• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Determination of a suitable set of loss models for centrifugal compressor performance prediction

    2017-11-17 08:31:44ElkinGUTIRREZVELSQUEZ
    CHINESE JOURNAL OF AERONAUTICS 2017年5期

    Elkin I.GUTIéRREZ VELáSQUEZ

    Faculty of Mechanical Engineering,Universidad Antonio Nari?o,Medellín 050012,Colombia

    Determination of a suitable set of loss models for centrifugal compressor performance prediction

    Elkin I.GUTIéRREZ VELáSQUEZ*

    Faculty of Mechanical Engineering,Universidad Antonio Nari?o,Medellín 050012,Colombia

    Performance prediction in preliminary design stages of several turbomachinery components is a critical task in order to bring the design processes of the se devices to a successful conclusion.In this paper,a review and analysis of the major loss mechanisms and loss models,used to determine the efficiency of a single stage centrifugal compressor,and a subsequent examination to determine an appropriate loss correlation set for estimating the isentropic efficiency in preliminary design stages of centrifugal compressors,were developed.Several semi-empirical correlations,commonly used to predict the efficiency of centrifugal compressors,were implemented in FORTRAN code and the n were compared with experimental results in order to establish a loss correlation set to determine,with good approximation,the isentropic efficiency of single stage compressor.The aim of this study is to provide a suitable loss correlation set for determining the isentropic efficiency of a single stage centrifugal compressor,because,with a large amount of loss mechanisms and correlations available in the literature,it is difficult to ascertain how many and which correlations to employ for the correct prediction of the efficiency in the preliminary stage design of a centrifugal compressor.As a result of this study,a set of correlations composed by nine loss mechanisms for single stage centrifugal compressors,conformed by a rotor and a diffuser,are specified.

    1.Introduction

    Centrifugal compressors are an integral part of the industry due to the ir good performance,large tolerance to process fluctuations,and higher reliability compared to other compressors,and the y are,in many cases,considered as critical equipment in multiple processes.1Centrifugal compressors have different sizes depending on the ir pressure ratio,which can vary from 1:3 by stage to 12:1 in experimental models.2However,the ir performance calculation,for both design point and off-design conditions,requires the knowledge of the many phenomena which give rise to a series of losses that contribute to significant decrease of the ir efficiency.Therefore,the accurate calculation and proper weighting of the se losses are crucial to the design of centrifugal compressors because if certain design parameters are not properly controlled,the ir efficiency may decrease dramatically,which will generate a substantial increase in operating costs.

    Correctly predicting the efficiency of a turbomachine is actually quite difficult.It demands a combination of the oretical and experimental results,from which a set of semiempirical correlations can be obtained.These semi-empirical correlations,dating from several decades,are ‘black boxes”that produce a relationship between inputs and outputs(without a physical description of the phenomenon),and are still the resource used to predict off-design characteristics of turbomachines,because available computational methods fail to predict the ir performance with sufficient accuracy.3

    The aim of this paper is to establish a set of correlations that adequately predict the performance of centrifugal compressors in preliminary design stages,and since the wide variety of correlations and mechanisms available in the literature becomes problematic,itisa priority to know how many and which mechanisms should be used in order to properly predict the performance of centrifugal compressors.The present study conducts an analysis of different loss correlations reportedin the to determine the loss correlation set to determine the loss correlation set most suitablefor predicting the efficiency of single stage centrifugal compressors experimentallytested.Efficiency results of several experimental tests reported in the literature are compared with the computed isentropicefficiency obtained using the different loss correlation sets in order to determine the one that fits better with all of the centrifugal compressors analyzed in this study.

    2.Centrifugal compressor losses

    In some open literature sources,such as Refs.4,5,the losses are typically collected togethe r as a slip factor and/or loss coefficient.The disadvantage of this procedure is that the effects of the individual losses are not clearly characterized and the refore its influence is little recognized.On the other hand,some authors,such as Aungier6and Boyce,2document the individual losses in much greater detail.According to the m,the re are 11 well-documented loss mechanisms that affect the impeller,and the se loss mechanisms are:(A)shock;(B)incidence;(C)diffusion;(D)choke;(E)skin friction;(F)clearance gap;(G)blade loading;(H)hub-shroud loading;(I)wake mixing;(J)expansion;(K)supercritical Mach number.

    However,the losses with the highest impact on the performance of the compressor according to Aungier6are:(A)skin friction loss;(B)entrance diffusion loss;(C)recirculation;(D)incidence loss;(E)clearance loss;(F)disk friction loss.

    Besides losses on the impeller,energy losses must likewise be evaluated in both the vaneless diffuser and vaned diffuser.In the vaneless diffuser,the losses are due to skin friction and diffusion.6The vaned diffuser exhibits energy losses associated with skin friction,incidence angle,blockage,wake mixing,and choking.

    However,some of the correlations available in the literature,obtained experimentally,for different loss mechanisms,take into consideration several mechanisms of loss simultaneously due to the extreme difficulty of differentiating its effects,eithe r for technical or conceptual issues,so the use of correlations for all loss mechanisms would lead to an overestimation of the overall loss of the compressor.

    Consequently,the selection of a set of correlations for calculating loss of efficiency in turbomachines is not a trivial task,so it requires proper selection of mechanisms and correlations to be considered for the correct prediction of the overall efficiency.Below is presented a study aimed at evaluating the losses obtained using different loss correlations to establish a combination of models to predict the efficiency of various centrifugal compressors using an appropriate set of correlations.

    3.Loss models

    In this analysis,nine loss mechanisms will be considered.Three models will be used for evaluating clearance loss,four models for disk friction loss,two loss models for recirculation loss,two models for leakage loss,and one model for:skin friction loss,incidence loss,blade loading loss,vaneless diffuser loss and vaned diffuser loss.The different mechanisms and models are evaluated as described below.

    3.1.Clearance loss

    Clearance loss considers the flow escaping from impelling by the clearance between the blades and the outer casing of the compressor,from the pressure side to the suction side.In this work,the estimation of clearance loss is computed using the loss correlations proposed by Rodgers,7Krylov and Spunde,8Jansen,9and the se correlations are shown in Eqs.(1)–(3)respectively.

    where ΔHclis the clearance loss,s is the clearance gap,b is the blade height,r is the radius,U is the circumferential speed,V is the absolute velocity at inlet,Vuis the circumferential component of the absolute velocity,ρ is the density of the fluid in the inlet and discharge of the impeller,Ziis the number ofimpeller blades,and the subscripts ‘h”and ‘s” refer to the impeller inlet hub and shroud respectively, ‘1”refers to the impeller inlet and ‘2” refers to the impeller discharge.

    3.2.Disk friction loss

    This loss mechanism occurs as a result of adhesiveforces between the rotating disk and the fluid in the surrounding enclosure.The induced flows depend on the geometries of the impeller and its enclosure.10The disk friction loss models evaluated in this work are shown in Eqs.(4)–(7)and were introduced by Aungier,6Daily and Nece,11Shepherd12and Boyce2respectively.

    where ΔHdfis the disk friction loss,Vmiand Vmdare the absolute meridional velocities in the impeller and the diffuser respectively,Re is the Reynolds number,fdfis a disk friction factor defined as fdf=2.67/(Redf)0.5that if the flow is turbulent (Redf<3 × 105)or fdf=0.0622/(Redf)0.2if the flow is laminar (Redf≥ 3×105)with Redf=U2r2/ν2,ν is the kinematic viscosity,Qthis the the oretical non-dimensional head,˙m is the mass flow rate,p is the pressure,D is the diameter of the impeller.

    3.3.Recirculation loss

    This loss is associated with recirculation of air from the diffuser to the impeller,13and this recirculation is caused by the increased flow angle at the exit,which makes part of the energy given to the fluid return to the impeller.2The loss models evaluated in this work were given by Coppage et al.14and Oh et al.3are presented in Eqs.(8)and(9)respectively.

    where ΔHrcisthe recirculation loss,α is flow angle,is the diffusion factor,W is the tangential component of relative velocity,and ΔHaerois the aerodynamic enthalpy that is obtained by Eq.(10).

    where T01and T02are the inlet and discharge total temperature of the compressor,and cpis the specific heat at constant pressure.

    3.4.Leakage loss

    This loss is caused by leakage offluid through the compressor seals to regions of low pressure.In this paper,the se losses are estimated by loss correlations proposed by Aungier6and Jansen9as shown in Eqs.(11)and(12)respectively.

    where ΔHlkis the leakage loss, ε is the clearance gap,and the subscript ‘m” refers to meridional direction.

    3.5.Incidence loss

    This loss mechanism considers flow adjustment offluid to the inlet angle of the blade of the impeller,and the fluid in close proximity to the blade instantly experiences a speed change to follow the inlet angle of the blade.When the fluid separation occurs,losses are generated associated with this phenomenon.2Incidence loss is evaluated by the correlation proposed by Conrad et al.15,which is presented in Eq.(13).

    where ΔHincis the incidence loss,fincis a incidencefactor,which can take values between 0.5 and 0.7,and Wuiis the tangential component ofimpeller inlet relative velocity.

    3.6.Blade loading loss

    This loss is developed due to the negative gradient of velocity in the boundary layers,and such deceleration increases the thickness of the boundary layer,leading to flow separation which may lead to a stall event.This loss is computed by Eq.(14)given by Coppage et al.14

    where ΔHblis the blade loading loss.

    3.7.Skin friction loss

    This loss results from the action of shearing forces on the walls of the impeller due to the turbulent fluid friction.This loss is calculated by considering the flow over a circular section(based on the equivalent hydraulic diameter approach),and its calculation is based on the equations for loss calculation in pipes.The skin friction loss is evaluated by Eq.(15)agreeing to Jansen.9

    where ΔHsfis the skin friction loss,Cfis the skin friction coefficient,Lbis the impeller flow length and Dhydis the impeller average hydraulic diameter.

    3.8.Vaneless diffuser loss

    This loss is experienced in the vaneless diffuser space as a result offriction and the absoluteflow angle.Vaneless diffuser loss is assessed by the correlation proposed by Stanitz,16shown in Eq.(16).

    where ΔHvldis the vaneless diffuser loss,T is the temperature,G is the ratio of specific heats and the subscripts ‘0” and ‘4”refer to total condition and inlet of the vaned diffuser respectively.

    3.9.Vaned diffuser loss

    These losses arefound in experimental results performed in conical diffusers,and are a function of load on the blades and the space of the vaneless diffuser;the incidence angle and the surfacefriction of the vanes are also considered.This loss is also estimated by the correlation proposed by Stanitz16as shown in Eq.(17).

    where ΔHvdis the vaned diffuser loss and the subscript ‘6”refers to the discharge of the vaned diffuser.

    4.Overall isentropic efficiency calculation

    The efficiency decrements induced by the individual losses are obtained from Eq.(18):

    where Δηxand ΔHxare the individual decrement in efficiency and the individual enthalpy loss,respectively,associated to each mechanism assessed,and the actual enthalpy ΔHactis defined in Eq.(19)

    where the parasitic head enthalpy ΔHparis calculated by Eq.(20):

    Then the compressor’s overall isentropic efficiency is computed by Eq.(21):

    where the internal head enthalpy ΔHintis defined in Eq.(22)

    5.Assessment results

    In this analysis,the loss correlations presented in Eqs.(12)–(16)were combined with the three loss correlations for estimating clearance loss,four loss correlations for disk friction loss,two loss correlations for recirculation loss,and two loss correlations for leakage loss.Consequently,48 sets of loss correlations were obtained as listed in Table 1.

    The 48 loss correlation sets were evaluated in five different centrifugal compressor stages,whose configurations and efficiencies,obtained from the Refs.17–21,are detailed in Table 2.These centrifugal compressor stages have pressure ratios(PR)among 2 and 8,mass flow rates(˙m)between 0.35 kg/s and 4.55 kg/s,and rotational speeds(N)in a range between 20000 r/min and 80000 r/min.In addition,in Table 2,η is the isentropic efficiency of the stage,β2iis the blade angle at impeller discharge,D6/D5is the diffuser diameter ratio,and the subscripts ‘5” and ‘6” refer to inlet and discharge of the vaned diffuser respectively.In Fig.1,the main parameters(normalized)of the different centrifugal compressors evaluated in this work are presented.

    From the loss correlation sets listed in Table 1 and the centrifugal compressor configurations shown in Table 2,the isentropic efficiencies were determined for each loss correlation set and for each centrifugal compressor stage using FORTRAN code,developed and validated by Gutiérrez Velásquez et al.,22which allows to estimate the isentropic efficiency for eachconfiguration.The stage efficiency results for each loss correlation set and for each compressor stage were calculated,and are shown in Table 3 and presented graphically in Fig.2,in which the radial axis represents the compressor stage isentropic efficiency and the spokes represent the different loss correlation sets tested.

    Table 1 Correlation sets assessed.

    Table 2 Centrifugal compressors assessed.

    Fig.1 Normalized parameters comparison.

    Table 3 Isentropic efficiencies for each set and compressor assessed.

    Fig.2 Isentropic efficiency results for each loss correlation set assessed.

    From furthe r analysis,aimed to determine the composition of the best set of losses that can be predicted,with suitable accuracy,the efficiency for all compressors considered in this analysis leads to the set of semi-empirical correlations more appropriately corresponding to the set identified with the number 29 in Table 1 and underlined in Table 3,which corresponds with the set of correlations for recirculation loss,leakage loss,clearances loss,skin friction loss,disc friction loss,blade loading,incidence loss,vaneless diffuser loss and vaned diffuser loss proposed by Oh et al.,3Aungier,6Krylov and Spunde,8Jansen,9Shepherd,12Coppage et al.,14Conrad et al.15and the latter two by Stanitz16respectively.

    According to the above,the deviations between the efficiencies obtained numerically and those reported experimentally,for the centrifugal compressors evaluated with the correlation set number 29,are in all cases less than 1%,as shown in Table 4 which shows the experimental efficiencies(ηexp)reported in Refs.17–21versus the calculated isentropic efficiencies(ηs,cal),and the ir respective differences.

    According to the results presented in Table 3,when considering the different loss correlation sets,differences of up to 8%can be obtained on the stage isentropic efficiency,so that the selection of an appropriate loss correlation set is critical to predicting the compressor stage efficiency with good accuracy.

    Table 4 Results of efficiency comparison.

    Fig.3 Discrimination of centrifugal compressor losses.

    From the above results,the discrimination of calculated centrifugal compressor losses in:internal losses(ΔHint),parasitic losses(ΔHpar)and diffuser losses(ΔHdif)was performed and is shown in Fig.3.It can be seen that the internal losses are the most important in this type of compressors;however,for centrifugal compressors reported by Danish17and Krain et al.,18the se losses amount to around 60%and 70%respectively,with respect to total losses,suggesting where efforts should be directed to primarily to carry out furthe r optimization processes.In the case of the centrifugal compressor presented by Galvas,19although internal losses do not represent such a high percentage,the diffuser system reaches a value higher than 25%,respect to total losses,which makes this compressor have a reduced efficiency.

    On the other hand,when the centrifugal compressors exhibit high pressure ratios,one model to estimate the shock losses should be used in order to obtain a more realistic efficiency.This can be the reason why the centrifugal compressors described by Galvas19and Osborne et al.21exhibit higher calculated efficiencies than the experimental efficiencies.This suggests that when the compressor ratio is high,a shock loss model should be considered for better estimations.

    6.Conclusions

    (1)This paper reviews the principal loss mechanisms occurring in centrifugal compressors,as well as some of the loss correlations developed to evaluate the se mechanisms.

    (2)Given the wide variety of loss mechanisms and models available in the literature,an analysis aimed at establishing an appropriate set of the se loss models,which is crucial for the proper assessment of centrifugal compressor efficiency,was developed.

    (3)In this work,five centrifugal compressors,whose settings and efficiencies,experimentally determined,are reported in the literature were evaluated by a computer code to establish a set of loss models that allows properly predicting the stage efficiency of this type of turbomachines.

    (4)This study was focused on proposing a usual systematic set of correlating losses in centrifugal compressors;however,for particular cases,additional models should be incorporated in order to consider particular features.

    (5)From this study,it can be concluded that application of an inappropriate set of correlations may result in loss of efficiency predictions that can get away with values up to 8%in the centrifugal compressor stage isentropic efficiency,which constitutes a big mistake to be adopted in the preliminary stages of design of the se compressors.

    Acknowledgment

    The author would like to thank all the faculty members of Universidad Antonio Nari?o for the ir critical advice and guidance.They are a wonderful team of contributors.

    1.Forsthoffer WE.Forsthoffer’s bestpractice handbook for rotating machinery.Oxford:Butterworth-Heinemann;2011.p.93–228.

    2.Boyce MP.Centrifugal compressors:A basic guide.Tulsa:Pennwell Books;2003.

    3.Oh HW,Yoon ES,Chung MK.An optimum set of loss models for performance prediction of centrifugal compressors.Proceed Inst Mech Eng,Part A:J Power Energy 1997;221(4):331–8.

    4.Watson N,Janota MS.Turbocharging the internal combustion engine.London:The Macmillan Press Ltd.;1982.

    5.Japikse D.Centrifugal compressor design and performance.White River Junction:Concepts Eti;1996.

    6.Aungier RH.Centrifugal compressors:A strategy for aerodynamic design and analysis.New York:ASME;2000.

    7.Rodgers C.Paper 5:A cycle analysis techniquefor small gas turbines.Proceedings of the Institution of Mechanical Engineers,Conference Proceedings 1968;183(14):37–49.

    8.Krylov EP,Spunde EA.About the influence of the clearance between the working blades and housing of a radial turbine on its exponent.1967.Report No.:FTD-MT-67-15.

    9.Jansen W.A method for calculating the flow in a centrifugal impeller when entropy gradients are present.Royal society conference on internal aerodynamics(turbomachinery);1970.

    10.Botha BW,Moolman A.Determining the impact of the different losses on centrifugal compressor design.Res Develop J 2005;21(3):23–31.

    11.Daily JW,Nece RE.Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks.J Basic Eng 1960;82(1):217–30.

    12.Shepherd DG.Principles of turbomachinery.London:Macmillanc Pub Co.;1956.

    13.Galvas MR.Analytical correlation of centrifugal compressor design geometry for maximum efficiency with specific speed.Washington,D.C.:NASA;1972.Report No.:NASA-TN-D-6729.

    14.Coppage JE,Dallenbach F,Eichenberger JP,Hlavaka GE,Knoernschild EM,Vanke N.Study of supersonic radial compressors for refrigeration and pressurization systems.Inform Process Lett 1956;1(4):157–63.

    15.Conrad O,Raif K,Wessels M.The calculation of performance maps for centrifugal compressors with vane-island diffusers.Proceedings of the twenty-fifth annual international gas turbine conference and exhibit and twenty-second annual fluids engineering conference;1980 Mar 9–13;New Orleans,USA.New York:ASME;1979.p.135–47.

    16.Stanitz JD. One-dimensional compressibleflow in vaneless diffusers of radial-and mixed-flow centrifugal compressors,including effects offriction,heat transfer and area change.Boston:NACA;1952.Report No.:NACA-TN-2610.

    17.Danish SN,Ma CC,Yang C.The influence of tip clearance on centrifugal compressor stage of a turbocharger.Proceedings of the 4th WSEAS international conference on fluid mechanics and aerodynamics;2006 Aug 21–23;Elounda,Greece.2006.p.6–11.

    18.Krain H,Hah C.Numerical and experimental investigation of the unsteady flow field in a transonic centrifugal compressor.Proceedings of the international gas turbine congress;2003 Nov 2–7;Tokyo,Japan.2003.p.6–11.

    19.Galvas MR.A compressor designed for the energy research and development agency automotive gas turbine program.Washington D.C.:NASA;1975.Report No.:NASA-TM-X-71719.

    20.Larosiliere LM,Skoch GJ,Prahst PS.Aerodynamic synthe sis of a centrifugal impeller using CFD and measurements.Reston:AIAA;1997.Report No.:AIAA-1997-2878.

    21.Osborne C,Runstadler PW,Stacy WD.Aerodynamic and mechanical design of an 8:1 pressure ratio centrifugal compressor.Washington,D.C.:NASA;1974.Report No.:NASA-CR-134782.

    22.Gutiérrez Velásquez EI,Nascimento MR,Miranda RAC,Moura NR.One and three-dimensional analysis of centrifugal compressor for 600 kW simple cycle gas turbine engine.New York:ASME;2010.Report No.:GT2010-22950.

    16 February 2016;revised 19 April 2016;accepted 9 May 2016

    Available online 22 August 2017

    Centrifugal compressor;

    Efficiency loss;

    Performance prediction;

    Preliminary design;

    Turbomachinery

    *Corresponding author.

    E-mail address:elkin.gutierrez@uan.edu.co.

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2017.08.002

    1000-9361?2017 Production and hosting by Elsevier Ltd.on behalf of Chinese Society of Aeronautics and Astronautics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?2017 Production and hosting by Elsevier Ltd.on behalf of Chinese Society of Aeronautics and Astronautics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    a在线观看视频网站| 女性被躁到高潮视频| 日本黄色日本黄色录像| 久久久久国产精品人妻aⅴ院 | 日本黄色视频三级网站网址 | 亚洲av欧美aⅴ国产| 亚洲国产毛片av蜜桃av| 欧美日韩亚洲国产一区二区在线观看 | 亚洲五月色婷婷综合| a级片在线免费高清观看视频| 久久国产亚洲av麻豆专区| 成人黄色视频免费在线看| 亚洲专区中文字幕在线| 91麻豆av在线| а√天堂www在线а√下载 | 天天躁日日躁夜夜躁夜夜| 一区福利在线观看| 亚洲成人手机| 国产亚洲精品久久久久5区| 真人做人爱边吃奶动态| 成年人黄色毛片网站| 久久精品aⅴ一区二区三区四区| 91在线观看av| 99香蕉大伊视频| 亚洲视频免费观看视频| 法律面前人人平等表现在哪些方面| 五月开心婷婷网| 久久久久国产精品人妻aⅴ院 | 亚洲第一青青草原| 超碰成人久久| 黑人欧美特级aaaaaa片| ponron亚洲| x7x7x7水蜜桃| 久久中文字幕人妻熟女| 女人被躁到高潮嗷嗷叫费观| 午夜老司机福利片| av欧美777| 亚洲午夜精品一区,二区,三区| 老司机午夜十八禁免费视频| 午夜激情av网站| bbb黄色大片| 黄色 视频免费看| 怎么达到女性高潮| 满18在线观看网站| 日韩成人在线观看一区二区三区| 老熟妇乱子伦视频在线观看| 一级片'在线观看视频| 中文字幕人妻熟女乱码| 国产精品 国内视频| 国产午夜精品久久久久久| 国产在线一区二区三区精| 一级毛片高清免费大全| 国产男女超爽视频在线观看| av在线播放免费不卡| 国产视频一区二区在线看| 美女扒开内裤让男人捅视频| 亚洲精品中文字幕一二三四区| 国产在线一区二区三区精| 黄片播放在线免费| 亚洲av电影在线进入| 极品少妇高潮喷水抽搐| 久久国产精品人妻蜜桃| 乱人伦中国视频| 欧美 亚洲 国产 日韩一| 最近最新中文字幕大全免费视频| 99国产极品粉嫩在线观看| 正在播放国产对白刺激| 国产伦人伦偷精品视频| 在线观看一区二区三区激情| 欧美最黄视频在线播放免费 | 国产精品影院久久| 一级毛片精品| 久久久精品国产亚洲av高清涩受| 久久中文看片网| 色尼玛亚洲综合影院| 国产日韩欧美亚洲二区| 人人澡人人妻人| 国产av又大| videosex国产| 他把我摸到了高潮在线观看| 美女视频免费永久观看网站| 亚洲 欧美一区二区三区| 国产精品久久久久久人妻精品电影| 久久精品国产a三级三级三级| 免费在线观看日本一区| 亚洲国产欧美一区二区综合| 国产精品国产av在线观看| 三上悠亚av全集在线观看| 99久久国产精品久久久| av视频免费观看在线观看| 国产精品98久久久久久宅男小说| e午夜精品久久久久久久| 精品国产一区二区三区久久久樱花| 午夜免费观看网址| 啦啦啦视频在线资源免费观看| 丰满人妻熟妇乱又伦精品不卡| 在线观看免费午夜福利视频| 五月开心婷婷网| 动漫黄色视频在线观看| 性少妇av在线| 青草久久国产| 亚洲第一av免费看| 99国产精品99久久久久| 欧美成人免费av一区二区三区 | 正在播放国产对白刺激| 1024视频免费在线观看| 国产成人系列免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产欧美日韩精品亚洲av| 欧美国产精品va在线观看不卡| 成人三级做爰电影| 国产av精品麻豆| 成年人免费黄色播放视频| 热re99久久国产66热| 最新的欧美精品一区二区| 亚洲av美国av| 亚洲午夜精品一区,二区,三区| 精品国产乱子伦一区二区三区| 精品久久久久久电影网| 欧美精品人与动牲交sv欧美| 国产不卡av网站在线观看| 亚洲全国av大片| bbb黄色大片| 亚洲av日韩在线播放| 99re6热这里在线精品视频| 国产野战对白在线观看| 建设人人有责人人尽责人人享有的| 高清在线国产一区| 在线观看免费午夜福利视频| 免费人成视频x8x8入口观看| 日韩三级视频一区二区三区| 又黄又爽又免费观看的视频| 久久久国产成人精品二区 | 久久精品国产99精品国产亚洲性色 | 新久久久久国产一级毛片| 岛国在线观看网站| 国产激情欧美一区二区| 中文字幕最新亚洲高清| 欧美精品一区二区免费开放| 国产又色又爽无遮挡免费看| 妹子高潮喷水视频| 人人澡人人妻人| 操出白浆在线播放| 大陆偷拍与自拍| 国产精品免费一区二区三区在线 | 亚洲午夜精品一区,二区,三区| xxx96com| 中亚洲国语对白在线视频| 欧美午夜高清在线| 一二三四在线观看免费中文在| 我的亚洲天堂| 99热国产这里只有精品6| 一边摸一边抽搐一进一小说 | 亚洲黑人精品在线| 亚洲七黄色美女视频| 亚洲av日韩精品久久久久久密| a级毛片黄视频| 在线观看免费午夜福利视频| 在线看a的网站| 精品少妇一区二区三区视频日本电影| 欧美最黄视频在线播放免费 | 久久草成人影院| 久久九九热精品免费| 中文字幕另类日韩欧美亚洲嫩草| 手机成人av网站| 91在线观看av| 少妇的丰满在线观看| 精品国产一区二区三区久久久樱花| 日本五十路高清| 女人被躁到高潮嗷嗷叫费观| 高清欧美精品videossex| 精品久久久久久久久久免费视频 | 搡老熟女国产l中国老女人| www.熟女人妻精品国产| 国产精品免费大片| 国产97色在线日韩免费| 久99久视频精品免费| 99riav亚洲国产免费| 久久精品亚洲av国产电影网| 国产精品久久久久久人妻精品电影| 国产免费av片在线观看野外av| 精品少妇一区二区三区视频日本电影| 一级a爱视频在线免费观看| 亚洲免费av在线视频| 国产亚洲精品久久久久5区| 久久国产精品大桥未久av| 国产午夜精品久久久久久| 国产不卡av网站在线观看| 日本欧美视频一区| 欧美 日韩 精品 国产| a级毛片黄视频| 国产成+人综合+亚洲专区| 成人影院久久| 国产区一区二久久| 久久久久国内视频| 久久99一区二区三区| 国产av精品麻豆| 80岁老熟妇乱子伦牲交| 国产野战对白在线观看| 午夜免费成人在线视频| 午夜免费鲁丝| 麻豆国产av国片精品| 18在线观看网站| 黄片大片在线免费观看| 亚洲av熟女| 一夜夜www| 天天躁夜夜躁狠狠躁躁| 欧美日韩亚洲高清精品| 久久久精品区二区三区| 色婷婷av一区二区三区视频| 叶爱在线成人免费视频播放| 老熟妇乱子伦视频在线观看| av电影中文网址| 久久久久国产精品人妻aⅴ院 | 岛国在线观看网站| 免费在线观看日本一区| 精品国产一区二区三区久久久樱花| 深夜精品福利| 亚洲久久久国产精品| 亚洲男人天堂网一区| 一级a爱片免费观看的视频| 无限看片的www在线观看| 国产精品久久电影中文字幕 | 国产亚洲av高清不卡| 欧美精品亚洲一区二区| 国产高清国产精品国产三级| x7x7x7水蜜桃| 69精品国产乱码久久久| 亚洲av电影在线进入| 久热这里只有精品99| 波多野结衣av一区二区av| 一进一出抽搐gif免费好疼 | 三级毛片av免费| 一级作爱视频免费观看| 日韩熟女老妇一区二区性免费视频| 成年人免费黄色播放视频| 欧美老熟妇乱子伦牲交| 大片电影免费在线观看免费| 色婷婷av一区二区三区视频| 欧美在线一区亚洲| 免费观看人在逋| 久久中文字幕一级| 欧美激情 高清一区二区三区| 久久精品国产亚洲av香蕉五月 | 久久精品91无色码中文字幕| 免费在线观看完整版高清| 三上悠亚av全集在线观看| 黑人巨大精品欧美一区二区mp4| 变态另类成人亚洲欧美熟女 | 日本欧美视频一区| 精品人妻1区二区| 高清欧美精品videossex| 一边摸一边抽搐一进一出视频| 国产精品免费大片| 欧美中文综合在线视频| 三级毛片av免费| 人成视频在线观看免费观看| 久久99一区二区三区| 国产精品一区二区在线观看99| 人成视频在线观看免费观看| 黄频高清免费视频| 日韩欧美一区视频在线观看| 精品亚洲成国产av| 久热这里只有精品99| 老熟女久久久| 久久精品国产a三级三级三级| 日韩中文字幕欧美一区二区| 国产精品一区二区精品视频观看| 91老司机精品| 黄色毛片三级朝国网站| 国产亚洲欧美98| 国产伦人伦偷精品视频| 亚洲av第一区精品v没综合| 69av精品久久久久久| 五月开心婷婷网| 精品人妻在线不人妻| 国产免费男女视频| 国产成人免费无遮挡视频| 制服人妻中文乱码| 操出白浆在线播放| av片东京热男人的天堂| 最近最新中文字幕大全免费视频| 国产亚洲精品久久久久5区| tube8黄色片| 国产一区有黄有色的免费视频| bbb黄色大片| 国产精品美女特级片免费视频播放器 | 亚洲aⅴ乱码一区二区在线播放 | 色综合婷婷激情| av国产精品久久久久影院| 亚洲精品久久午夜乱码| 亚洲熟女精品中文字幕| 国产精品亚洲一级av第二区| 国产免费男女视频| av免费在线观看网站| 每晚都被弄得嗷嗷叫到高潮| 精品人妻在线不人妻| 黄色丝袜av网址大全| 超色免费av| 99riav亚洲国产免费| 国产极品粉嫩免费观看在线| 老司机午夜福利在线观看视频| 久久99一区二区三区| 国产精品久久视频播放| 国产精品 国内视频| 久99久视频精品免费| 两性夫妻黄色片| 成人国语在线视频| 国产在线精品亚洲第一网站| av国产精品久久久久影院| 一本大道久久a久久精品| 国产精品98久久久久久宅男小说| 水蜜桃什么品种好| 国产精品一区二区精品视频观看| 亚洲欧美激情在线| 飞空精品影院首页| 久久狼人影院| 亚洲精品美女久久久久99蜜臀| 国产精品av久久久久免费| 免费不卡黄色视频| 成熟少妇高潮喷水视频| 国产男女内射视频| 高清av免费在线| 男女高潮啪啪啪动态图| 丝袜美足系列| 国产免费男女视频| 侵犯人妻中文字幕一二三四区| 不卡一级毛片| 老熟妇仑乱视频hdxx| 久久国产精品男人的天堂亚洲| 黄片小视频在线播放| 亚洲人成77777在线视频| 黄色视频,在线免费观看| 欧美日韩亚洲综合一区二区三区_| av网站免费在线观看视频| 国产亚洲精品久久久久5区| 国产成人精品无人区| 满18在线观看网站| 久久天躁狠狠躁夜夜2o2o| 久久午夜亚洲精品久久| 久99久视频精品免费| 亚洲av熟女| 国产黄色免费在线视频| 69精品国产乱码久久久| 免费不卡黄色视频| 多毛熟女@视频| 亚洲精品久久午夜乱码| 亚洲av片天天在线观看| 国产精品久久久久成人av| 精品福利观看| 99精品在免费线老司机午夜| 欧美日韩国产mv在线观看视频| a级毛片黄视频| 热re99久久精品国产66热6| 手机成人av网站| 成年人午夜在线观看视频| 精品久久久精品久久久| 麻豆成人av在线观看| 悠悠久久av| 欧美日韩亚洲高清精品| 久久精品国产亚洲av香蕉五月 | 久久久精品免费免费高清| 无遮挡黄片免费观看| 亚洲精品中文字幕在线视频| 亚洲国产精品sss在线观看 | 色婷婷av一区二区三区视频| 最近最新中文字幕大全电影3 | 久久精品人人爽人人爽视色| 18在线观看网站| 欧美日韩亚洲国产一区二区在线观看 | 99热国产这里只有精品6| 夜夜夜夜夜久久久久| 午夜精品久久久久久毛片777| 亚洲成a人片在线一区二区| 亚洲情色 制服丝袜| 午夜91福利影院| 窝窝影院91人妻| 亚洲精品一卡2卡三卡4卡5卡| 精品一区二区三区视频在线观看免费 | 视频在线观看一区二区三区| 亚洲七黄色美女视频| 国产极品粉嫩免费观看在线| 国产激情欧美一区二区| 久久久久久人人人人人| 国产成人精品在线电影| 午夜老司机福利片| 亚洲av片天天在线观看| ponron亚洲| 天堂√8在线中文| 久久香蕉激情| 亚洲色图综合在线观看| 12—13女人毛片做爰片一| 19禁男女啪啪无遮挡网站| 国产极品粉嫩免费观看在线| 国产成人免费无遮挡视频| 国产欧美日韩一区二区三区在线| 久久香蕉国产精品| 99久久精品国产亚洲精品| 91在线观看av| 免费看a级黄色片| av网站免费在线观看视频| 在线播放国产精品三级| 少妇 在线观看| 一a级毛片在线观看| 国产精品 国内视频| 亚洲欧洲精品一区二区精品久久久| 午夜激情av网站| 黄色女人牲交| 又大又爽又粗| 美女扒开内裤让男人捅视频| 757午夜福利合集在线观看| 国产xxxxx性猛交| 男女之事视频高清在线观看| 狂野欧美激情性xxxx| 中文字幕人妻熟女乱码| 窝窝影院91人妻| 91字幕亚洲| 国产av精品麻豆| bbb黄色大片| 中文字幕高清在线视频| 天天躁夜夜躁狠狠躁躁| 亚洲av电影在线进入| 高清av免费在线| 水蜜桃什么品种好| 三上悠亚av全集在线观看| 欧美午夜高清在线| 国产三级黄色录像| 99久久精品国产亚洲精品| 在线观看舔阴道视频| 国产真人三级小视频在线观看| 男人操女人黄网站| 免费在线观看视频国产中文字幕亚洲| 一区二区日韩欧美中文字幕| 交换朋友夫妻互换小说| 国产男女内射视频| 丝袜在线中文字幕| 国产亚洲精品久久久久5区| 色尼玛亚洲综合影院| 好男人电影高清在线观看| 国产av精品麻豆| 欧美另类亚洲清纯唯美| 好看av亚洲va欧美ⅴa在| 身体一侧抽搐| 国产精品九九99| 国产成人免费观看mmmm| 亚洲五月色婷婷综合| 天天添夜夜摸| 美女扒开内裤让男人捅视频| 女同久久另类99精品国产91| 人人妻人人澡人人爽人人夜夜| 夜夜夜夜夜久久久久| 国产乱人伦免费视频| 啦啦啦 在线观看视频| 91麻豆av在线| 亚洲精品在线美女| 国内毛片毛片毛片毛片毛片| 成人18禁高潮啪啪吃奶动态图| av线在线观看网站| 久久久久精品人妻al黑| 18禁裸乳无遮挡动漫免费视频| 国产精品一区二区免费欧美| 水蜜桃什么品种好| 成人免费观看视频高清| 免费av中文字幕在线| 18禁观看日本| 久久99一区二区三区| 一级毛片女人18水好多| 波多野结衣av一区二区av| 亚洲黑人精品在线| 人妻丰满熟妇av一区二区三区 | 亚洲 国产 在线| 男女下面插进去视频免费观看| 久久午夜综合久久蜜桃| 精品电影一区二区在线| 久久久久久久精品吃奶| 国产精品电影一区二区三区 | 69精品国产乱码久久久| netflix在线观看网站| 国产精品久久久人人做人人爽| 国产精品久久视频播放| av国产精品久久久久影院| 村上凉子中文字幕在线| 免费人成视频x8x8入口观看| 中文字幕最新亚洲高清| 91字幕亚洲| 欧美在线一区亚洲| 人人妻人人添人人爽欧美一区卜| 久久精品国产a三级三级三级| 国产伦人伦偷精品视频| 丰满迷人的少妇在线观看| 午夜视频精品福利| 男女之事视频高清在线观看| 国产精品一区二区免费欧美| 在线视频色国产色| 国产色视频综合| 两性午夜刺激爽爽歪歪视频在线观看 | 婷婷精品国产亚洲av在线 | 国产精品乱码一区二三区的特点 | 中文字幕色久视频| 亚洲色图av天堂| 视频区欧美日本亚洲| 成人18禁在线播放| 久久精品国产a三级三级三级| 久久精品91无色码中文字幕| 久久ye,这里只有精品| 国产无遮挡羞羞视频在线观看| 久久国产精品大桥未久av| 国产男女内射视频| 中文字幕制服av| 久久久久久久久久久久大奶| 亚洲av成人一区二区三| 人人妻人人爽人人添夜夜欢视频| 首页视频小说图片口味搜索| 国产无遮挡羞羞视频在线观看| 香蕉丝袜av| 国产激情欧美一区二区| 国产又爽黄色视频| 精品福利永久在线观看| 人妻丰满熟妇av一区二区三区 | 国产欧美日韩一区二区三| 最新在线观看一区二区三区| 亚洲欧美激情在线| 男女床上黄色一级片免费看| 狂野欧美激情性xxxx| 在线观看www视频免费| 国产一区二区三区在线臀色熟女 | 国产亚洲精品久久久久5区| 人人妻人人添人人爽欧美一区卜| 午夜福利欧美成人| 一区在线观看完整版| 9热在线视频观看99| 女性生殖器流出的白浆| 国产高清国产精品国产三级| 亚洲美女黄片视频| 热99re8久久精品国产| 日韩中文字幕欧美一区二区| 狠狠婷婷综合久久久久久88av| 99精品在免费线老司机午夜| 日韩欧美一区视频在线观看| 免费观看a级毛片全部| 99国产精品一区二区三区| 女人久久www免费人成看片| 法律面前人人平等表现在哪些方面| 99久久人妻综合| 欧美人与性动交α欧美精品济南到| 下体分泌物呈黄色| 露出奶头的视频| 两个人看的免费小视频| 日本欧美视频一区| 在线观看免费午夜福利视频| 激情在线观看视频在线高清 | 美女扒开内裤让男人捅视频| 日韩欧美国产一区二区入口| 中文欧美无线码| 水蜜桃什么品种好| 香蕉丝袜av| 啦啦啦视频在线资源免费观看| 欧美午夜高清在线| aaaaa片日本免费| 国产一区二区三区视频了| 18禁裸乳无遮挡免费网站照片 | 欧美日韩中文字幕国产精品一区二区三区 | 久久中文看片网| 国产精品久久电影中文字幕 | 男女床上黄色一级片免费看| 女警被强在线播放| 欧美日韩黄片免| 亚洲黑人精品在线| 99国产精品99久久久久| 热99久久久久精品小说推荐| 色综合欧美亚洲国产小说| 精品亚洲成a人片在线观看| bbb黄色大片| 久久久久久久国产电影| 亚洲精品自拍成人| 国产免费男女视频| 中文字幕人妻丝袜制服| netflix在线观看网站| 国产精品二区激情视频| 丰满迷人的少妇在线观看| 亚洲第一青青草原| 91大片在线观看| 久久久久精品人妻al黑| 黄色a级毛片大全视频| 天堂动漫精品| 伦理电影免费视频| 亚洲精品在线观看二区| 嫁个100分男人电影在线观看| 国产精品1区2区在线观看. | 两人在一起打扑克的视频| 午夜影院日韩av| 中出人妻视频一区二区| 日本欧美视频一区| 校园春色视频在线观看| 精品一区二区三卡| 亚洲精品国产一区二区精华液| 久久国产精品男人的天堂亚洲| 成年女人毛片免费观看观看9 | 成在线人永久免费视频| 丁香六月欧美| 午夜福利免费观看在线| 黑人操中国人逼视频| 狠狠婷婷综合久久久久久88av| 国产精品乱码一区二三区的特点 | 久久精品亚洲精品国产色婷小说| 午夜亚洲福利在线播放| 老司机在亚洲福利影院| 亚洲精品自拍成人| 建设人人有责人人尽责人人享有的| 午夜精品在线福利| 亚洲专区中文字幕在线| 精品久久久久久电影网| 午夜影院日韩av| 国产成人欧美在线观看 | 国产国语露脸激情在线看|