• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on parafoil stability using a rapid estimate model

    2017-11-17 08:31:47HuYANGLeiSONGWeifngCHEN
    CHINESE JOURNAL OF AERONAUTICS 2017年5期

    Hu YANG,Lei SONG,Weifng CHEN

    aSchool of Aeronautics and Astronautics,Zhejiang University,Hangzhou 310013,China

    bSchool of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China

    Research on parafoil stability using a rapid estimate model

    Hua YANGa,Lei SONGb,*,Weifang CHENa

    aSchool of Aeronautics and Astronautics,Zhejiang University,Hangzhou 310013,China

    bSchool of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China

    With the consideration of rotation between canopy and payload of parafoil system,a four-degree-of-freedom(4-DOF)longitudinal static model was used to solve parafoil state variables in straight steady flight.The aerodynamic solution of parafoil system was a combination of vortex lattice method(VLM)and engineering estimation method.Based on small disturbance assumption,a 6-DOF linear model that considers canopy additional mass was established with benchmark state calculated by 4-DOF static model.Modal analysis of a dynamic model was used to calculate the stability parameters.This method,which is based on a small disturbance linear model and modal analysis,is high-efficiency to the study of parafoil stability.It is well suited for rapid stability analysis in the preliminary stage of parafoil design.Using this method,this paper shows that longitudinal and lateral stability will both decrease when a steady climbing angle increases.This explains the wavy track of the parafoil observed during climbing.

    1.Introduction

    The stability of a parafoil is a significant research field because it is a very important component offlying quality.The stability and the maneuverability of the parafoil were studied by Goodrick in his early literatures.1–3He established a longitudinal three-degree-of-freedom(3-DOF)model in 1975.Using tunnel data,the longitudinal static and dynamic stability of the parafoil system were analyzed with the help of the 3-DOF dynamic model.Before long,Goodrick built a 6-DOF model to evaluate the parafoil’s dynamic stability and to simulate the response with flap controls.Using the same dynamic model,Goodrick explored how scale affected the dynamic characteristics of a parafoil.

    In the 1970s,Nicolaides collected and organized a comprehensive set of parafoil wind tunnel data that was used in the research offlight performance,static stability,and maneuverability.4,5In 2007,Redelinghuys and Rhodes focused attention on other analysis methods,which can show the trim state and static stability graphically in pictures.6The other studies on parafoil stability were eithe r about static stability or based on dynamic simulation.7–11Parafoil static stability analysis was a rapid and intuitive method,but it can only give the motional tendency of the parafoil after a disturbance.Although dynamic simulation can simulate all the motor processes with which the motion convergence can be judged,it needs complex numerical calculations without any quantitative parameter.12–17

    In this paper,a longitudinal static model was used for solving parafoil state variables in a steady straight flight.This model has four degrees of freedom in the longitudinal plane due to the consideration of the relative motion between the canopy and the payload.Small disturbance linear equations were also presented to analyze the stability of the parafoil in a steady straight flight.The longitudinal and lateral stability will worsen when the steady climbing angle becomes larger.The conclusion nicely supports the phenomenon of decreased stability that occurs during climbing in test flights of a powered parafoil.The relative position between the canopy and the payload significantly affects the stability of the whole system.

    2.Analysis model

    2.1.Summary of parafoil system

    A powered parafoil with a NACA4415 airfoil and a rectangular flat shape was studied in this paper.The mass ofits payload is 1 kg.All suspension lines joined to two bilateral symmetry points,collectively named J1,at the end.Through two ropes,point J1was connected to the payload lashing points named J2.The electrical motor-propeller system on the cylindrical payload provided the driving force T for the parafoil.Because the canopy remained tight during most of the time in motion,the barycenter of the canopy was replaced by a fixed point O1.The point O2was regarded as the barycenter of the payload.The mass of the suspension lines was ignored because of the ir small value.All sizes of the parafoil system are shown in Fig.1 and are explained in Table 1.

    2.2.Model of aerodynamic force

    Fig.1 Geometric profile of a parafoil.

    Table 1 Parameters of parafoil.

    Aerodynamic force was divided into the following three parts to be calculated.Lift and induced drag were solved by numerical method based on potential flow the ory.Drag independent of lift was calculated by an engineering estimation.Additional mass force was also estimated by an engineering method.

    2.2.1.Lift and induced drag

    Due to the inflated canopy and the tight suspension lines,the whole parafoil system could be regarded as a rigid body in steady flight.There were two properties of the flow field around the parafoil.First,the flow field without large separation was very similar to that of a normal airfoil at a small angle of attack.Second,the re was almost no airflow inside the canopy after its inflation.

    Because of the potential flow around the canopy and the isolation between the inside and outside of the canopy,the vortex lattice method(VLM)was applied to solving the lift and induced drag of the canopy.

    Lift,induced drag and other relevant moments were calculated using the open source program Tornado coded by Melin.18Similar open source program was also effectively used by Song lei in his dynamic stability research on low speed aircraft.19,20

    2.2.2.O the r types of drag

    In addition to the induced drag,the parafoil drag also contained canopy zero lift drag coefficient CD0,suspension line drag coefficient CDl,and payload drag coefficient CDp.

    (1)Canopy zero lift drag coefficient CD0

    Basic airfoil drag,surface irregularities and fabric roughness,open airfoil nose,and drag of pennants and stabilizer panels were all zero lift drag sources.21A detailed list is included in Table 2.

    (2)Suspension line drag coefficient CDl

    Because every suspension line has a cylindrical shape,the drag coefficient,whose reference area is the windward area,was approximately equal to 1 if the Reynoldsnumber was in the range of 100–100000.Therefore,the usual sense drag coefficient,whose reference area is wing area,can be calculated as follows:

    Table 2 Components of canopy zero lift drag coefficient.

    where Alis the projected area of suspension lines in the direction ofincoming flow,and S the canopy area.

    (3)Payload drag coefficient CDp

    The drag coefficient estimation method of payload is the same as that of the suspension lines because of the cylinder-shaped payload.The drag coefficient of payload can be calculated as follows:

    where Apis the projected area of payload in the direction of incoming flow.

    2.2.3.Apparent mass force

    The apparent mass has a strong effect on the flight dynamics of lightly loaded flight vehicles such as parafoils.It is always expressed as a 6-order matrix,which includes 3 translational mass elements,3 rotational inertia elements and several coupled elements.If a body has three orthogonal symmetry planes such as a spheroid,its apparent mass matrix can be simplified to 3 translational mass elements and 3 rotational inertia elements.These simplified elements generally come as mA,mB,mC,IA,IB,IC(Fig.2,a is the height of canopy arch,b is the length of canopy span,c is the airfoil chord length,tais the airfoil thickness).‘u,v,w’and ‘p,q,r’are translational and rotational velocities of ellipsoidal canopy in the direction of‘X,Y,Z’axis.Kinetic energy of canopy apparent mass E is shown as Eq.(3),while impulse and impulsive moment of apparent mass IFand IMare presented as Eq.(4).Apparent forces and moments acting on canopy are expressed as Eq.(5).

    Fig.2 Definition of canopy apparent mass.

    The expanded form of Eq.(5)is as follows:

    where Fappis the canopy apparent force,Mapp,0the canopy apparent moment.For a briefer dynamic model,the canopy is regarded as a spheroid while the apparent mass is considered.

    Lissaman proposed an engineering estimation method for the parafoil apparent mass with the assumption of a spheroid canopy.22This method expresses the canopy apparent mass matrix by 4 geometric parameters including wing span ‘b’,canopy arch height ‘a(chǎn)’,chord length ‘c’and airfoil thickness‘ta’.With the consideration of the canopy geometrical factors,this estimation method has acceptable accuracy and speed and is used in the following dynamic modeling.All geometric parameters and apparent mass results are presented in Table 3.

    Table 3 Canopy geometric parameters and apparent mass.

    2.3.Dynamic model

    A parafoil stability study is always based on a steady flight status and focuses on the motional process after a small disturbance where the parafoil deformation is very small.However,the relative position of the canopy and the payload change a lot between the different steady flight statuses of a parafoil.In view of the above-mentioned facts,first,a 4-DOF static model which includes relative rotation between canopy and payload is used to solve steady flight status parameters.Then,6-DOF dynamic model for a rigid body is used to study the parafoil motion after a small disturbance.

    The earth rotation,earth curvature,atmosphere wind field and mass of suspension lines are all ignored in the following modeling process.

    2.3.1.Coordinate system

    There are 5 right-handed coordinate systems in this paper,including ground axes,parafoil axes,canopy axes,payload axes,and wind axes.The definitions of axes are included in Table 4.

    2.3.2.4-DOF longitudinal static model

    The relative rotational angle between the canopy and the payload significantly differs with different straight flight statuses.23There are 4 parameters to solve in a 4-DOF static model(Fig.3),including the angle of attack α,engine thrust T,flight speed V,and relative rotation between canopy and payload Δθ.Because the canopy and the suspension lines are tight while in steady flight,the rotation reference point of the canopy and the payload can be chosen at point J2and point J1.To solve the 4 state variables(α,T,V, Δθ),4 equilibrium equations are proposed as follows:

    Table 4 Coordinate system of dynamic model.

    where L is the canopy lift,D1the canopy drag,D2the payload drag,Dslthe drag of suspension lines,G1the canopy gravity,G2the payload gravity,Gslthe gravity of suspension lines.

    The first vector expression of Eq.(8)contains 2 equilibrium equations in X-axis and Z-axis directions.The left two expressions of Eq.(8)show the moment balances of canopy-line system and payload system.Symbols like ‘MA,B’mean a moment of force A on reference point B.

    Based on the 4-DOF static model,a particular engine thrust leads to a group of state variables(α,T,V,Δθ),which results in the stability characteristics of a parafoil.

    2.3.3.6-DOF dynamic model

    Because the stability characteristics are always analyzed with the assumption of a small disturbance based on a certain equilibrium state,the canopy deformation and the relative rotation between the canopy and the payload are too small to be considered.Therefore,the following stability research model is derived from the 6-DOF dynamic model of a rigid body.

    The 6-DOF dynamic model always contains the following equation sets(Eqs.(10)–(13)),including the translational dynamic equation set,rotational dynamic equation set,rotational kinematic equation set and translational kinematic equation set.

    Fig.3 4-DOF static model.

    where Vpis the parafoil velocity,H the parafoil angular momentum,G the parafoil gravity,Faerothe aerodynamic force of parafoil,Maerothe aerodynamic moment of parafoil,O1Obthe geometric vector from point O1to point Ob,φ the roll angle of parafoil,θ the pitch angle of parafoil,ψ the yaw angle of parafoil,L the rolling moment of parafoil,M the pitching moment of parafoil,N the yawing moment of parafoil.

    2.4.Model of stability analysis

    2.4.1.Small disturbance linear equations

    Parafoil dynamic equations are very limited except for the numerical method that easily simulates the movement process,but the stability parameters are difficult to find.The linear dynamic model,which is based on a small disturbance the ory,contains certain stability parameters solved from the eigen matrix.With quantitative parameters,the stability analysis and parafoil design can be more precise and visual.

    Eq.(13)and the last formula of Eq.(12)are independent from the parafoil dynamic model,so the re are 8 formulas to be linearized with 8 small disturbance variables including Δu,Δv,Δw,Δp,Δq,Δr,Δφ and Δθ.Because the base state is a steady straight flight,all the lateral variables are zeros at the very start,such as v0=0,p0=0,q0=0,r0=0 and φ0=0.The disturbance variables of aerodynamic forces are linearized in Eq.(14).Although the stability characteristics are focused,the control inputs,such as engine throttle change or control surface deflection,are discounted in the linear dynamic model(Eqs.(15)and(16)).

    where X1is the X-coordinate of O1Obon parafoil axes,Y1the Y-coordinate of O1Obon parafoil axes,Z1the Z-coordinate of O1Obon parafoil axes.

    Eqs.(15)and(16)are linear ordinary differential equations with constant coefficients that have well-developed the ories for analytical solutions and equation characteristics.Therefore,the linear dynamic model,which is always separated into a longitudinal model and a lateral model,is significant for dynamic analysis,conceptual design and flight control.

    2.4.2.Modal analysis

    According to the linear ordinary differential equation the ory,the linear dynamic modal characteristics of a parafoil can be analyzed as follows.The longitudinal linear dynamic model is used as an example.

    The solution of Eq.(15)is as follows:

    The longitudinal disturbance motion is composed of 4 exponential functions.Ciis constant,and xiis eigenvector.λiis the eigenvalue of matrix Alonwhose eigenvalue may be a real root or a complex root.When the eigenvalue is a real number,the corresponding mode is monotonic,and the negative real root leads to a convergent property.When the eigenvalues are a pair of conjugate complex numbers,the corresponding mode is periodic,and the negative real part leads to a convergent property.

    where ξ is the real part of eigenvalue,ω the imaginary part of eigenvalue.

    where thalfis the half-life time,and tdoublethe time to double amplitude.

    The relationship of frequency ω and period T is as follows:

    The convergence property of a mode depends on the real part ofits eigenvalue.Negative means convergence and positive means divergence.The larger absolute value of the real part leads to a quicker oscillation frequency.

    3.Example analysis

    The full process of the stability analysis of the aforementioned parafoil in this paper is as follows(Fig.4).First,the state parameters are solved on a certain steady straight flight status,which is regarded as a benchmark status by the parafoil 4-DOF static model.Second,the longitudinal and lateral linear dynamic models are deduced from the 6-DOF nonlinear dynamic model with the assumption of a small disturbance near the steady straight flight status.Finally,the longitudinal and lateral modal eigenvalues and characteristics are analyzed using the well-developed the ory of linear systems.

    Tables 5–8 show the modal eigenvalues and the modal characteristic parameters of every mode.Figs.5 and 6 propose the variation tendency of modal eigenvalues after the climbing angle.The directions of the arrows display the increasing climbing angle.

    The parafoil dynamic modal characteristics include two longitudinal modes and three lateral modes and are very similar to those offixed-wing airplanes.In most cases,the longitudinal coefficient matrix has two pairs of conjugate complex roots that correspond to two motion modes.One mode,which is named longitudinal mode 1,has a shorter period and converges faster,whereas the other,which is named mongitudinal mode 2,has a longer period and converges slower.In addition,the lateral coefficient matrix has one pair of conjugate complex roots and two real roots.The conjugate complex roots correspond to an oscillation mode which has a shorter period and converges faster,named lateral mode 1.Two real roots mean two monotonous modes,including one fast convergence mode named lateral-mode 2 and one slow convergence mode named lateral mode 3.

    Longitudinal mode 2 diverges when the climbing angle increases just like the eigenvalues going across the imaginary axis.When the climbing angle grows,lateral mode 1 and lateral mode 2 slightly change.However,the divergence critical point of lateral mode 3 comes during the gliding to level cruising period,and the divergence speed increases with the climb-ing angle.This explains why the parafoil lateral stability becomes worse during climbing.

    Fig.4 Process and models of stability analysis.

    Table 5 Modal characteristics of longitudinal mode 1.

    Table 6 Modal characteristics of longitudinal mode 2.

    Table 7 Modal characteristics of lateral mode 1.

    In conclusion,the parafoil stability generally worsens when the climbing angle increases,especially in the lateral direction.

    4.Model discussion

    4.1.Aerodynamic accuracy

    A parafoil which has been tested in wind tunnel by NASA Langley Laboratory(Fig.7)was used to validate the aerodynamic estimation model.The geometric parameters of validation model are as follows.

    The aerodynamic estimation method of parafoil in this paper is a combination of vortex lattice method(VLM)and engineering estimation method(EEM).Lift and induced drag of canopy were calculated by VLM,while other types of drag were estimated by EEM.Computational results and wind tunnel data are presented in Figs.8 and 9.

    Though the aerodynamic estimation method in this paper contains some errors,the computational results fit experimental results well,especially at small angles of attack.The computational results can be used in dynamic simulation,even though canopy stall cannot be simulated by this method.

    4.2.Computation speed

    The mixture of VLM and EEM improved the computational efficiency of parafoil aerodynamic estimation.Computation of 8 modal analysis results took less than 8 s on a common personal computer(CPU:Inter Core i7-4710MQ 2.5 GHz,RAM:12 GB).Stability analysis model in this paper has an efficient speed,which is very important in conceptual design and optimization iteration.

    4.3.Basis of stability analysis model

    Stability analysis process in this paper is as follows(Fig.10):

    (1)Assume a parafoil which is in a steady straight flight.All parameters can be calculated by 4-DOF static model including relative angle of canopy and payload.

    (2)Movement after small disturbance is the basement of stability analysis.Since the disturbance is weak,the disturbed motion will not cause large relative motion between canopy and payload.Therefore whole parafoil system was regarded as a rigid body whose motion could be described by a 6-DOF dynamic model.

    (3)With an assumption of small disturbance,a 6-DOF dynamic model can be simplified into a linear dynamic model which is convenient for stability analysis.

    Table 8 Modal characteristics of lateral mode 2 and lateral mode 3.

    5.Geometric influence of parafoil stability

    When the climbing angle increases,the parafoil stability will worsen in both longitudinal and lateral directions.Lateral mode 3,in particular,may diverge very quickly.To improve the quality of the parafoil stability,three geometric parameters will be changed and analyzed.These parameters include the centroid distance of the canopy and the payload lO1O2,the angle between the horizontal and the connection line of the canopy and the payload centroids η,and the dihedral of the adjacent air-rooms Δβdih.

    5.1.Relative position of canopy and payload

    Fig.5 Root locus of longitudinal modes.

    Fig.6 Root locus of lateral modes.

    Fig.7 Parafoil model for aerodynamic validation.

    Fig.8 Lift coefficients of aerodynamic validation.

    Fig.9 Drag coefficients of aerodynamic validation.

    Fig.10 Stability analysis process.

    The relative positions of the canopy and the payload are replaced by two parameters including the centroid distance of the canopy and the payload lO1O2and the angle between the horizontal and the connection line of the canopy and payload centroids η.

    Fig.11 Root locus with different lO1O2.

    Fig.11 shows that lO1O2has little influence on longitudinal mode 1 and lateral mode 1 but has a significant effect on longitudinal mode 2 and lateral mode 2.When lO1O2decreases,the eigenvalues of longitudinal mode 2 will degenerate into two real roots and one of the m may be positive.The decreasing of lO1O2leads to a lower convergence rate of lateral mode 2.Although lO1O2has little influence on lateral mode 3 on a small climbing angle,its reduction results in a faster divergence rate of lateral mode 3 on a large climbing angle.In other words,moderately increasing lO1O2is good for the parafoil stability.

    From Fig.12,though η has a significant influence on longitudinal mode 1 and lateral mode 1,it cannot change the modes’convergence properties completely.Although η has little effect on lateral mode 2,η has a complex influence on longitudinal mode 2.If η decreases,the divergence rate of longitudinal mode 2 will first slow down,and the n its eigenvalues will degenerate into real roots.Although η has little influence on lateral mode 3 on a large climbing angle,its reduction results in a slower divergence rate of lateral mode 3 on a small climbing angle.In other words,moderately decreasing η is good for parafoil stability.

    5.2.Dihedral angle of canopy

    It can be observed from Fig.13 that Δβdihhas little influence on the longitudinal modes,but it has significant effects on the lateral modes.A large canopy dihedral angle leads to not only a more stable lateral mode 1 and lateral mode 3 but also a slower convergence rate of lateral mode 2.With a small disturbance of Δβdih,it is difficult to change the convergence properties of longitudinal mode 1 and longitudinal mode 2.In other words,increasing Δβdihis good for most of the lateral modes,especially when the divergence problem of lateral mode 3 is solved.

    Fig.12 Root locus with different η.

    Fig.13 Root locus with different Δβdih.

    6.Conclusions

    Parafoil motion modes are very similar to those of conventional fixed wing airplanes,including two longitudinal modes and three lateral modes.Not only longitudinal stability but also lateral stability will worsen when the climbing angle increases,and will be optimized when the geometrical parameters change.Increasing the distance between the canopy centroid and the payload centroid,decreasing the angle between the canopy-payload centroid connection line and the horizontal line,or increasing the canopy dihedral angle is good for parafoil stability.

    With the 4-DOF longitudinal static model,the parafoil steady motion state was solved in this paper considering the relative motion of the canopy and the payload.Then,a 6-DOF linear dynamic model was established to analyze the modal composition,modal characteristics and motion stability.The dynamic model and solving process not only lead to conclusions which support the phenomenon that decreased stability occurs in flight climbing,but also propose a rapid stability estimate method that can be used in parafoil dynamic characteristic analysis and parafoil design.

    1.Goodrick TF.Scale effects on performance of ram air wings.Reston(VA):AIAA;1984.Report No.:AIAA-1984-0783.

    2.Goodrick TF.Simulation studies of the flight dynamics of gliding parachute systems.Reston(VA):AIAA;1979.Report No.:AIAA-1979-0417.

    3.Goodrick TF.Theoretical study of the longitudinal stability of high-performance gliding airdrop systems.Reston(VA):AIAA;1975.Report No.:AIAA-1975-1394.

    4.Nicolaides JD.Parafoil wind tunnel tests.1971.Report No.:AD731564.

    5.Nicolaides JD.Parafoil flight performance.Reston(VA):AIAA;1970.Report No.:AIAA-1970-1190.

    6.Redelinghuys C,Rhodes SC.A graphic portrayal of parafoil trim and static stability.Reston(VA):AIAA;2007.Report No.:AIAA 2007–2561.

    7.Benedetti DM,de Freitas Pinto RLU,Ferreira RPM.Paragliders stability characteristics.Warrendale(PA):SAE International;2013.Report No.:2013-36-0355.

    8.Ward M,Culpepper S,Costello M.Parametric study of powered parafoil flight dynamics.Reston(VA):AIAA;2012.Report No.:AIAA-2012-4726.

    9.Drozd V,Johnson P.Gliding parachute performance testing.Reston(VA):AIAA;2001.Report No.:AIAA 2001–2016.

    10.Iosilevskii G.Center of gravity and minimal lift coefficient limits of a gliding parachute.J Aircraft 1995;32(6):1297–302.

    11.Crimi P.Lateral stability of gliding parachutes.J Guid,Control,Dynam 1990;13(6):1060–3.

    12.Zhang H,Chen Z,Qiu J.Modeling and motion analysis of multibodies dynamic of unmaned parafoil vehicle.J Syst Simul 2016;28(8):1841–5[Chinese].

    13.Yu G.Nine-degree offreedom modeling and flight dynamic analysis of parafoil aerial delivery system. Proc Eng 2015;99:866–72.

    14.Zhu EL,Sun QL,Tan PL,Chen ZQ,Kang XF,He YP.Modeling of powered parafoil based on Kirchhoff motion equation.Nonlinear Dynam 2015;79(1):617–29.

    15.Luders B,Ellertson A,How JP,Sugel I.Wind uncertainty modeling and robust trajectory planning for autonomous parafoils.J Guid,Control,Dynam 2016;39(7):1614–30.

    16.Chiel BS,Dever C.Autonomous parafoil guidance in high winds.J Guid,Control,Dynam 2015;38(5):963–9.

    17.Scheuermann E,Ward M,Cacan MR,Costello M.Combined lateral and longitudinal control of parafoils using upper-surface canopy spoilers.J Guid,Control,Dynam 2015;38(11):2122–31.

    18.Melin T.A vortex lattice MATLAB implementation for linear aerodynamic wing applications[dissertation].Stockholm,Sweden:Royal Institute of Technology;2000.

    19.Song L,Yang H,Zhang Y,Zhang HY,Huang J.Dihedral influence on lateral-directional dynamic stability on large aspect ratio tailless flying wing aircraft.Chin J Aeronaut 2014;27(5):1449–55.

    20.Song L,Yang H,Yan XF,Ma C,Huang J.A study of instability in a miniature flying-wing aircraft in high-speed taxi.Chin J Aeronaut 2015;28(3):749–56.

    21.Lingard JS.The aerodynamics of gliding parachutes.Reston(VA):AIAA;1986.Report No.:AIAA-1986-2427.

    22.Lissaman PBS,Brown GJ.Apparent mass effects on parafoil dynamics.Reston(VA):AIAA;1993.Report No.:AIAA-1993-1236.

    23.Yang H,Song L,Liu C,Huang J.Study on powered-parafoil longitudinal flight performance with a fast estimation model.J Aircraft 2013;50(5):1660–8.

    18 July 2016;revised 30 September 2016;accepted 22 November 2016 Available online 20 June 2017

    Dynamic model;

    Motion mode;

    Parafoil;

    Small-disturbance the ory;

    Stability

    *Corresponding author.

    E-mail address:songlei@buaa.edu.cn(L.SONG).

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2017.06.003

    1000-9361?2017 Production and hosting by Elsevier Ltd.on behalf of Chinese Society of Aeronautics and Astronautics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?2017 Production and hosting by Elsevier Ltd.on behalf of Chinese Society of Aeronautics and Astronautics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    热99re8久久精品国产| 91老司机精品| 水蜜桃什么品种好| 老熟妇仑乱视频hdxx| 男女床上黄色一级片免费看| 免费人成视频x8x8入口观看| 成人三级做爰电影| 97人妻天天添夜夜摸| 村上凉子中文字幕在线| 天堂中文最新版在线下载| 欧美日韩视频精品一区| 黄色怎么调成土黄色| 一级黄色大片毛片| 亚洲,欧美精品.| av超薄肉色丝袜交足视频| 中出人妻视频一区二区| 欧美不卡视频在线免费观看 | 亚洲精品久久成人aⅴ小说| 香蕉丝袜av| 国产精品秋霞免费鲁丝片| 丁香六月欧美| 午夜免费成人在线视频| 90打野战视频偷拍视频| 十分钟在线观看高清视频www| 99国产精品99久久久久| 乱人伦中国视频| 视频区欧美日本亚洲| 成人黄色视频免费在线看| 久久午夜综合久久蜜桃| 女同久久另类99精品国产91| 午夜福利,免费看| 久久久久国内视频| 欧美精品av麻豆av| 建设人人有责人人尽责人人享有的| 亚洲国产毛片av蜜桃av| 51午夜福利影视在线观看| 国产成人免费观看mmmm| 不卡av一区二区三区| 精品亚洲成a人片在线观看| 成人亚洲精品一区在线观看| 少妇的丰满在线观看| 又黄又粗又硬又大视频| 久久狼人影院| 国产黄色免费在线视频| 怎么达到女性高潮| 国产在线一区二区三区精| 亚洲中文av在线| av福利片在线| 咕卡用的链子| 乱人伦中国视频| 女性生殖器流出的白浆| 亚洲免费av在线视频| 黑人操中国人逼视频| 成人国产一区最新在线观看| 久久香蕉国产精品| 日本vs欧美在线观看视频| 9191精品国产免费久久| 国产精品久久久av美女十八| 中文字幕色久视频| 免费在线观看视频国产中文字幕亚洲| 一区二区日韩欧美中文字幕| 男人的好看免费观看在线视频 | 国产精品亚洲一级av第二区| 男女床上黄色一级片免费看| 很黄的视频免费| 亚洲成人手机| av中文乱码字幕在线| 久久国产精品大桥未久av| 亚洲人成伊人成综合网2020| 欧美国产精品va在线观看不卡| 巨乳人妻的诱惑在线观看| 性色av乱码一区二区三区2| 国产区一区二久久| 亚洲色图av天堂| 在线永久观看黄色视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品国产综合久久久| 午夜免费成人在线视频| 久久久国产精品麻豆| 无人区码免费观看不卡| 久久精品亚洲熟妇少妇任你| av在线播放免费不卡| 天天操日日干夜夜撸| √禁漫天堂资源中文www| 欧美精品亚洲一区二区| 一二三四社区在线视频社区8| 久9热在线精品视频| xxxhd国产人妻xxx| 久久久国产欧美日韩av| 亚洲一区二区三区欧美精品| 国产激情欧美一区二区| 久久久国产欧美日韩av| 日韩大码丰满熟妇| 在线观看免费高清a一片| 嫩草影视91久久| 国产男女超爽视频在线观看| 国产激情久久老熟女| 国产精品一区二区精品视频观看| 亚洲久久久国产精品| 一级作爱视频免费观看| 国产在视频线精品| 啦啦啦免费观看视频1| 69av精品久久久久久| 黑人猛操日本美女一级片| 麻豆成人av在线观看| 日本精品一区二区三区蜜桃| 99精品久久久久人妻精品| 国产1区2区3区精品| 日本五十路高清| 欧美日韩乱码在线| 国产精品一区二区在线不卡| 国产深夜福利视频在线观看| 18禁美女被吸乳视频| 国产精品欧美亚洲77777| 日韩中文字幕欧美一区二区| 亚洲熟妇中文字幕五十中出 | 在线国产一区二区在线| 精品视频人人做人人爽| 亚洲人成电影观看| 欧美日韩国产mv在线观看视频| videos熟女内射| 精品福利永久在线观看| 日日夜夜操网爽| 亚洲伊人色综图| 午夜亚洲福利在线播放| xxx96com| 国产野战对白在线观看| 欧美亚洲 丝袜 人妻 在线| 精品少妇久久久久久888优播| 日韩免费av在线播放| 99国产综合亚洲精品| 久久久久视频综合| 久久久精品区二区三区| 中文字幕人妻丝袜制服| 久久热在线av| www.自偷自拍.com| 欧美在线一区亚洲| 一级毛片女人18水好多| 日本五十路高清| 国产一区二区三区在线臀色熟女 | 首页视频小说图片口味搜索| 欧美激情久久久久久爽电影 | 国产精品一区二区在线不卡| 伊人久久大香线蕉亚洲五| 99在线人妻在线中文字幕 | 欧美 日韩 精品 国产| 在线天堂中文资源库| 桃红色精品国产亚洲av| 成人精品一区二区免费| 亚洲成人免费av在线播放| 51午夜福利影视在线观看| 午夜久久久在线观看| 欧美精品亚洲一区二区| 日韩欧美一区二区三区在线观看 | 9色porny在线观看| 国产欧美日韩一区二区三区在线| 露出奶头的视频| 亚洲免费av在线视频| www日本在线高清视频| 国产蜜桃级精品一区二区三区 | 热re99久久精品国产66热6| 亚洲精品美女久久av网站| 国产极品粉嫩免费观看在线| av电影中文网址| 欧美在线黄色| 久久久久国内视频| 国产激情欧美一区二区| 国产精品久久久av美女十八| 电影成人av| 丰满迷人的少妇在线观看| 麻豆乱淫一区二区| 国产成人精品在线电影| 国产精品久久电影中文字幕 | a级片在线免费高清观看视频| 久久九九热精品免费| 亚洲精品av麻豆狂野| 人人妻,人人澡人人爽秒播| 一个人免费在线观看的高清视频| 正在播放国产对白刺激| 91成人精品电影| 在线观看午夜福利视频| 女人爽到高潮嗷嗷叫在线视频| 欧美黑人精品巨大| 国产区一区二久久| 12—13女人毛片做爰片一| 丝袜美腿诱惑在线| 夜夜躁狠狠躁天天躁| 十八禁高潮呻吟视频| 日韩人妻精品一区2区三区| 亚洲精品久久午夜乱码| 天天影视国产精品| 日本一区二区免费在线视频| 精品少妇一区二区三区视频日本电影| 午夜亚洲福利在线播放| 国产成人免费无遮挡视频| 国产真人三级小视频在线观看| a在线观看视频网站| 午夜日韩欧美国产| 在线免费观看的www视频| 亚洲人成伊人成综合网2020| 亚洲精品国产区一区二| 亚洲黑人精品在线| 精品高清国产在线一区| 99热只有精品国产| 久久久国产一区二区| 国产一区二区三区视频了| 俄罗斯特黄特色一大片| 国产激情欧美一区二区| 亚洲第一青青草原| 精品久久蜜臀av无| 黑人巨大精品欧美一区二区蜜桃| 午夜福利在线观看吧| 真人做人爱边吃奶动态| 人人妻人人爽人人添夜夜欢视频| 久久久久国产一级毛片高清牌| 激情视频va一区二区三区| 亚洲性夜色夜夜综合| 成人影院久久| 精品亚洲成a人片在线观看| 男人的好看免费观看在线视频 | 国产又色又爽无遮挡免费看| 精品久久久久久电影网| 悠悠久久av| 高清黄色对白视频在线免费看| 看免费av毛片| 久久亚洲精品不卡| 国产成人欧美在线观看 | 欧美丝袜亚洲另类 | 成年版毛片免费区| 久久中文字幕人妻熟女| 久久人妻av系列| 好男人电影高清在线观看| 夜夜爽天天搞| 中文字幕精品免费在线观看视频| 国产成人精品在线电影| 日日夜夜操网爽| 精品人妻在线不人妻| 热99re8久久精品国产| 国产亚洲av高清不卡| 国内毛片毛片毛片毛片毛片| 男男h啪啪无遮挡| 热99久久久久精品小说推荐| 亚洲欧美激情综合另类| 国产成人欧美| 桃红色精品国产亚洲av| 国产精品1区2区在线观看. | 99久久99久久久精品蜜桃| 国产欧美日韩一区二区三区在线| 欧美激情高清一区二区三区| 精品国内亚洲2022精品成人 | 男女之事视频高清在线观看| 一级毛片高清免费大全| 中文字幕人妻丝袜一区二区| 欧洲精品卡2卡3卡4卡5卡区| 在线视频色国产色| 极品人妻少妇av视频| 黄网站色视频无遮挡免费观看| 精品免费久久久久久久清纯 | 久久久久久久精品吃奶| 老司机深夜福利视频在线观看| 黄色视频不卡| 国产人伦9x9x在线观看| 在线观看免费视频网站a站| 久久这里只有精品19| 建设人人有责人人尽责人人享有的| 久久精品国产亚洲av高清一级| 国产成人免费无遮挡视频| 亚洲视频免费观看视频| 午夜久久久在线观看| 91成人精品电影| 在线观看免费午夜福利视频| 亚洲精品在线美女| 色精品久久人妻99蜜桃| 又黄又爽又免费观看的视频| 久久中文字幕人妻熟女| 18禁国产床啪视频网站| 免费久久久久久久精品成人欧美视频| 免费在线观看影片大全网站| 日韩大码丰满熟妇| 一二三四在线观看免费中文在| 俄罗斯特黄特色一大片| 99久久99久久久精品蜜桃| 国产欧美日韩精品亚洲av| www.精华液| 国产一区有黄有色的免费视频| 视频区图区小说| 动漫黄色视频在线观看| 老鸭窝网址在线观看| 一区二区三区国产精品乱码| 日本黄色日本黄色录像| 精品久久久久久久久久免费视频 | 99国产精品免费福利视频| 国产精品欧美亚洲77777| 欧美av亚洲av综合av国产av| 日本一区二区免费在线视频| 久久久久久人人人人人| 在线观看日韩欧美| 久久婷婷成人综合色麻豆| 亚洲国产中文字幕在线视频| 精品久久久久久,| 在线观看免费午夜福利视频| 国产精品久久久久久精品古装| 中亚洲国语对白在线视频| 欧美乱色亚洲激情| 久久中文字幕一级| 国产1区2区3区精品| 国产精品免费一区二区三区在线 | 亚洲少妇的诱惑av| 精品久久久久久电影网| 十八禁高潮呻吟视频| 免费在线观看黄色视频的| 亚洲成人免费电影在线观看| 超色免费av| 一级a爱视频在线免费观看| 日本a在线网址| 9191精品国产免费久久| 五月开心婷婷网| 亚洲精品久久午夜乱码| 久久久水蜜桃国产精品网| 精品第一国产精品| 高清视频免费观看一区二区| 久久人人爽av亚洲精品天堂| 亚洲,欧美精品.| 在线播放国产精品三级| 黄色女人牲交| av天堂久久9| 国产av一区二区精品久久| 精品久久蜜臀av无| 精品一区二区三卡| 国产激情久久老熟女| 巨乳人妻的诱惑在线观看| 首页视频小说图片口味搜索| 欧美精品高潮呻吟av久久| 日韩一卡2卡3卡4卡2021年| 好男人电影高清在线观看| 一级作爱视频免费观看| 999久久久国产精品视频| 国产av又大| 久久久精品区二区三区| 欧美成狂野欧美在线观看| 一级黄色大片毛片| 桃红色精品国产亚洲av| 不卡一级毛片| 国产欧美日韩一区二区精品| 老汉色∧v一级毛片| 久久九九热精品免费| 日本黄色视频三级网站网址 | 亚洲伊人色综图| 国产成人av教育| 欧美+亚洲+日韩+国产| 亚洲人成电影免费在线| 精品电影一区二区在线| 美女 人体艺术 gogo| 伊人久久大香线蕉亚洲五| 熟女人妻精品中文字幕| 亚洲av成人不卡在线观看播放网| 国产中年淑女户外野战色| 精品电影一区二区在线| aaaaa片日本免费| 男人舔奶头视频| 热99re8久久精品国产| 亚洲 国产 在线| 亚洲人与动物交配视频| 国产精品影院久久| 夜夜夜夜夜久久久久| 亚洲精品在线观看二区| 少妇的丰满在线观看| 国产真实伦视频高清在线观看 | 午夜精品久久久久久毛片777| 999久久久精品免费观看国产| 一本久久中文字幕| 悠悠久久av| 亚洲国产色片| 好男人电影高清在线观看| 无人区码免费观看不卡| 国产精品影院久久| 免费看日本二区| 亚洲成人中文字幕在线播放| 亚洲国产精品久久男人天堂| 国产欧美日韩一区二区三| 亚洲avbb在线观看| 他把我摸到了高潮在线观看| 在线播放国产精品三级| 男女床上黄色一级片免费看| 精品久久久久久久久久免费视频| 国产一区二区在线av高清观看| 精品国内亚洲2022精品成人| 一个人免费在线观看的高清视频| 老司机深夜福利视频在线观看| 狠狠狠狠99中文字幕| 757午夜福利合集在线观看| 精品免费久久久久久久清纯| 又黄又爽又免费观看的视频| 亚洲精品久久国产高清桃花| 麻豆久久精品国产亚洲av| 麻豆国产av国片精品| 日韩免费av在线播放| 热99re8久久精品国产| 人人妻,人人澡人人爽秒播| 日本黄色片子视频| avwww免费| 成人18禁在线播放| 天堂动漫精品| 亚洲国产欧美网| 免费观看人在逋| 日本熟妇午夜| 国模一区二区三区四区视频| 身体一侧抽搐| 午夜激情福利司机影院| 日韩欧美精品v在线| 性欧美人与动物交配| 亚洲精品日韩av片在线观看 | 久久国产乱子伦精品免费另类| 国产v大片淫在线免费观看| 中文字幕人成人乱码亚洲影| 亚洲天堂国产精品一区在线| 亚洲内射少妇av| 麻豆一二三区av精品| 一个人免费在线观看的高清视频| 免费看光身美女| 69av精品久久久久久| 女同久久另类99精品国产91| 国产淫片久久久久久久久 | 少妇丰满av| 尤物成人国产欧美一区二区三区| 老汉色av国产亚洲站长工具| 日韩欧美在线乱码| 一夜夜www| 黄色日韩在线| 真人一进一出gif抽搐免费| 亚洲 国产 在线| 日本黄色片子视频| 国产伦精品一区二区三区视频9 | 免费av毛片视频| 天堂网av新在线| 国产一区二区在线av高清观看| 久久精品国产综合久久久| 亚洲七黄色美女视频| 三级男女做爰猛烈吃奶摸视频| 亚洲最大成人手机在线| 男人舔奶头视频| 国产精品久久久久久久久免 | 欧美性猛交黑人性爽| 91九色精品人成在线观看| 最近最新中文字幕大全免费视频| 女同久久另类99精品国产91| 可以在线观看的亚洲视频| 亚洲精品一区av在线观看| 一卡2卡三卡四卡精品乱码亚洲| 美女免费视频网站| 最近最新中文字幕大全电影3| 久久精品影院6| 看黄色毛片网站| 国产黄色小视频在线观看| 悠悠久久av| 很黄的视频免费| 国产一区在线观看成人免费| 国产高清videossex| 99在线人妻在线中文字幕| 美女被艹到高潮喷水动态| 99国产综合亚洲精品| 亚洲av五月六月丁香网| 日本一二三区视频观看| 日韩欧美国产一区二区入口| 精品午夜福利视频在线观看一区| 欧美黄色片欧美黄色片| 久久精品国产综合久久久| 69av精品久久久久久| 亚洲 欧美 日韩 在线 免费| 美女 人体艺术 gogo| 3wmmmm亚洲av在线观看| 亚洲在线自拍视频| 亚洲狠狠婷婷综合久久图片| 国产精品99久久99久久久不卡| 欧美乱妇无乱码| 在线观看av片永久免费下载| 亚洲欧美精品综合久久99| 美女黄网站色视频| 亚洲午夜理论影院| 免费搜索国产男女视频| 99久久久亚洲精品蜜臀av| 欧美3d第一页| 他把我摸到了高潮在线观看| 一区二区三区国产精品乱码| 日韩av在线大香蕉| 免费在线观看影片大全网站| 亚洲精品456在线播放app | 一区福利在线观看| 免费观看精品视频网站| 一个人免费在线观看电影| 免费av不卡在线播放| 麻豆国产av国片精品| 日韩成人在线观看一区二区三区| 国产又黄又爽又无遮挡在线| 嫩草影院精品99| 亚洲av二区三区四区| 99精品久久久久人妻精品| 午夜影院日韩av| 尤物成人国产欧美一区二区三区| 九九热线精品视视频播放| 99久久九九国产精品国产免费| 久久午夜亚洲精品久久| 国产野战对白在线观看| 观看免费一级毛片| 国产精品爽爽va在线观看网站| 老司机在亚洲福利影院| 可以在线观看的亚洲视频| 中文字幕人成人乱码亚洲影| 免费在线观看日本一区| 日本免费a在线| 在线观看免费视频日本深夜| 久久久久性生活片| 午夜免费观看网址| 一级毛片高清免费大全| 亚洲精华国产精华精| 中文字幕av成人在线电影| 亚洲欧美精品综合久久99| 男女床上黄色一级片免费看| 熟妇人妻久久中文字幕3abv| 亚洲最大成人手机在线| 亚洲欧美日韩无卡精品| 久久久精品大字幕| 午夜亚洲福利在线播放| 不卡一级毛片| 91麻豆av在线| 亚洲内射少妇av| 国产毛片a区久久久久| 麻豆成人午夜福利视频| 亚洲精品成人久久久久久| 国内精品久久久久精免费| 51午夜福利影视在线观看| 亚洲一区二区三区色噜噜| 免费看日本二区| 国产精品一区二区三区四区久久| 99国产精品一区二区三区| 日韩亚洲欧美综合| 中文字幕人成人乱码亚洲影| 国产精品电影一区二区三区| 亚洲国产精品成人综合色| 一进一出抽搐gif免费好疼| 精品久久久久久成人av| 亚洲精品粉嫩美女一区| 成人国产综合亚洲| 国产麻豆成人av免费视频| 黄色女人牲交| 欧美乱码精品一区二区三区| 久久性视频一级片| 国产成人系列免费观看| 欧美最黄视频在线播放免费| 99久久无色码亚洲精品果冻| 日韩欧美国产一区二区入口| 亚洲天堂国产精品一区在线| 日韩欧美免费精品| av在线蜜桃| 亚洲av电影不卡..在线观看| 久久精品综合一区二区三区| 在线a可以看的网站| 亚洲欧美激情综合另类| 在线免费观看的www视频| 国产探花极品一区二区| 国产真实乱freesex| 欧美bdsm另类| 一级毛片高清免费大全| 午夜老司机福利剧场| 国产午夜精品久久久久久一区二区三区 | 啦啦啦韩国在线观看视频| 久久6这里有精品| 精品电影一区二区在线| 久久久久精品国产欧美久久久| 极品教师在线免费播放| 欧美日韩黄片免| 99久久综合精品五月天人人| 亚洲精品国产精品久久久不卡| 亚洲av五月六月丁香网| 免费在线观看成人毛片| 亚洲av免费在线观看| 日本熟妇午夜| 一进一出抽搐动态| 欧美午夜高清在线| 亚洲无线观看免费| 最近在线观看免费完整版| 日本 av在线| 亚洲国产日韩欧美精品在线观看 | 午夜影院日韩av| 中文字幕久久专区| 久久久久久久精品吃奶| 午夜福利在线在线| 久久久精品大字幕| 欧美黑人巨大hd| 日本与韩国留学比较| 看免费av毛片| 精品久久久久久久末码| 亚洲精品一区av在线观看| 国产色婷婷99| 最近最新免费中文字幕在线| 精品人妻1区二区| 夜夜躁狠狠躁天天躁| 母亲3免费完整高清在线观看| 日本五十路高清| 中文字幕久久专区| 国产精品久久视频播放| 国产三级在线视频| 99精品在免费线老司机午夜| 欧美成人a在线观看| 最好的美女福利视频网| 欧美最黄视频在线播放免费| 欧美成人一区二区免费高清观看| 少妇人妻一区二区三区视频| 午夜视频国产福利| 免费观看的影片在线观看| 在线观看一区二区三区| 欧美乱码精品一区二区三区| av女优亚洲男人天堂| 91麻豆精品激情在线观看国产| 在线十欧美十亚洲十日本专区|