• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Boundary discontinuous Fourier analysis of thick beams with clamped and simply supported edges via CUF

    2017-11-17 08:31:52CANALESMANTARI
    CHINESE JOURNAL OF AERONAUTICS 2017年5期

    F.G.CANALES,J.L.MANTARI,b,*

    aFaculty of Mechanical Engineering,Universidad de Ingenieríay Tecnología(UTEC),Lima 15063,Peru

    bDepartment of Mechanical Engineering,University of New Mexico,Albuquerque 87131,USA

    Boundary discontinuous Fourier analysis of thick beams with clamped and simply supported edges via CUF

    F.G.CANALESa,J.L.MANTARIa,b,*

    aFaculty of Mechanical Engineering,Universidad de Ingenieríay Tecnología(UTEC),Lima 15063,Peru

    bDepartment of Mechanical Engineering,University of New Mexico,Albuquerque 87131,USA

    This paper presents an analytical solution for static analysis of thick rectangular beams with different boundary conditions.Carrera’s Unified Formulation(CUF)is used in order to consider shear deformation the ories of arbitrary order.The novelty of the present work is that a boundary discontinuous Fourier approach is used to consider clamped boundary conditions in the analytical solution,unlike Navier-type solutions which are restricted to simply supported beams.Governing equations are obtained by employing the principle of virtual work.The numerical accuracy of results is ascertained by studying the convergence of the solution and comparing the results to those of a 3D finite element solution.Beams subjected to bending due to a uniform pressure load and subjected to torsion due to opposite linear forces are considered.Overall,accurate results close to those of 3D finite element solutions are obtained,which can be used to validate finite element results or other approximate methods.

    1.Introduction

    1D the ories are widely used to analyze behaviors of slender bodies in a computationally efficient manner.For this reason,many beam models have been developed.The most wellknown beam the ory is the classical or Euler-Bernoulli beam the ory,which yields reasonably good results for slender beams.However,this model does not take into account shear deformations in a beam.The Timoshenko beam the ory is an improvement over the classical the ory that considers a uniform shear distribution across the thickness of a beam.However,this the ory requires a shear correction factor to correct the strain energy of deformation.Discussion of shear coefficients has been presented in Refs.1–4

    A large amount of Higher-order Shear Deformation Theories(HSDTs)have been developed in order to consider a nonuniform shear distribution in a beam’s cross-section.HSDTs with polynomial distributions of shear deformation across the thickness are common due to the ir simplicity,and some have been presented in Refs.5–13Theories containing trigonometric functions in thickness coordinates are also common.A trigonometric shear deformation the ory has been presented by Dahake and Ghugal.14Many polynomial and trigonometric deformation the ories have been developed for analysis of laminated beams,as presented in Refs.15–20Firstorder shear deformation the ories are popular due to the ir computational efficiency,and some have been given in Refs.21–24

    In order to analyze the ories with arbitrary order in a systematic manner,a unified formulation known as Carrera’s Unified Formulation(CUF)has been developed in Ref.25This formulation has been applied to solve multifield problems,as presented in Refs.26–28Carrera and Giunta29used the 1DCUF model to analyze 1D problems with complex crosssections,and furthe r development has been presented by Carrera et al.30–32The capability of the se models to obtain quasi-3D solutions has been exploited to develop accurate static33,free vibration34,35,and buckling analysis36of composite beams.

    Analytical solutions for bending of simply supported beams are obtained by using a Fourier series in Navier-type solutions.Other boundary conditions such as clamped conditions can be considered in a finite element formulation or by using the Ritz method,but accurate analytical solutions for the se boundary conditions are a fairly scarce topic in the literature.Since finite element formulations or variational methods obtain approximate results,exact analytical solutions are required as a benchmark in order to assess the validity of the results.The present work intends to provide such analytical solutions for clamped boundary conditions.

    A generalization of the Fourier series method known as the boundary discontinuous Fourier method can take into account clamped boundary conditions.This method was developed by Chaudhuri in Refs.37,38Discontinuities are introduced in order to satisfy boundary constraints.This solution methodology has been applied for static and free vibration analysis of cylindrical panels,39,40doubly-curved panels,41–48and plates.49–54Since the rate of convergence of a Fourier series is slower in the presence of discontinuities,a mixed Fourier solution has also been developed in Refs.55,56in order to produce accelerated convergence.Oktem and Chaudhuri have applied the boundary discontinuous Fourier method for analysis of plates57–59and shells60–63using HSDTs.

    In this paper,an analytical solution for static analysis of thick beams with Clamped-Clamped(C-C)and Clamped-Simple(C-S)boundary conditions is obtained.A general approach to obtain such an analytical solution using a unified formulation is currently unavailable in the literature,since the other option commonly used for static analysis of beams is a Navier-type solution,which can only consider simply supported edges.Theories of arbitrary order are considered in a systematic manner by using CUF.The principle of virtual work is used to obtain governing equations.The convergence of the solution is analyzed and 3D finite element solutions are obtained in order to assess the validity of results.Good results agreements with 3D finite element solutions are obtained.The results can be used as a benchmark for comparison with approximate solution methods.

    2.Analytical modeling

    A beam of length L,width b,and total thickness h is considered in the present analysis.The rectangular Cartesian coordinate system used in the present work is shown in Fig.1.The beam occupies the following region:-b/2≤x≤b/2,0≤y≤L,-h/2≤z≤h/2.

    2.1.Elastic stress-strain relations

    A general displacement vector is introduced:

    The cross-sectional plane of the beam is denoted by Ω.The stress and strain components are grouped as

    where σijand εijare the components of the stress and strain vectors,respectively.Subscript ‘p” stands for terms lying on planes orthogonal to the cross-section,while subscript ‘n”stands for terms lying on the cross-section.Considering small amplitude displacements,the strain-displacement relations are

    The linear differential operators Dp,DnΩ,and Dnyare given by

    Fig.1 Coordinate frame of beam model.

    The stress components are given by constitutive laws:

    where σ is the stress vector,ε is the strain vector andis the constitutive matrix.Eq.(5)can be split by using Eq.(2):

    In the case of an isotropic material,the matrices,,andare given by

    2.2.Displacement field

    The displacement field is expressed within the framework of CUF:

    where Fτare the functions of coordinates x and z on the crosssection,Mstands for the number of terms used in the expansion,uτis the vector of the generalized displacements,and the repeated subscript ‘τ” indicates summation.A Taylor-type expansion is used to determine the functions Fτ,consisting of a MacLaurin series that uses the 2D polynomials xizjas a base.Table 1 presents Mand Fτas functions of the expansion orderN.

    For example,the displacement field of the second-order(N=2)Taylor-type expansion model can be expressed as

    Table 1 MacLaurin’s polynomials.

    Classical beam the ories can be obtained as a special case of the generalized formulation.For example,the Timoshenko beam the ory is obtained in two steps:(a)a first-order displacement field is considered:

    and(b)the displacements uxand uzmust be constant in the cross-section:

    2.3.Principle of virtual work

    The static version of the principle of virtual work is applied:

    where δ stands for the virtual variation operator,Lintstands for the strain energy,and Lextis the external work.Substituting Eqs.(3),(4),and(6)in Eq.(12),the following expression is obtained:

    Substituting Eqs.(4),(7),and(8)in Eq.(13)and integrating by parts results in the following:

    where Kτsis the stiffness matrix and Πτsis the matrix of the natural boundary conditions.The components of Kτsare provided as

    where a cross-sectional moment parameter has been used,and a generic term is defined as

    The suffix after the comma denotes the derivatives.The components of Πτsare provided as follows:

    Letting Pτ= [PxτPyτPzτ]Tdefine a vector of the generalized forces,the natural boundary conditions can be obtained by substituting Eq.(17)in Eq.(14):

    2.4.Boundary discontinuous solution

    Geometric boundary conditions for simply supported beams,in terms of the displacement variables given in Eq.(8),are expressed as

    Geometricboundaryconditionsforclamped-clamped beams,in terms of the displacement variables given in Eq.(8),are additional constraints to those given in Eq.(19),which are given as

    The displacement variables are assumed as follows:

    where m is the wave number of the trigonometric term and p is the number of trigonometric terms of the series.The coefficient αmis given by

    The total number of unknown Fourier coefficients introduced in Eq.(21)is M(3p+1).The assumed solution satisfies the simply supported geometric boundary conditions given in Eq.(19).However,the clamped support boundary condition,given in Eq.(20),is not satisfied.In order to obtain an analytical solution for clamped beams,the boundary discontinuous method is used.The details of the procedure are given in Refs.37,38

    The boundary discontinuous method introduces boundary Fourier coefficients arising from discontinuities of a solution at the edges y=0,L.The displacement variable uyτas given by Eq.(21b)does not satisfy the boundary condition for clamped supports given in Eq.(20).Therefore,it is forced to vanish at the se edges.The partial derivative uyτ,yis seen to vanish at the edges,thus violating the complementary boundary constraint or boundary discontinuities at the se edges;see Refs.37,38For furthe r differentiation,uyτ,yyis expanded in a Fourier series in order to satisfy the complementary boundary constraint.It is important to note that the derivative of the Fourier series of a given function is not necessarily the same as the Fourier series of the derivative of the function when this function has discontinuities.

    The Fourier series of the derivative uyτ,yis given by

    where Uyτm,yis the Fourier term associated with the Fourier series of the function uyτ,y.Integrating Eq.(23b)by parts and using the vanishing boundary conditions given in Eq.(20)obtains:

    The Fourier term Uyτmof the Fourier series of the function uyτis recognized:

    Thus,the first derivative can be obtained through term-byterm differentiation.However,it will be demonstrated that the second derivative has a different form.The Fourier series of the second derivative uyτ,yyis given by

    where Uyτm,yyis the Fourier term of the function uyτ,yyand aτis a Fourier coefficient.Integrating Eq.(26b)by parts obtains:

    Note that the function uyτ,yis not necessarily zero at the edges since discontinuities are introduced aty=0,L(Eq.(21b)is not valid at the edges).Substituting Eqs.(23b)and(25)in Eq.(27),the Fourier term is obtained as

    Substituting Eq.(28)in Eq.(26a)the following expression is obtained:

    where the Fourier coefficients aτand bτintroduce 2M new unknowns,resulting in a total of M(3p+3)unknowns.These coefficients are given by

    and γm,ψmare defined as

    2.5.Virtual work of load

    The external work of a load q0applied on the surface z=h/2 is given by

    Substituting Eq.(8)in Eq.(32)obtains:

    The load is expressed using a Fourier series:

    where Qmis a Fourier coefficient associated with the Fourier series of the load.Othe r types of loads can be analyzed in a similar manner.29

    2.6.Governing equations

    Substituting Eqs.(21a)–(21c)and the ir appropriate partial derivatives in Eq.(14),in conjunction with Eqs.(15),(29),(33),and(34),the following expressions are obtained for the case of a beam subjected to a distributed load on the surface z=h/2:

    Equating the coefficients of the trigonometric functions of Eqs.(35)and(36)to zero yields M(3p+1)linear algebraic equations.Additional equations are supplied by the geometric boundary conditions related to vanishing of the displacement variables uyτat the edges y=0,L:

    These equations can be expressed in a more convenient form58:

    This step generates 2M additional equations,resulting in a total of M(3p+3)linear algebraic equations with as many unknowns.

    2.7.Extension to other boundary conditions

    In addition to the clamped-clamped boundary condition,the clamped-simple boundary condition can also be analyzed by the present method.A clamped support is considered at y=0 and a simple support at y=L.Since the geometric boundary condition given in Eq.(20b)has been relaxed,the function uyτis no longer forced to vanish at y=L,and Eq.(37b)is no longer required.This step reduces the available equations in M compared to the clamped-clamped case.In addition,discontinuities are no longer introduced at y=L,and thus uyτ,yis equal to zero at this point.By substituting uyτ,y(L)=0 in Eqs.(30a),(30b),the following relation is obtained:

    This step eliminates M unknowns,and thus the system remains determinate.

    3.Numerical results and discussion

    The present development has been programmed in MATLAB,and numerical examples are given in the present section.An isotropic square beam,i.e.,with b=h,is considered in the numerical examples.The displacements,stresses,and geometric parameters are expressed in the following non-dimensional forms:

    where E is the modulus of elasticity.The Poisson’s ratio is considered to be ν=0.3.The boundary conditions of the beam are indicated by letters C(Clamped support)and S(Simple support).

    3.1.Convergence study

    A study of the convergence is performed first in order to assess the stability of the results.Fig.1 shows the geometry of the beam considered.Fig.2 shows the locations of evaluation points of the studied displacements and stresses.

    Fig.2 Location of evaluation points of transverse displacement,axial stress,axial displacement,transverse stress,and shear stress.

    Fig.3 Convergence of transverse displacementat(0,L/2,0)and axial stressat(0,L/2,h/2)of a C-C square beam with L/h=10 subjected to a uniform load.

    The beam is subjected to a uniform load q0on the surface z=h/2.Fig.3 show the transverse displacement and axial stress of a C-C square beam with L/h=10 as the number of terms in the Fourier series is increased for various expansion orders N.While Navier-type solutions converge quickly and 25 terms are usually sufficient20,a Fourier series converges slowly if the function has discontinuities.Due to this,the boundary discontinuous method has a slower convergence compared to that of a Navier solution.

    Table 2 presents numerical results for the displacements and stresses as the number of terms in the Fourier series is increased,considering N=4.The transverse stressˉσzzis seen to have a slower convergence.At least 4 significant figures can be expected from the numerical results when the number of terms is m=15000,except for the transverse stressˉσzz,and this number of terms is used in the remainder of the manuscript.

    3.2.Bending loads

    In order to validate the results,a 3D finite element solution of static analysis of the beam has been obtained using ANSYS general purpose program.The 20-noded Solid186 element was used to model the beam,and the mesh was constructed using equally sized cubic elements.In the tables,the 3D finite element solution is denoted by ANS3Dxxx,where the subscript indicates the number of elements in the beam axis.For example,for a beam with L/h=5,the notation ANS3D200stands for a mesh with 200 elements in the beam axis and 40 elements in each axis of the cross-section,resulting in a mesh of 200×40×40.The error between the results from the present model and the 3D finite element solution(FEM)is defined as

    where the most refined finite element mesh solution(i.e.the ANS3Dxxxmodel with the largest numerical subscript)is used for calculation of the error

    The beam considered and the points of evaluation are the same as those in the previous section,as shown in Figs.1 and 2.Table 3 presents the values of displacements and stresses at specified points of C-C and C-S square beams with L/h=10,as obtained by the present model,and the corresponding results obtained by the 3D FEM.In order to correctly predict the shear stressˉσyz,an expansion order of at least N=3 is required.Very close agreements can be obtained for all the displacements and stresses using an expansion order of N=6 or higher.For higher expansion orders(N≥5),ahigher reported error is obtained for the transverse stressˉσzz;however,for N=7,the higher reported error is around 0.05%and within the margin of error of the 3D FEM solution.Similar trends are observed between the results for C-C and C-S beams.

    Table 2 Convergence of transverse displacement,axial stress,transverse normal stress,axial displacement,and shear stressfor a C-C isotropic square beam with L/h=10 subjected to a uniform load.

    Table 2 Convergence of transverse displacement,axial stress,transverse normal stress,axial displacement,and shear stressfor a C-C isotropic square beam with L/h=10 subjected to a uniform load.

    Number of termsˉuzˉσyyˉσzzˉuyˉσyz 400 3.4342 25.406 1.0436 0.46820 3.5096 600 3.4375 25.386 1.0314 0.46853 3.5096 1000 3.4402 25.370 1.0206 0.46879 3.5096 1500 3.4415 25.361 1.0150 0.46892 3.5096 2500 3.4426 25.355 1.0105 0.46902 3.5096 4000 3.4431 25.351 1.0079 0.46908 3.5096 6000 3.4435 25.349 1.0065 0.46911 3.5096 10000 3.4437 25.347 1.0053 0.46914 3.5096 15000 3.4439 25.347 1.0048 0.46915 3.5096

    Table 3 Comparison of transverse displacementˉuz,axial stressˉσyy,transverse normal stressˉσzz,axial displacementˉuy,and shear stressˉσyzfor C-C and C-S isotropic square beams with L/h=10 subjected to a uniform load.

    Fig.4 show the distributions of the transverse displacementˉuzacross the thickness of C-C and C-S beams with L/h=10,respectively.As the expansion order increases,the results converge to those of the 3D finite element solution in an increasingly slow manner.

    Fig.4 Distribution of transverse displacementˉuzat(0,L/2,z)through thickness of C-C and C-S square beams subjected to uniform load with L/h=10.

    Fig.5 shows the distribution of the transverse normal stressˉσzzacross the thickness of a C-C beam with L/h=10.An overshoot in the maximum stress is observed for an expansion order of N=3.However,this is corrected by using a higher expansion order.It can be seen that the distributions of the transverse stress across the thickness obtained by using expansion orders of N=4 and N=5 are in close agreements with that of the 3D finite element solution.

    Fig.6 shows the distribution of the shear stressˉσyzacross the thickness of a C-C beam with L/h=10.Higher expansion orders are required in order to obtain zero shear stress on the top and bottom surfaces of the beam.

    Tables 4 and 5 present the values of displacements and stresses at specified points of C-C and C-S square beams with L/h=5 and 2,respectively.For the critical case of a thick beam with L/h=2,using an expansion order of N=7,the higher reported error is 0.23%.

    Fig.7 shows the distributions of the transverse displacementˉuzacross the thickness of C-C and C-S beams with L/h=5,respectively.Results obtained from higher expansion orders gradually converge to that of the 3D FEM solution,similar to the case with L/h=10.

    Fig.5 Distribution of transverse normal stressˉσzzat(0,L/2,z)through thickness of C-C square beam subjected to uniform load with L/h=10.

    Fig.6 Distribution of transverse shear stressat(0,L/4,z)through thickness of C-C square beam subjected to uniform load with L/h=10.

    Fig.8 shows the distribution of the transverse displacementacross the thickness of a C-C beam with L/h=2.It can be observed that the thickness stretching effect,i.e.,variation of the transverse displacement across the thickness,is more pronounced for beams with lower aspect ratios.

    3.3.Torsional loads

    A beam subjected to two linear loads of equal magnitude q0and opposite directions is considered,as shown in Fig.9.Classic beam models are unable to detect displacement and stresses for this loading case.Table 6 presents results of the shear stressevaluated at Point A with coordinates(0,0,h/2).It can be observed that higher expansion orders are required in order to correctly predict the shear stress.These results can be used as a benchmark for future finite element works.

    Table 4 Comparison of transverse displacement,axial stress,transverse normal stress,axial displacement,and shear stressfor C-C and C-S isotropic square beams with L/h=5 subjected to uniform load.

    Table 4 Comparison of transverse displacement,axial stress,transverse normal stress,axial displacement,and shear stressfor C-C and C-S isotropic square beams with L/h=5 subjected to uniform load.

    ?

    Table 5 Comparison of the transverse displacementˉuz,axial stress,transverse normal stress,axial displacement,and shear stressfor C-C and C-S isotropic square beams with L/h=2 subjected to a uniform load.

    Table 5 Comparison of the transverse displacementˉuz,axial stress,transverse normal stress,axial displacement,and shear stressfor C-C and C-S isotropic square beams with L/h=2 subjected to a uniform load.

    ?

    Fig.7 Distribution of transverse displacementˉuzat(0,L/2,z)through thickness of C-C and C-S square beams subjected to uniform load with L/h=5.

    Fig.8 Distribution of transverse displacementˉuzat(0,L/2,z)through thickness of C-C square beam subjected to uniform load with L/h=2.

    Fig.9 Geometry of beam subject to torsion loads.

    Table 6 Comparison of the shear stressˉσxyfor C-C isotropic square beam with L/h=2 subjected to torsional loads.

    4.Conclusions

    This paper presents an analytical solution for bending and torsion of a thick rectangular beam with clamped or simple supports.The boundary discontinuous Fourier approach is used in conjunction with shear deformation the ories of arbitrary order via Carrera’s Unified Formulation(CUF).The important conclusions that emerge from this paper can be summarized as follows:

    (1)Accurate analytical results of the stresses and displacements for clamped beams can be obtained by the present model with a low computational effort.

    (2)At least an expansion order of N=3 is required in order to correctly predict the maximum shear stress σyzdue to bending loads.

    (3)An overshoot of the maximum transverse normal stress σzzis observed for an expansion order of N=3 when bending loads are considered.However,this is corrected by using higher expansion orders.

    (4)The boundary discontinuous method requires a higher computational effort compared to that of Navier-type solutions,but it is much lower than that required for a 3D finite element solution.

    Acknowledgment

    This paper is dedicated to Professor Reaz Chaudhurifor his outstanding contribution to computational mechanics.

    1.Kaneko T.On Timoshenko’s correction for shear in vibrating beams.J Phys D:Appl Phys 1975;8(16):1927–36.

    2.Hutchinson JR.Transverse vibrations of beams,exact versus approximate solutions.J Appl Mech 1981;48(4):923–8.

    3.Hutchinson JR,Zillmer SD.On the transverse vibration of beams with rectangular cross-section.J Appl Mech 1986;53(1):39–44.

    4.Rychter Z.On the shear coefficient in beam bending.Mech Res Commun 1987;14(5–6):379–85.

    5.Essenburg F.On the significance of the inclusion of transverse normal strain in problems involving beams with surface constraints.J Appl Mech 1975;42(1):127–32.

    6.Levinson M.A new rectangular beam the ory.J Sound Vibrat 1981;74(1):81–7.

    7.Rychter Z.On the accuracy of a beam the ory.Mech Res Commun 1987;14(2):99–105.

    8.Rychter Z.A simple and accurate beam the ory.Acta Mech 1988;75(1):57–62.

    9.Petrolito J.Stiffness analysis of beams using a higher-order beam the ory.Comput Struct 1995;55(1):33–9.

    10.Murthy AVK.Towards a consistent beam the ory.AIAA J 1984;22(6):811–6.

    11.Bhimaraddi A,Chandrashekhara K.Ochigherorder beam the ory.J Aerospace Eng 1993;6(4):408–13.

    12.Heyliger PR,Reddy JN.A higher order beam finite element for bending and vibration problems.J Sound Vibrat 1988;126(2):309–26.

    13.Kant T,Gupta A.A finite element model for a higher-order shear deformable beam.J Sound Vibrat 1988;125(2):193–202.

    14.Dahake AG,Ghugal YM.A trigonometric shear deformation the ory for flexure of thick beam.Procedia Eng 2013;51:1–7.

    15.Khdeir AA,Reddy JN.An exact solution for the bending of thin and thick cross-ply laminated beams.Compos Struct 1997;37(2):195–203.

    16.Sayyad AS,Ghugal YM.Effect of transverse shear and transverse normal strain on bending analysis of cross-ply laminated beams.Int J Appl Math Mech 2011;7(12):85–118.

    17.Shimpi RP,Ghugal YM.A new layerwise trigonometric shear deformation the ory for two-layered cross-ply beams.Compos Sci Technol 2001;61(9):1271–83.

    18.Aydogdu M.A new shear deformation the ory for laminated composite plates.Compos Struct 2009;89(1):94–101.

    19.Arya H,Shimpi RP,Naik NK.A zigzag model for laminated composite beams.Compos Struct 2002;56(1):21–4.

    20.Mantari JL,Canales FG.A unified quasi-3D HSDT for the bending analysis of laminated beams.Aerospace Sci Technol 2016;54:267–75.

    21.Senjanovic′I,Vladimir N,Hadzˇic′N,Tomic′M.New first order shear deformation beam the ory with in-plane shear influence.Eng Struct 2016;110:169–83.

    22.Senjanovic′I,Vladimir N.Physical insight into Timoshenko beam the ory and its modification with extension.Struct Eng Mech 2013;48(4):519–45.

    23.Senjanovic′I,Rudan S,Vladimir N.Influence of shear on the torsion of thin-walled girders.Trans FAMENA 2009;33(2):35–50.

    24.Senjanovic′I,Tomasˇevic′S,Vladimir N.An advanced the ory of thin-walled girders with application to ship vibrations.Mar Struct 2009;22(3):387–437.

    25.Carrera E.Theories and finite elements for multilayered plates and shells:A unified compact formulation with numerical assessment and benchmarking.Arch Comput Methods Eng 2003;10(3):215–96.

    26.Carrera E.Transverse normal strain effects on the rmal stress analysis of homogeneous and layered plates.AIAA J 2005;43(10):2232–42.

    27.Carrera E,Boscolo M,Robaldo A.Hierarchic multilayered plate elements for coupled multifield problems of piezoelectric adaptive structures.Formulation and numerical assessment.Arch Comput Methods Eng 2007;14(4):383–430.

    28.Carrera E,Brischetto S,Nali P.Variational statements and computational models for multifield problems and multilayered structures.Mech Adv Mater Struct 2008;15(3–4):192–8.

    29.Carrera E,Giunta G.Refined beam the ories based on a unified formulation.Int J Appl Mech 2010;2(1):117–43.

    30.Carrera E,Giunta G,Nali P,Petrolo M.Refined beam elements with arbitrary cross-section geometries.Comput Struct 2010;88(5–6):283–93.

    31.Carrera E,Petrolo M.Refined beam elements with only displacement variables and plate/shell capabilities.Meccanica 2012;47(3):537–56.

    32.Carrera E,Filippi M,Zappino E.Laminated beam analysis by polynomial,trigonometric,exponential and zig-zag the ories.Eur J Mech A/Solids 2013;41:58–69.

    33.Catapano A,Giunta G,Belouettar S,Carrera E.Static analysis of laminated beams via a unified formulation.Compos Struct 2011;94(1):75–83.

    34.Giunta G,Biscani F,Belouettar S,Ferreira AJM,Carrera E.Free vibration analysis of composite beams via refined the ories.Compos Part B:Eng 2013;44(1):540–52.

    35.Filippi M,Pagani A,Petrolo M,Colonna G,Carrera E.Static and free vibration analysis of laminated beams by refined the ory based on Chebyshev polynomials.Compos Struct 2015;132:1248–59.

    36.Ibrahim SM,Carrera E,Petrolo M,Zappino E.Buckling of composite thin walled beams by refined the ory.Compos Struct 2012;94(2):563–70.

    37.Chaudhuri RA.On boundary-discontinuous double Fourier series solution to a system of completely coupled P.D.E’.s.Int J Eng Sci 1989;27(9):1005–22.

    38.Chaudhuri RA.On the roles of complementary and admissible boundary constraints in Fourier solutions to the boundary value problems of completely coupled RTH order PDEs.J Sound Vibrat 2002;251(2):261–313.

    39.Chaudhuri RA,Abu-Arja KR.Static analysis of moderately-thick finite antisymmetric angle-ply cylindrical panels and shells.Int J Solids Struct 1991;28(1):1–15.

    40.Kabir HRH,Chaudhuri RA.A direct Fourier approach for the analysis of thin finite-dimensional cylindrical panels.Comput Struct 1993;46(2):279–87.

    41.Chaudhuri RA,Kabir HRH.On analytical solutions to boundaryvalue problems of doubly-curved moderately-thick orthotropic shells.Int J Eng Sci 1989;27(11):1325–36.

    42.Kabir HRH,Chaudhuri RA.Free vibration of shear-flexible antisymmetric angle-ply doubly curved panels.Int J Solids Struct 1991;28(1):17–32.

    43.Chaudhuri RA,Kabir HRH.A boundary-continuous-displacement based Fourier analysis of laminated doubly-curved panels using classical shallow shell the ories.Int J Eng Sci 1992;30(11):1647–64.

    44.Chaudhuri RA,Kabir HRH.Sensitivity of the response of moderately thick cross-ply doubly-curved panels to lamination and boundary constraint—I.Theory.Int J Solids Struct 1993;30(2):263–72.

    45.Chaudhuri RA,Kabir HRH.Sensitivity of the response of moderately thick cross-ply doubly-curved panels to lamination and boundary constraint—II.Application.Int J Solids Struct 1993;30(2):273–86.

    46.Chaudhuri RA,Kabir HRH.Boundary-discontinuous Fourier analysis of doubly-curved panels using classical shallow shell the ories.Int J Eng Sci 1993;31(11):1551–64.

    47.Chaudhuri RA,Kabir HRH.Static and dynamic Fourier analysis offinite cross-ply doubly curved panels using classical shallow shell the ories.Compos Struct 1994;28(1):73–91.

    48.Kabir V,Chaudhuri RA.On Gibbs-phenomenon-free Fourier solution for finite shear-flexible laminated clamped curved panel.Int J Eng Sci 1994;32(3):501–20.

    49.Chaudhuri RA,Kabir HRH.A boundary discontinuous Fourier solution for clamped transversely isotropic(pyrolytic graphite)Mindlin plates.Int J Solids Struct 1993;30(2):287–97.

    50.Kabir HRH,Chaudhuri RA.A generalized Navier’s approach for solution of clamped moderately-thick cross-ply plates.Comput Struct 1991;17(4):351–66.

    51.Chaudhuri RA,Kabir HRH.Vibration of clamped moderately thick general cross-ply plates using a generalized Navier approach.Compos Struct 1993;24(4):311–21.

    52.Chaudhuri RA.Effect of boundary constraint on the frequency response of moderately thick flat laminated panels.Compos Eng 1994;4(4):417–28.

    53.Kabir HRH.Free vibration of clamped,moderately thick,arbitrarily laminated plates using a generalized Navier’s approach.J Sound Vibrat 1994;171(3):397–410.

    54.Chaudhuri RA,Balaraman K,Kunukkasseril VX.A combined the oretical and experimental investigation on free vibration of thin symmetrically laminated anisotropic plates.ComposStruct 2005;67(1):85–97.

    55.Chaudhuri RA,Kabir HRH.Effect of boundary constraint on the frequency response of moderately thick doubly curved cross-ply panels using mixed Fourier solution functions.J Sound Vibrat 2005;283(1–2):263–93.

    56.KabirHRH,Al-KhaleefiAM,ChaudhuriRA.Frequency response of a moderately thick antisymmetric cross-ply cylindrical panel using mixed type of Fourier solution functions.J Sound Vibrat 2003;259(4):809–28.

    57.Oktem AS,Chaudhuri RA.Fourier solution to a thick cross-ply Levy type clamped plate problem.Compos Struct 2007;79(4):481–92.

    58.Oktem AS,Chaudhuri RA.Boundary discontinuous Fourier analysis of thick cross-ply clamped plates.Compos Struct 2007;82(4):539–48.

    59.Oktem AS,Chaudhuri RA.Effect ofinplane boundary constraints on the response of thick general(unsymmetric)cross-ply plates.Compos Struct 2008;83(1):1–12.

    60.Oktem AS,Chaudhuri RA.Sensitivity of the response of thick cross-ply doubly curved panels to edge clamping.Compos Struct 2009;87(4):293–306.

    61.Oktem AS,Chaudhuri RA.Fourier analysis of thick cross-ply Levy type clamped doubly-curved panels.Compos Struct 2007;80(4):489–503.

    62.Oktem AS,Chaudhuri RA.Levy type Fourier analysis of thick cross-ply doubly curved panels.Compos Struct 2007;80(4):475–88.

    63.Oktem AS,Chaudhuri RA.Higher-order the ory based boundarydiscontinuous Fourier analysis of simply supported thick cross-ply doubly curved panels.Compos Struct 2009;89(3):448–58.

    64.Reddy JN.Mechanics of laminated composite plates:Theory and analysis.2nd ed.Boca Raton:CRC Press;2004.

    30 June 2016;revised 28 October 2016;accepted 24 January 2017

    Available online 11 July 2017

    Analytical solution;

    Beam;

    Clamped;

    Fourier;

    Unified formulation

    *Corresponding author.

    E-mail address:jmantari@utec.edu.pe(J.L.MANTARI).

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2017.06.014

    1000-9361?2017 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.

    This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?2017 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is an open access article under theCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    汤姆久久久久久久影院中文字幕| 国产成人精品无人区| 国产伦人伦偷精品视频| aaaaa片日本免费| 高潮久久久久久久久久久不卡| av免费在线观看网站| 97在线人人人人妻| 国产av精品麻豆| 成人黄色视频免费在线看| 午夜久久久在线观看| 午夜日韩欧美国产| 97在线人人人人妻| 亚洲av第一区精品v没综合| 亚洲国产av新网站| 9191精品国产免费久久| 嫩草影视91久久| 日本精品一区二区三区蜜桃| 国产熟女午夜一区二区三区| 一级毛片女人18水好多| 999久久久精品免费观看国产| 午夜福利一区二区在线看| 一夜夜www| 亚洲人成伊人成综合网2020| 中文字幕av电影在线播放| 国产亚洲一区二区精品| 亚洲成av片中文字幕在线观看| 亚洲精品自拍成人| 欧美久久黑人一区二区| 建设人人有责人人尽责人人享有的| 久热这里只有精品99| 91av网站免费观看| 777米奇影视久久| 美国免费a级毛片| 自线自在国产av| 成年人免费黄色播放视频| 91国产中文字幕| av天堂久久9| 亚洲精品一卡2卡三卡4卡5卡| 久久狼人影院| 男女边摸边吃奶| 色综合欧美亚洲国产小说| 午夜福利影视在线免费观看| 久久国产精品男人的天堂亚洲| 国产有黄有色有爽视频| 两人在一起打扑克的视频| 午夜福利视频精品| 99久久人妻综合| 国产精品.久久久| 欧美精品一区二区免费开放| 亚洲成a人片在线一区二区| 亚洲avbb在线观看| 国产麻豆69| 免费观看a级毛片全部| 久久精品91无色码中文字幕| 99riav亚洲国产免费| 成年人黄色毛片网站| 欧美日韩一级在线毛片| 亚洲国产av新网站| 精品少妇一区二区三区视频日本电影| 亚洲少妇的诱惑av| 国产主播在线观看一区二区| 深夜精品福利| 国产伦人伦偷精品视频| 99久久国产精品久久久| 久久热在线av| 啦啦啦在线免费观看视频4| 亚洲avbb在线观看| 人妻久久中文字幕网| 久久香蕉激情| 国产成人一区二区三区免费视频网站| av片东京热男人的天堂| 亚洲国产av新网站| 国产精品久久电影中文字幕 | 久久精品国产亚洲av高清一级| 母亲3免费完整高清在线观看| 一边摸一边抽搐一进一小说 | tocl精华| 色婷婷av一区二区三区视频| 丝袜美足系列| 免费少妇av软件| 亚洲欧美一区二区三区黑人| www.熟女人妻精品国产| 飞空精品影院首页| 亚洲九九香蕉| 国产片内射在线| 亚洲精品成人av观看孕妇| 国产免费av片在线观看野外av| 色精品久久人妻99蜜桃| 午夜免费鲁丝| 亚洲国产成人一精品久久久| 国产有黄有色有爽视频| 亚洲国产欧美在线一区| 日韩一区二区三区影片| 欧美激情极品国产一区二区三区| 日韩大片免费观看网站| 亚洲五月色婷婷综合| 久久中文看片网| 国产色视频综合| 淫妇啪啪啪对白视频| 999精品在线视频| 精品人妻熟女毛片av久久网站| 99精品久久久久人妻精品| 一级毛片精品| 日韩中文字幕欧美一区二区| 国产亚洲欧美在线一区二区| 狂野欧美激情性xxxx| 亚洲va日本ⅴa欧美va伊人久久| 天天影视国产精品| 麻豆av在线久日| 天堂8中文在线网| 成人av一区二区三区在线看| 天堂动漫精品| 精品一区二区三区四区五区乱码| 久久久久网色| 亚洲成av片中文字幕在线观看| 日韩有码中文字幕| 9191精品国产免费久久| 日韩欧美一区二区三区在线观看 | aaaaa片日本免费| 免费在线观看视频国产中文字幕亚洲| 一区福利在线观看| 欧美人与性动交α欧美精品济南到| 亚洲精品av麻豆狂野| 亚洲av成人不卡在线观看播放网| 交换朋友夫妻互换小说| 一级毛片女人18水好多| av天堂在线播放| 黄频高清免费视频| 黑人猛操日本美女一级片| 国产日韩欧美视频二区| 大香蕉久久网| 精品午夜福利视频在线观看一区 | 啦啦啦免费观看视频1| 最近最新免费中文字幕在线| 国产99久久九九免费精品| 国产精品一区二区精品视频观看| 麻豆乱淫一区二区| 亚洲成人免费av在线播放| 国产一卡二卡三卡精品| 99在线人妻在线中文字幕 | 成年人黄色毛片网站| 黄色a级毛片大全视频| 国产成人欧美| 少妇精品久久久久久久| 国产xxxxx性猛交| 亚洲,欧美精品.| 女人久久www免费人成看片| 在线看a的网站| 别揉我奶头~嗯~啊~动态视频| 国产精品亚洲av一区麻豆| 精品一区二区三区av网在线观看 | 国产精品av久久久久免费| 人妻久久中文字幕网| 动漫黄色视频在线观看| 天堂中文最新版在线下载| √禁漫天堂资源中文www| 亚洲精品国产区一区二| 亚洲av日韩精品久久久久久密| av片东京热男人的天堂| 久久久精品区二区三区| 天堂中文最新版在线下载| 成人18禁高潮啪啪吃奶动态图| 国产欧美日韩一区二区三区在线| 纵有疾风起免费观看全集完整版| 中文字幕av电影在线播放| 亚洲欧美色中文字幕在线| 又大又爽又粗| 搡老熟女国产l中国老女人| 免费少妇av软件| 久久性视频一级片| 国产99久久九九免费精品| 欧美性长视频在线观看| 亚洲av欧美aⅴ国产| 狠狠婷婷综合久久久久久88av| 久久久国产成人免费| 精品午夜福利视频在线观看一区 | 又紧又爽又黄一区二区| 国产精品影院久久| 精品少妇黑人巨大在线播放| 中亚洲国语对白在线视频| 女人精品久久久久毛片| 国产aⅴ精品一区二区三区波| 国产精品熟女久久久久浪| 飞空精品影院首页| 少妇被粗大的猛进出69影院| 国产成人精品在线电影| 一区在线观看完整版| 日韩一卡2卡3卡4卡2021年| 人人澡人人妻人| 久久久久久久大尺度免费视频| 欧美日本中文国产一区发布| 亚洲伊人久久精品综合| 999精品在线视频| 少妇裸体淫交视频免费看高清 | 欧美成狂野欧美在线观看| 亚洲国产欧美网| 欧美黑人精品巨大| 成人国产av品久久久| 国产福利在线免费观看视频| 脱女人内裤的视频| 久久精品aⅴ一区二区三区四区| 亚洲一卡2卡3卡4卡5卡精品中文| 757午夜福利合集在线观看| 亚洲男人天堂网一区| 国产成人免费观看mmmm| 久久久久久久大尺度免费视频| 亚洲av日韩在线播放| 国产人伦9x9x在线观看| 在线观看一区二区三区激情| 日本wwww免费看| 一级黄色大片毛片| 性色av乱码一区二区三区2| 国产在线精品亚洲第一网站| 波多野结衣av一区二区av| 亚洲人成电影观看| 老熟妇乱子伦视频在线观看| 国产一区二区激情短视频| 久久久久国产一级毛片高清牌| 妹子高潮喷水视频| 中文字幕人妻丝袜制服| 免费一级毛片在线播放高清视频 | 久久精品熟女亚洲av麻豆精品| 国产亚洲精品久久久久5区| 午夜久久久在线观看| 精品国产超薄肉色丝袜足j| 免费在线观看完整版高清| 十八禁人妻一区二区| 欧美中文综合在线视频| 欧美成人午夜精品| 亚洲成av片中文字幕在线观看| 国产一区二区三区在线臀色熟女 | 成人av一区二区三区在线看| 亚洲熟妇熟女久久| 三级毛片av免费| 一本久久精品| 国产高清激情床上av| 高清黄色对白视频在线免费看| 大片电影免费在线观看免费| 国产精品国产高清国产av | 久久精品熟女亚洲av麻豆精品| 岛国毛片在线播放| 美女主播在线视频| 精品第一国产精品| 曰老女人黄片| 丁香欧美五月| 五月开心婷婷网| 国产熟女午夜一区二区三区| 一级毛片女人18水好多| 热re99久久精品国产66热6| 高清视频免费观看一区二区| 两性夫妻黄色片| 91老司机精品| 另类精品久久| 丁香欧美五月| 91精品三级在线观看| 大型av网站在线播放| 亚洲人成电影免费在线| 欧美日韩福利视频一区二区| 国产一区有黄有色的免费视频| 精品一品国产午夜福利视频| 亚洲av电影在线进入| 精品熟女少妇八av免费久了| 老司机深夜福利视频在线观看| 欧美日本中文国产一区发布| 久久久久久久久免费视频了| 精品人妻在线不人妻| bbb黄色大片| 亚洲成人免费电影在线观看| av超薄肉色丝袜交足视频| 亚洲av成人一区二区三| 亚洲熟妇熟女久久| 亚洲欧美日韩高清在线视频 | 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区三| 首页视频小说图片口味搜索| 午夜视频精品福利| 亚洲天堂av无毛| 777久久人妻少妇嫩草av网站| 日本精品一区二区三区蜜桃| 丰满迷人的少妇在线观看| 丁香欧美五月| 99热国产这里只有精品6| 中文字幕色久视频| 好男人电影高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 麻豆国产av国片精品| 国产精品秋霞免费鲁丝片| av片东京热男人的天堂| 别揉我奶头~嗯~啊~动态视频| 久久精品亚洲av国产电影网| 一本大道久久a久久精品| 蜜桃在线观看..| 国产单亲对白刺激| 大型黄色视频在线免费观看| 久久精品亚洲av国产电影网| 黑人巨大精品欧美一区二区mp4| 天天添夜夜摸| 亚洲精品久久午夜乱码| 人妻 亚洲 视频| av片东京热男人的天堂| 国产深夜福利视频在线观看| 午夜精品久久久久久毛片777| 不卡av一区二区三区| 19禁男女啪啪无遮挡网站| 精品午夜福利视频在线观看一区 | 视频在线观看一区二区三区| 色婷婷久久久亚洲欧美| 视频区欧美日本亚洲| 在线播放国产精品三级| 男女无遮挡免费网站观看| 国产成人一区二区三区免费视频网站| 国产成人欧美| 一区二区三区精品91| 美女国产高潮福利片在线看| 男女之事视频高清在线观看| 亚洲午夜理论影院| 女人久久www免费人成看片| 国产精品一区二区在线不卡| 久热这里只有精品99| 首页视频小说图片口味搜索| 日韩欧美国产一区二区入口| 日韩有码中文字幕| 黄色 视频免费看| 免费看十八禁软件| 变态另类成人亚洲欧美熟女 | 日韩中文字幕欧美一区二区| 最近最新免费中文字幕在线| 日本av手机在线免费观看| 老司机亚洲免费影院| 9热在线视频观看99| 国产有黄有色有爽视频| 亚洲av电影在线进入| 国产精品99久久99久久久不卡| 亚洲欧洲日产国产| 久久久精品94久久精品| www.熟女人妻精品国产| 亚洲自偷自拍图片 自拍| 精品一区二区三区视频在线观看免费 | 亚洲中文日韩欧美视频| 在线十欧美十亚洲十日本专区| 在线观看www视频免费| 国产真人三级小视频在线观看| 十八禁网站网址无遮挡| 欧美日韩亚洲综合一区二区三区_| 国产黄频视频在线观看| 一进一出抽搐动态| 亚洲国产欧美在线一区| 欧美日韩黄片免| 国产精品 国内视频| 免费日韩欧美在线观看| 狠狠狠狠99中文字幕| 午夜91福利影院| 黄色视频不卡| 一级毛片精品| 日韩熟女老妇一区二区性免费视频| 国产在线精品亚洲第一网站| 欧美黄色片欧美黄色片| 国产一区二区 视频在线| 人妻 亚洲 视频| 亚洲国产中文字幕在线视频| 一区福利在线观看| av网站免费在线观看视频| 69精品国产乱码久久久| av视频免费观看在线观看| 精品亚洲乱码少妇综合久久| 国产三级黄色录像| 看免费av毛片| 精品人妻熟女毛片av久久网站| 最近最新中文字幕大全电影3 | 久久精品熟女亚洲av麻豆精品| 18禁裸乳无遮挡动漫免费视频| 人人妻,人人澡人人爽秒播| 精品熟女少妇八av免费久了| www.自偷自拍.com| 极品人妻少妇av视频| 好男人电影高清在线观看| 国产欧美日韩综合在线一区二区| 老汉色∧v一级毛片| 桃红色精品国产亚洲av| 妹子高潮喷水视频| 久9热在线精品视频| 在线观看www视频免费| 久久精品亚洲av国产电影网| 每晚都被弄得嗷嗷叫到高潮| 日韩有码中文字幕| 亚洲精品在线观看二区| e午夜精品久久久久久久| 国产在线一区二区三区精| 黄色片一级片一级黄色片| 天天躁夜夜躁狠狠躁躁| 精品久久久久久电影网| 男女午夜视频在线观看| 狂野欧美激情性xxxx| 色在线成人网| 老司机福利观看| 久久狼人影院| 色尼玛亚洲综合影院| 国产主播在线观看一区二区| 久久ye,这里只有精品| 亚洲国产看品久久| 久久久久久久久久久久大奶| 最近最新免费中文字幕在线| 老司机影院毛片| 亚洲av日韩精品久久久久久密| 亚洲av欧美aⅴ国产| 51午夜福利影视在线观看| 三级毛片av免费| 亚洲国产中文字幕在线视频| 老熟妇仑乱视频hdxx| 19禁男女啪啪无遮挡网站| 久久香蕉激情| 亚洲自偷自拍图片 自拍| 极品少妇高潮喷水抽搐| 日韩 欧美 亚洲 中文字幕| 另类精品久久| 亚洲熟女精品中文字幕| 色综合欧美亚洲国产小说| 丁香六月欧美| 亚洲欧美激情在线| 少妇被粗大的猛进出69影院| 久久99一区二区三区| 久久ye,这里只有精品| 亚洲欧美精品综合一区二区三区| av有码第一页| 首页视频小说图片口味搜索| 色综合婷婷激情| 精品人妻在线不人妻| 青草久久国产| av一本久久久久| 超碰97精品在线观看| 亚洲精品美女久久av网站| 99久久国产精品久久久| 热re99久久国产66热| 国产精品麻豆人妻色哟哟久久| 国产欧美日韩综合在线一区二区| 新久久久久国产一级毛片| 日韩中文字幕视频在线看片| 人妻 亚洲 视频| 久久热在线av| 捣出白浆h1v1| 色综合婷婷激情| 久久人妻熟女aⅴ| 手机成人av网站| 久久久久国内视频| 久久婷婷成人综合色麻豆| 国产国语露脸激情在线看| 涩涩av久久男人的天堂| 一级片'在线观看视频| 最近最新中文字幕大全免费视频| 国产精品亚洲av一区麻豆| 下体分泌物呈黄色| 国产日韩欧美在线精品| 色在线成人网| 国产成人精品无人区| 国产片内射在线| 天堂俺去俺来也www色官网| 精品人妻熟女毛片av久久网站| 两人在一起打扑克的视频| 中文亚洲av片在线观看爽 | 国产av一区二区精品久久| 午夜精品久久久久久毛片777| 手机成人av网站| 90打野战视频偷拍视频| 国产精品 欧美亚洲| 亚洲少妇的诱惑av| 久久性视频一级片| 国产在视频线精品| 欧美黑人欧美精品刺激| 777米奇影视久久| 狠狠精品人妻久久久久久综合| 久久久久久久久久久久大奶| 精品少妇久久久久久888优播| 精品乱码久久久久久99久播| 国产成人精品久久二区二区免费| 久久精品国产亚洲av高清一级| 亚洲专区字幕在线| 肉色欧美久久久久久久蜜桃| 成人永久免费在线观看视频 | 每晚都被弄得嗷嗷叫到高潮| 在线av久久热| 国产高清激情床上av| 50天的宝宝边吃奶边哭怎么回事| 午夜福利在线免费观看网站| 水蜜桃什么品种好| 在线观看免费午夜福利视频| 亚洲国产毛片av蜜桃av| 9色porny在线观看| 丝袜美腿诱惑在线| 精品福利观看| 国产欧美日韩综合在线一区二区| av在线播放免费不卡| 9色porny在线观看| 国内毛片毛片毛片毛片毛片| 黑人巨大精品欧美一区二区mp4| 免费在线观看黄色视频的| 亚洲第一av免费看| 9色porny在线观看| 日韩欧美免费精品| 亚洲成人免费电影在线观看| 精品久久久久久电影网| 少妇被粗大的猛进出69影院| 人人妻人人添人人爽欧美一区卜| 亚洲av美国av| 最近最新中文字幕大全电影3 | 国产真人三级小视频在线观看| 99久久精品国产亚洲精品| 老熟女久久久| 18禁黄网站禁片午夜丰满| 欧美日韩亚洲高清精品| 在线观看免费日韩欧美大片| 亚洲三区欧美一区| 一区二区三区精品91| 国产无遮挡羞羞视频在线观看| 亚洲色图 男人天堂 中文字幕| 美女视频免费永久观看网站| 成年人黄色毛片网站| 亚洲精品国产区一区二| 欧美精品一区二区免费开放| 999久久久精品免费观看国产| 国产黄频视频在线观看| 久久久久久免费高清国产稀缺| 亚洲色图 男人天堂 中文字幕| 美女视频免费永久观看网站| 免费观看a级毛片全部| 国产欧美日韩一区二区三区在线| 久久久国产成人免费| 亚洲精品国产区一区二| 99香蕉大伊视频| 99re在线观看精品视频| 窝窝影院91人妻| 天天操日日干夜夜撸| 飞空精品影院首页| 大片电影免费在线观看免费| 国产欧美日韩精品亚洲av| 高清欧美精品videossex| 中文欧美无线码| 免费黄频网站在线观看国产| 久久午夜综合久久蜜桃| 午夜福利在线免费观看网站| 亚洲欧美激情在线| 十分钟在线观看高清视频www| a级片在线免费高清观看视频| 久久精品国产综合久久久| 亚洲av国产av综合av卡| 涩涩av久久男人的天堂| 91老司机精品| 亚洲精品中文字幕一二三四区 | 首页视频小说图片口味搜索| 中文字幕人妻丝袜一区二区| 老司机深夜福利视频在线观看| 国产av又大| 午夜福利欧美成人| 日日夜夜操网爽| 国产成人精品无人区| 久久久久久久国产电影| 午夜成年电影在线免费观看| 老司机影院毛片| 天堂俺去俺来也www色官网| 中文字幕色久视频| 啦啦啦 在线观看视频| 777久久人妻少妇嫩草av网站| 国产欧美日韩综合在线一区二区| 国产免费av片在线观看野外av| 中文字幕高清在线视频| 久久久久国内视频| 一个人免费看片子| 91老司机精品| 天天操日日干夜夜撸| 日韩欧美国产一区二区入口| 最新美女视频免费是黄的| 免费观看人在逋| 悠悠久久av| 免费久久久久久久精品成人欧美视频| 性高湖久久久久久久久免费观看| 国产精品一区二区精品视频观看| 久久久精品国产亚洲av高清涩受| 黄片小视频在线播放| 又黄又粗又硬又大视频| 精品熟女少妇八av免费久了| 国产精品久久久人人做人人爽| 黑人操中国人逼视频| 欧美精品一区二区免费开放| 日韩精品免费视频一区二区三区| 国产成人免费无遮挡视频| 一边摸一边抽搐一进一小说 | 免费观看av网站的网址| 亚洲国产欧美日韩在线播放| 欧美另类亚洲清纯唯美| 日韩视频一区二区在线观看| 一区二区三区激情视频| 老司机午夜福利在线观看视频 | 人人澡人人妻人| 亚洲一码二码三码区别大吗| 久久人人97超碰香蕉20202| 国产aⅴ精品一区二区三区波| 国产伦人伦偷精品视频| 999久久久国产精品视频| av天堂久久9| 满18在线观看网站| 乱人伦中国视频| 午夜免费鲁丝| 母亲3免费完整高清在线观看| 精品人妻1区二区| 一级毛片女人18水好多| 午夜福利在线观看吧| 免费看a级黄色片| 亚洲色图综合在线观看| 国产精品 国内视频| 波多野结衣av一区二区av| xxxhd国产人妻xxx| 亚洲国产欧美一区二区综合| 免费黄频网站在线观看国产| 啦啦啦视频在线资源免费观看| 嫁个100分男人电影在线观看| videosex国产|