes the ratio of the hub speed at the beginning of the second-stage deployment to that of the target speed at the end of deployment.Fig.2 shows the curves of the in-plane relative rotational anglewith four different initial angular velocityvalues.When=0.1,the angle parameter~φ increases unacceptably,and thus sails coil on the hub in the deployment process.Hence,target hub rotational speed lower than the initial speed should be considered for the control of the second-stage deployment.

    2.2.2.Effect ofinitial relative rotational speed of membrane on that of hub

    At the beginning of the second-stage deployment,as stopper is released,the membrane is instantaneously deployed.One of the aftereffects is that the rotational speed of the membrane becomes lower than that of center hub,which means a negative initial value of.Fig.3 shows the curves ofin-plane relative rotational anglewith four different initial values ofWhen the initialis as large as=-8,the membrane will become stable at=2π,thus entangling the whole system.Notably,when=-1,increases rapidly with time,and thus sails coil forward on the hub in the deployment process.Therefore,the initial in-plane relative rotational speed is important for system dynamics.Careful control parameters should be designed with a full consideration of the relative initial rotation caused by the sudden spread out of membrane.

    Fig.2 Response of- under different values of=8.8,=-6.67=62.44=0,=-0.628=0.048=-0.314).

    Fig.3 Response of under different values of=8.8,=-6.67,=62.44,=0.5,=0,=0.048,=-0.314).

    2.2.3.Effect ofinitial out-of-plane angle

    The other aftereffect of the sudden spread out of the membrane is small out-of-plane disturbance.Figs.4 and 5 show the curves of the in-plane and out-of-plane relative motions with three different initial values of.The results of stability analysis are confirmed by the calculation assumption that the out-of-plane motion has a small influence on in-plane motion and the torque control on the hub cannot damp out-of-plane motion.

    3.Finite element analysis

    The qualitative dynamic prediction of the deployment process can be studied by analyzing the analytical model,and an accurate prediction should be studied in the FE method.The interactions between four petals of membranes can be included by FE Analysis(FEA).

    A 3D FE model including a center hub,membrane,cables,and four corner masses was implemented.The center hub was constrained to rotate around its center axis;hence,the center hub motion was one-dimensional.The geometry and connectivity of the node and element were generated in ABAQUS.The equations of motion were the n solved in ABAQUS by using the central-difference method for explicit time integration.The main differences compared with the analytical model are that the influence of the membrane motion can be studied with the FE model and that the cables are unnecessarily straight during the deployment.

    Fig.4 Response of- and- with different values of=8.8,=0.5,=62.44=0.5=0.5,=-0.628,=0.048).

    Fig.5 Response of with different values of=8.8,=0.5=62.44=0.5=0.5=-0.628=0.048).

    3.1.Model setup for folded membrane

    The accuracy of an FE model is strongly dependent on how well the modeled folded configuration coincides with the real one.A good geometry model must befirst obtained before the finite analysis of the deployment processes.As shown in Fig.6,a square plane OABC in plane OXY is folded to OA′B′C′.The constraints in the folding process are as follows:(A)Point A is in plane OXZ;(B)Point B is in plane X=Y;(C)Point C is in plane OYZ.

    The relationship of angle θ and α can be expressed as follows:

    According to the relationship of angle θ and α and the dimensions of plane OABC,the position offolded plane OA′B′can be obtained,which is shown in Fig.6.Position of the ith folding point in OXZ planeis determined by

    Fig.6 Folding process of a square plane.

    where Δl is the width of each folded strip.And position of the ith folding point in X=Z planeis determined by

    Fig.7 Folding process of solar sail model.

    Fig.8 Establishment process of solar sail model.

    Table 1 Structural properties of solar sail model.

    Fig.9 Comparison of experimental and simulation results for the second-stage deployment process.

    By referring to several similar schemes of solar sail folded models8,9,a folding scheme is shown in Fig.7.

    Fig.10 Curves of hub rotational speed for free deployment with different initial rotational speeds(tip mass=0.1 kg).

    Fig.11 Curves of hub rotational speed for free deployment with different tip masses(ω0=10 rad/s).

    Fig.12 Scheme of positions of tip masses.

    According to the proposed fold scheme,a solar sail model is established,as shown in Fig.8.This model includes a center hub,cables,sail membranes,and tip masses.In this model,a cable is used to connect the sail membrane and center hub.Moreover,four tip masses are present and each of the m is located at the corner of the membrane.

    This model is not folded completely and can be used to describe the initial status for the second-stage deployment.The center hub is modeled as a cylinder with rigid material,cables are modeled as beam element,and sail membrane is modeled as shell element.The details of the FE model are listed in Table 1.

    Fig.13 Time history of φ1to φ4with various initial rotational speeds(tip mass=0.1 kg).

    Simulations have been conducted by applying ABAQUS via the explicit integration method.During the analysis,the contact of each part is calculated by using the general contact method supported by ABAQUS.

    An FEA model is established according to ground tests conducted by the same research group of the present study.20As shown in Fig.9,simulation results can simulate high comparability for the second-stage deployment process.

    3.2.FEA results for free deployment without control

    Contrary to the the oretical straight cable assumption,severe oscillations are observed because of the elastic retrieval and stretching of the cable with tip mass before the system becomes stable.For a 0.1 kg tip mass,Fig.10 shows the time history curves of the hub rotational speed with different initial rotational speeds at the end of first-stage deployment.Higher initial rotational speeds lead to higher vibrations.Fig.11 shows the time history curves of the hub rotational speed with different tip masses.The oscillations become more severe with heavier tip mass.

    During the deployment process,the relative rotational angle of the membrane to the hub φ and out-of-plane motion angle ψ can be obtained by positioning the tip masses relative to the hub.Fig.12 shows the positions of four tip masses P1to P4.φ1to φ4are the relative rotational angles between the tip mass and the hub.Z1to Z4are the out-of-plane displacements of the four tip masses.

    Figs.13 and 14 demonstrate the in-plane rotational angles φ1to φ4with various initial rotational speeds and various tip masses,respectively.Fig.15 shows the out-of-plane positions of the tip masses with various initial rotational speeds.Both the in-plane and out-of-plane vibrations increase with higher initial rotational angle and heavier tip masses because more elastic energy is stored in the cable.Because of gravitational acceleration,out-of-plane motion appears at the end of first stage.Small amplitude vibrations continue after the severe flexible vibrations of the cable damping off.However,for smaller initial rotational angle and lighter tip masses,the motions of the membrane lose synchronization because the motion of the system is dominated by unordered flexible waves in the membrane at low centrifugal forces.

    Fig.16 demonstrates that out-of-plane vibration will not decay with time;this finding agrees with the analytical estimations in the previous section.Fig.16 shows out-of-plane vibration frequencies with various stable vibration speeds of the system ωstable.The out-of-plane vibration frequencies are near the stable vibration speed of the system ωstable;this finding also agrees with the theoretical estimation and experimental results.20

    Fig.14 Time history of φ1to φ4with various tip masses(ω0=10 rad/s).

    Fig.15 Time history of Z1to Z4with various initial rotational speeds(tip mass=0.2 kg).

    Fig.16 Out-of-plane vibration frequencies vs stable vibration speed of system ωstable.

    3.3.FEA results for deployment with control

    To evaluate the effect of the control method proposed in Section 2,a torque is applied to the center hub with torque control law.This law implies that the torque increases when the hub angular velocity decreases and vice versa.This analysis is realized in ABAQUS with subprogram VUAMP.

    Fig.17 Time history of hub rotational speed with different control gains k(tip mass=0.2 kg,ω0=20 rad/s,ω*=15 rad/s).

    A torque M=k(ω - ω*)is applied to the hub.Fig.17 shows the motion of a hub with different proportional gains k.Simulation results reveal that the in-plane vibration will continue for a long time if no control is applied.The in-plane vibration amplitude is lower with torque control.Furthermore,high proportional gains k indicate that the in-plane motion is suppressed quickly.

    4.Conclusions and discussion

    In this paper,a simplified model considering the out-of-plane motion of a solar sail is established to qualitatively analyze the dynamics of spinning solar sail at the second stage.The influences of structure parameters,initial conditions,and feedback control parameters are also analyzed to stabilize the deploying process.Theoretical analysis reveals that ratio of membrane size to hub size is important for ensuring successful deployment.An excessive size ratio will induce severe yo-yolike vibration in the system even with torque control.Moreover,a high ratio of membrane moment ofinertia to that of the hub may cause long in-plane vibration time even with torque control.For small initial perturbations,in-plane vibration may be ceased by the torque control applied to the hub,whereas out-of-plane vibration will succeed without a special damping strategy.Lower target rotational speed than the initial hub speed is preferred to obtain stable control.Notably,for finite initial in-plane relative rotation,the membrane may be secured to the hub with some combination of control parameters.

    The second-stage deployment of the solar sail is simulated by using ABAQUS software.Thefolded configuration of the solar sail membrane model is established first,and dynamic simulations are conducted with explicit solutions.Severe vibration caused by the elastic flexibility of the cable system is observed.Non-synchronous motions of the four petals appear for small initial rotational speed and tip mass.

    Interestingly,cables made of woven wire strands have small elastic flexibility,and this type is often used in the design of solar sail.The dynamic performance of the cable material may influence the dynamics of spinning solar sail deployment,which should be analyzed in future study.

    Acknowledgments

    This study was supported in part by the National Natural Science Foundation of China(Nos.11290151 and 51075032).

    1.Catharine CF,Stoakley DM,Clair AK.Molecularly oriented films for space applications. High Perform Polym 1999;11(1):145–56.

    2.Darooka DK,Jensen DW.Advanced space structure concepts and the ir development.Proceedings of the 42th AIAA/ASME/ASCE/AHS/ASC structures,structural dynamics,and materials conference and exhibit;2001 Apr.16–19;Seattle,USA.Reston:AIAA;2001.p.1257.

    3.Hiroshi F,Makiko N,Satoshi M,Jodoi D,Terada Y,Takadamak K.Concept of inflatable tensegrity for large space structures.Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC structures,structural dynamics,and materials conference and exhibit;2006 May 1–4;Newport,Rhode Island.Reston:AIAA;2006.p.1700.

    4.Nakasuka S,Aoki T,Ikeda I,Tsuda Y,Kawakatsu Y.‘Furoshiki satellite”—A large membrane structure as a novel space system.Acta Astronaut 2001;48(5–12):461–8.

    5.Macdonald M.Advances in solar sailing.Chichester:Springer Praxis Books;2014.p.961-76.

    6.Matunaga S,Yabe H,Nakaya K,Iai M,Omagari K,Mori O.Membrane deployment for spinning formation flight solar sail.Proceedings of the 14th ISAS/JAXA workshop on astrodynamics and flight mechanics;2004 July;Tokyo,Japan.Tokyo:Japan Aerospace Exploration Agency;2004.p.A-11.

    7.Mori O,Sawada H,Funase R,Morimoto M,Endo T,Yamamoto T,et al.First solar power sail demonstration by IKAROS.Trans Japanese Soc Artif Intell,Aerospace Technol Japan 2011;8(27):425–31.

    8.Tsuda Y,Mori O,Funase R,Sawada H,Yamamoto T,Saiki T,et al.Flight status of IKAROS deep space solar sail demonstrator.Acta Astronaut 2011;69(9):833–40.

    9.Hedgepeth JM.Dynamics of a large spin-stiffened deployable paraboloidal antenna.J Spacecraft Rock 1970;7(9):1043–8.

    10.Melnikov VM,Koshelev VA.Large space structures formed by centrifugal forces.1st ed.New York:CRC Press;1998.p.21–61.

    11.Miyazaki Y,Iwai Y.Dynamics model of solar sail membrane.14th workshop on astrodynamics and flight mechanics;2004 Jul 26–27;Kanagawa,Japan.Tokyo:Institute of Space and Astronautical Science,Japan Aerospace Exploration Agency;2005.p.32–7.

    12.Gardsback M,Tibert G,Izzo D.Design considerations and deployment simulations of spinning space webs.48th AIAA/ASME/ASCE/AHS/ASC structures,structuraldynamics,and materials conference;2007 Apr.23–26;Honolulu,Hawaii.Reston:AIAA;2007.p.1503–12.

    13.Gardsback M,Tibert G.Deployment control of spinning space webs.J Guid Control Dynam 2009;32(1):40–50.

    14.Gardsback M,Tibert G.Optimal deployment control of spinning space webs and membranes.J Guid Control Dynam 2009;32(5):1519–30.

    15.Shirasawa Y,Mori O,Miyazaki Y,Miyazaki Y,Sakamoto H,Hasome M,et al.Analysis of membrane dynamics using multi-particle model for solar sail demonstrator ‘IKAROS”.Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC structure,structural dynamics,and materials conference;2011 Apr.4–7;Denver,USA.Reston:AIAA;2011.p.1890.

    16.Haraguchi D,Sakamoto H,Shirasawa Y,Mori O.Design criteria for spin deployment of gossamer structures considering nutation dynamics.Proceedings of AIAA guidance,navigation,and control conference;2010 Aug 2–5;Toronto,Canada.Reston:AIAA;2010.p.8072.

    17.Sakamoto H,Shirasawa Y,Haraguchi D,Sawada H,Mori O.A spin up control schemefor contingency deployment of the sailcraft IKAROS.Proceedings of 52nd AIAA/ASME/ASCE/AHS/ASC structures,structural dynamics and materials conference;2011 Apr.4–7;Denver,USA.Reston:AIAA;2011.p.1892.

    18.Sakamoto H,Miyazaki Y,Mori O.Transient dynamic analysis of gossamer-appendage deployment using nonlinear finite element method.J Spacecraft Rockets 2011;48(5):881–90.

    19.Miyazaki Y,Shirasawa Y,Mori O,Sawada H.Finite element analysis of deployment of gossamer space structure.Proceedings of the ECCOMAS the matic conference on multibody dynamics 2011;2011 Jul 4–7;Brussels,Belgium.Melville:International Center for Numerical Methods in Engineering;2011.

    20.Zhou XJ,Zhou CY,Zhang XX,Hu HY.Ground simulation tests of spinning deployment dynamics of a solar sail.J Vib Eng 2015;28(2):175–82[Chinese].

    16 June 2016;revised 3 March 2017;accepted 25 May 2017

    Available online 23 August 2017

    Deployment;

    Dynamics;

    Solar sail;

    Spinning;

    Stability

    *Corresponding author.

    E-mail address:cyzhou@bit.edu.cn(C.ZHOU).

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2017.08.006

    1000-9361?2017 Production and hosting by Elsevier Ltd.on behalf of Chinese Society of Aeronautics and Astronautics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?2017 Production and hosting by Elsevier Ltd.on behalf of Chinese Society of Aeronautics and Astronautics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    性色avwww在线观看| 成人亚洲精品av一区二区| 一夜夜www| av在线天堂中文字幕| 亚洲18禁久久av| 七月丁香在线播放| 亚洲精品日韩在线中文字幕| av在线蜜桃| 日本熟妇午夜| 色综合色国产| 成人欧美大片| 国产又色又爽无遮挡免| 欧美97在线视频| 99热精品在线国产| 免费人成在线观看视频色| 午夜久久久久精精品| 又黄又爽又刺激的免费视频.| 亚洲av电影不卡..在线观看| 欧美另类亚洲清纯唯美| 啦啦啦啦在线视频资源| 非洲黑人性xxxx精品又粗又长| 久久国内精品自在自线图片| 一边摸一边抽搐一进一小说| 国产免费视频播放在线视频 | 国产亚洲精品久久久com| 2021天堂中文幕一二区在线观| 国产免费福利视频在线观看| 欧美区成人在线视频| 亚洲经典国产精华液单| 九草在线视频观看| 成人高潮视频无遮挡免费网站| 欧美激情国产日韩精品一区| 日韩成人伦理影院| 欧美日韩国产亚洲二区| 内射极品少妇av片p| 伦精品一区二区三区| 亚洲国产日韩欧美精品在线观看| 国产午夜精品一二区理论片| 亚洲人成网站在线观看播放| 欧美潮喷喷水| 天堂网av新在线| 久99久视频精品免费| 综合色丁香网| 免费不卡的大黄色大毛片视频在线观看 | 97在线视频观看| 色噜噜av男人的天堂激情| av播播在线观看一区| 日本午夜av视频| av国产免费在线观看| 久久婷婷人人爽人人干人人爱| 国产一区亚洲一区在线观看| 国产精品三级大全| 国产av不卡久久| 久久精品影院6| 黑人高潮一二区| 国内揄拍国产精品人妻在线| 亚洲av成人精品一二三区| av免费观看日本| 免费播放大片免费观看视频在线观看 | av在线蜜桃| 婷婷色麻豆天堂久久 | 亚洲欧美一区二区三区国产| 亚洲国产成人一精品久久久| av在线老鸭窝| 国产又黄又爽又无遮挡在线| 国产在线一区二区三区精 | 白带黄色成豆腐渣| 国产高清不卡午夜福利| 亚洲色图av天堂| 三级男女做爰猛烈吃奶摸视频| 精品国产露脸久久av麻豆 | 又爽又黄a免费视频| 国产成人a区在线观看| 天堂影院成人在线观看| 亚洲在线自拍视频| av专区在线播放| 国产精品人妻久久久久久| 91精品一卡2卡3卡4卡| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人一区二区在线| 黄色配什么色好看| 色综合色国产| 在线a可以看的网站| 免费观看在线日韩| 中文亚洲av片在线观看爽| 日韩欧美 国产精品| 91午夜精品亚洲一区二区三区| 国产精品福利在线免费观看| 亚洲欧美精品专区久久| 美女大奶头视频| 国产不卡一卡二| 美女黄网站色视频| 九色成人免费人妻av| 我要看日韩黄色一级片| 日本爱情动作片www.在线观看| 国产精品久久久久久av不卡| 成人性生交大片免费视频hd| 国产片特级美女逼逼视频| 乱系列少妇在线播放| 桃色一区二区三区在线观看| 晚上一个人看的免费电影| 亚洲美女搞黄在线观看| 久久精品国产亚洲av天美| 黄色欧美视频在线观看| 国产精品野战在线观看| 国产亚洲精品av在线| 伦理电影大哥的女人| 精品国产露脸久久av麻豆 | 观看免费一级毛片| 精品久久久噜噜| 麻豆一二三区av精品| 黄色配什么色好看| 久久精品91蜜桃| 国产高潮美女av| 男女下面进入的视频免费午夜| 久久久久久久久大av| 中国国产av一级| av卡一久久| 亚洲四区av| 我要搜黄色片| 精品久久久久久久末码| 老司机影院成人| 又爽又黄无遮挡网站| 99久久成人亚洲精品观看| 免费一级毛片在线播放高清视频| 两性午夜刺激爽爽歪歪视频在线观看| 成年女人看的毛片在线观看| 国产亚洲5aaaaa淫片| 精品久久久久久电影网 | 成人亚洲精品av一区二区| 国产日韩欧美在线精品| 午夜视频国产福利| 一级黄片播放器| 欧美丝袜亚洲另类| 女的被弄到高潮叫床怎么办| 亚洲在线观看片| 看免费成人av毛片| 亚洲第一区二区三区不卡| 免费观看a级毛片全部| 免费av毛片视频| 床上黄色一级片| 卡戴珊不雅视频在线播放| 99久久精品国产国产毛片| 极品教师在线视频| 亚洲av成人精品一区久久| 两性午夜刺激爽爽歪歪视频在线观看| 国产一级毛片七仙女欲春2| 97人妻精品一区二区三区麻豆| 九九热线精品视视频播放| av卡一久久| 国产美女午夜福利| 极品教师在线视频| 一级毛片aaaaaa免费看小| 一个人看视频在线观看www免费| 亚洲av日韩在线播放| 成人国产麻豆网| 男女边吃奶边做爰视频| 成人鲁丝片一二三区免费| 亚洲欧美中文字幕日韩二区| 免费在线观看成人毛片| av线在线观看网站| 免费av观看视频| 欧美日韩综合久久久久久| 村上凉子中文字幕在线| 国产高清视频在线观看网站| 亚洲欧美日韩卡通动漫| 麻豆成人午夜福利视频| 99久久成人亚洲精品观看| 欧美人与善性xxx| 国内少妇人妻偷人精品xxx网站| 亚洲怡红院男人天堂| 视频中文字幕在线观看| 亚洲国产精品成人久久小说| 成年av动漫网址| 久久亚洲国产成人精品v| 国产精品一区二区性色av| 久久婷婷人人爽人人干人人爱| 亚洲最大成人av| 国产精品嫩草影院av在线观看| 国产v大片淫在线免费观看| 成人综合一区亚洲| 在线观看66精品国产| 人人妻人人澡欧美一区二区| 日本猛色少妇xxxxx猛交久久| 亚洲高清免费不卡视频| 人妻系列 视频| 免费一级毛片在线播放高清视频| 看十八女毛片水多多多| 2022亚洲国产成人精品| 五月玫瑰六月丁香| 岛国在线免费视频观看| 麻豆乱淫一区二区| 久久久久久久亚洲中文字幕| 中文资源天堂在线| 寂寞人妻少妇视频99o| 深夜a级毛片| 亚洲18禁久久av| 亚洲aⅴ乱码一区二区在线播放| 午夜老司机福利剧场| 午夜福利成人在线免费观看| 亚洲成av人片在线播放无| 国产成人精品久久久久久| 九九久久精品国产亚洲av麻豆| 日本av手机在线免费观看| 99热6这里只有精品| 成人美女网站在线观看视频| 老司机影院毛片| 欧美日韩在线观看h| 久久久精品欧美日韩精品| 国产精品熟女久久久久浪| 九九爱精品视频在线观看| 久久精品国产亚洲av涩爱| 日韩一本色道免费dvd| 国产高清视频在线观看网站| 日韩av在线大香蕉| 日本黄色片子视频| 国产午夜精品一二区理论片| 搞女人的毛片| 国产午夜精品久久久久久一区二区三区| av免费在线看不卡| 国产精品久久视频播放| 少妇人妻精品综合一区二区| 99热网站在线观看| 国产精品熟女久久久久浪| 亚洲成av人片在线播放无| 免费观看a级毛片全部| 男女视频在线观看网站免费| 在线播放国产精品三级| 亚洲av日韩在线播放| 最近视频中文字幕2019在线8| 精品99又大又爽又粗少妇毛片| 日本熟妇午夜| 中文字幕免费在线视频6| 一级黄色大片毛片| 国产精品人妻久久久影院| 狂野欧美白嫩少妇大欣赏| 特级一级黄色大片| 日日撸夜夜添| 99久国产av精品国产电影| 久久久久久久久中文| 神马国产精品三级电影在线观看| 成人漫画全彩无遮挡| 久热久热在线精品观看| 国产伦理片在线播放av一区| 欧美bdsm另类| av国产久精品久网站免费入址| 中文字幕人妻熟人妻熟丝袜美| 一个人看的www免费观看视频| 高清日韩中文字幕在线| 日日摸夜夜添夜夜爱| 国产精品一区www在线观看| 男女国产视频网站| 精品久久久久久久末码| 亚洲图色成人| 一个人看的www免费观看视频| 久久久久精品久久久久真实原创| 亚洲国产精品成人综合色| 久久久国产成人精品二区| 欧美日韩国产亚洲二区| 国产真实伦视频高清在线观看| 一个人免费在线观看电影| 超碰97精品在线观看| 在线播放无遮挡| 日韩精品青青久久久久久| 欧美性猛交黑人性爽| 在线免费十八禁| av专区在线播放| av在线观看视频网站免费| 免费观看人在逋| 国产精品蜜桃在线观看| 国产精品国产高清国产av| 看非洲黑人一级黄片| 嫩草影院精品99| 久久久久性生活片| 久久精品国产亚洲av涩爱| 少妇人妻一区二区三区视频| 一级毛片久久久久久久久女| 亚洲一区高清亚洲精品| 国产亚洲精品av在线| 亚洲国产精品sss在线观看| 校园人妻丝袜中文字幕| 国产单亲对白刺激| 色综合色国产| 欧美日韩精品成人综合77777| 免费观看性生交大片5| 啦啦啦啦在线视频资源| 少妇熟女aⅴ在线视频| av在线观看视频网站免费| 久久综合国产亚洲精品| 欧美成人免费av一区二区三区| 少妇熟女aⅴ在线视频| 26uuu在线亚洲综合色| 美女内射精品一级片tv| 国产精品麻豆人妻色哟哟久久 | 极品教师在线视频| 国产精品99久久久久久久久| eeuss影院久久| 免费观看性生交大片5| 免费看日本二区| 精品酒店卫生间| 七月丁香在线播放| 毛片女人毛片| 寂寞人妻少妇视频99o| 亚洲自偷自拍三级| 国产淫片久久久久久久久| 欧美潮喷喷水| 国产三级中文精品| 青青草视频在线视频观看| 国产精品一二三区在线看| 精品少妇黑人巨大在线播放 | 国产精品伦人一区二区| 日韩国内少妇激情av| 热99在线观看视频| 亚洲最大成人手机在线| 日韩视频在线欧美| 日本免费一区二区三区高清不卡| 亚洲国产欧美人成| 欧美3d第一页| 国产伦在线观看视频一区| 日韩精品有码人妻一区| 午夜福利视频1000在线观看| 中文字幕久久专区| 国产精品国产三级专区第一集| av国产免费在线观看| 99在线人妻在线中文字幕| 精品人妻熟女av久视频| 久久久久久久久久成人| 亚洲美女视频黄频| videossex国产| 男女那种视频在线观看| 日本黄大片高清| 欧美性感艳星| 亚洲av电影不卡..在线观看| 亚洲电影在线观看av| 欧美一区二区国产精品久久精品| 久久久久性生活片| 免费av不卡在线播放| 亚洲精品乱久久久久久| 在线免费十八禁| 色5月婷婷丁香| 日本wwww免费看| 亚洲av免费高清在线观看| 波多野结衣巨乳人妻| 亚洲国产精品sss在线观看| 能在线免费看毛片的网站| 联通29元200g的流量卡| 成人毛片a级毛片在线播放| 菩萨蛮人人尽说江南好唐韦庄 | 精品久久久久久久久久久久久| 日本-黄色视频高清免费观看| 免费看美女性在线毛片视频| 亚洲美女搞黄在线观看| 永久网站在线| 麻豆国产97在线/欧美| 啦啦啦啦在线视频资源| av天堂中文字幕网| 精品久久国产蜜桃| 欧美极品一区二区三区四区| 99视频精品全部免费 在线| 成年女人永久免费观看视频| 麻豆乱淫一区二区| 亚洲色图av天堂| 麻豆国产97在线/欧美| 亚洲欧美精品综合久久99| 三级经典国产精品| 99久久中文字幕三级久久日本| 好男人在线观看高清免费视频| 久久久久免费精品人妻一区二区| 午夜a级毛片| 久久久国产成人免费| 不卡视频在线观看欧美| 99久久精品热视频| 国产精品嫩草影院av在线观看| 午夜免费男女啪啪视频观看| 亚洲自拍偷在线| 午夜福利视频1000在线观看| 在线播放无遮挡| 亚洲国产精品sss在线观看| 插阴视频在线观看视频| 国产精品电影一区二区三区| 亚洲精品成人久久久久久| 插阴视频在线观看视频| 欧美高清成人免费视频www| 少妇丰满av| 国产亚洲精品久久久com| 国产午夜精品一二区理论片| 九九久久精品国产亚洲av麻豆| 国产精品熟女久久久久浪| 日韩国内少妇激情av| 免费不卡的大黄色大毛片视频在线观看 | 97人妻精品一区二区三区麻豆| 六月丁香七月| 欧美潮喷喷水| 亚洲真实伦在线观看| 女人十人毛片免费观看3o分钟| 成人综合一区亚洲| 国产午夜精品久久久久久一区二区三区| 国模一区二区三区四区视频| 国产激情偷乱视频一区二区| 3wmmmm亚洲av在线观看| 一本一本综合久久| 久久亚洲国产成人精品v| 久久这里只有精品中国| 最近2019中文字幕mv第一页| 亚洲在久久综合| 亚洲精品色激情综合| 人妻系列 视频| 亚洲成人av在线免费| 久久久久久久午夜电影| 亚洲久久久久久中文字幕| 亚洲精品aⅴ在线观看| 一区二区三区四区激情视频| 中文字幕久久专区| 久久99蜜桃精品久久| 精品午夜福利在线看| 韩国av在线不卡| 国产免费福利视频在线观看| 久久精品久久精品一区二区三区| 精品人妻一区二区三区麻豆| 一区二区三区高清视频在线| 久久韩国三级中文字幕| 免费人成在线观看视频色| 最新中文字幕久久久久| 熟女人妻精品中文字幕| 国语自产精品视频在线第100页| 狂野欧美激情性xxxx在线观看| 国产精品永久免费网站| 国产高潮美女av| 欧美zozozo另类| 可以在线观看毛片的网站| 91av网一区二区| 成人性生交大片免费视频hd| 伦理电影大哥的女人| 久久精品综合一区二区三区| 日本三级黄在线观看| 中文天堂在线官网| 免费看美女性在线毛片视频| 精品久久久久久久末码| 如何舔出高潮| 中文资源天堂在线| 欧美一区二区精品小视频在线| 少妇的逼好多水| 国产亚洲精品久久久com| 麻豆精品久久久久久蜜桃| 国产精品久久电影中文字幕| 中国美白少妇内射xxxbb| 精品久久久久久电影网 | 国产成人精品久久久久久| 日日干狠狠操夜夜爽| 天堂av国产一区二区熟女人妻| 国产精品久久久久久精品电影| 青春草国产在线视频| 国产午夜福利久久久久久| 国产高清有码在线观看视频| 免费一级毛片在线播放高清视频| 长腿黑丝高跟| 国产黄色视频一区二区在线观看 | 久久6这里有精品| 成人美女网站在线观看视频| 搡女人真爽免费视频火全软件| 欧美色视频一区免费| 网址你懂的国产日韩在线| 偷拍熟女少妇极品色| 菩萨蛮人人尽说江南好唐韦庄 | 国产又色又爽无遮挡免| 亚洲av.av天堂| 91精品国产九色| 国产亚洲5aaaaa淫片| 男女边吃奶边做爰视频| 精品人妻一区二区三区麻豆| 国产一区二区三区av在线| 欧美色视频一区免费| av天堂中文字幕网| 观看美女的网站| 国产淫语在线视频| 色吧在线观看| 韩国av在线不卡| 两个人的视频大全免费| 久久午夜福利片| 精品少妇黑人巨大在线播放 | 国产欧美日韩精品一区二区| 七月丁香在线播放| 中文字幕免费在线视频6| 国产av在哪里看| 国产黄色视频一区二区在线观看 | 禁无遮挡网站| 免费无遮挡裸体视频| 一级毛片久久久久久久久女| 欧美变态另类bdsm刘玥| 欧美精品国产亚洲| av在线老鸭窝| 国产一区亚洲一区在线观看| 久久久久久久国产电影| 国产亚洲5aaaaa淫片| 国产麻豆成人av免费视频| 国产免费福利视频在线观看| 午夜老司机福利剧场| 国语自产精品视频在线第100页| 青青草视频在线视频观看| 午夜免费男女啪啪视频观看| 国产成人精品婷婷| 国产又黄又爽又无遮挡在线| 少妇被粗大猛烈的视频| 啦啦啦啦在线视频资源| 日本五十路高清| 国产精品一区www在线观看| 日本黄大片高清| 午夜精品在线福利| 亚洲电影在线观看av| 亚洲精品国产av成人精品| 精品一区二区三区人妻视频| 午夜精品在线福利| 国产女主播在线喷水免费视频网站 | 亚洲成人精品中文字幕电影| 亚洲人与动物交配视频| 大话2 男鬼变身卡| 久久国内精品自在自线图片| 欧美日韩综合久久久久久| 成人无遮挡网站| 一个人看的www免费观看视频| 国产高清有码在线观看视频| 搞女人的毛片| 18禁在线播放成人免费| 波多野结衣巨乳人妻| 国产一区二区在线av高清观看| 99热这里只有是精品50| 亚洲综合色惰| 亚洲美女搞黄在线观看| av免费观看日本| 一级av片app| 亚洲欧美成人精品一区二区| 精品久久久久久久久av| 午夜精品一区二区三区免费看| 免费av毛片视频| 九九爱精品视频在线观看| 国产不卡一卡二| 成人亚洲精品av一区二区| 日本色播在线视频| 晚上一个人看的免费电影| 久久国产乱子免费精品| 日本黄色片子视频| 亚洲自拍偷在线| 国产69精品久久久久777片| 国产亚洲5aaaaa淫片| 日韩一区二区三区影片| 亚洲精品久久久久久婷婷小说 | a级一级毛片免费在线观看| 国产成人福利小说| 国产激情偷乱视频一区二区| 一级毛片电影观看 | 久久热精品热| 国产成人aa在线观看| 久久热精品热| 欧美xxxx性猛交bbbb| 久久久亚洲精品成人影院| 国产真实乱freesex| 欧美一区二区精品小视频在线| 国产精品美女特级片免费视频播放器| 午夜福利网站1000一区二区三区| 久久久久网色| 国内少妇人妻偷人精品xxx网站| 麻豆成人午夜福利视频| 欧美一区二区精品小视频在线| 免费黄色在线免费观看| 波多野结衣高清无吗| 亚洲国产色片| 在线观看av片永久免费下载| 热99re8久久精品国产| 亚洲精品自拍成人| 三级毛片av免费| 日本与韩国留学比较| 一级av片app| 最新中文字幕久久久久| 高清在线视频一区二区三区 | 色播亚洲综合网| 欧美不卡视频在线免费观看| 少妇猛男粗大的猛烈进出视频 | 免费观看的影片在线观看| 永久网站在线| av女优亚洲男人天堂| 国产三级中文精品| 国产视频内射| 欧美日韩精品成人综合77777| 极品教师在线视频| 午夜a级毛片| 国产综合懂色| 精品午夜福利在线看| 午夜视频国产福利| 欧美性感艳星| 亚洲国产精品合色在线| 日韩av在线大香蕉| av天堂中文字幕网| 插阴视频在线观看视频| 国产激情偷乱视频一区二区| 爱豆传媒免费全集在线观看| 欧美一级a爱片免费观看看| 国产黄a三级三级三级人| 国产在线男女| 乱人视频在线观看| 欧美激情国产日韩精品一区| 久久韩国三级中文字幕| 国产av码专区亚洲av| 亚洲欧美清纯卡通| 两个人的视频大全免费| 日韩 亚洲 欧美在线| 国产一区二区三区av在线| 99久国产av精品| 日韩制服骚丝袜av| 老师上课跳d突然被开到最大视频| 国产成年人精品一区二区| 一级毛片aaaaaa免费看小| 国产精品精品国产色婷婷| 少妇熟女aⅴ在线视频| 好男人视频免费观看在线| 九九爱精品视频在线观看|