• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The coupling characteristics of supersonic dual inlets for missile①

    2015-04-24 07:32:42SUNZhenhuaWUCuisheng
    固體火箭技術(shù) 2015年6期
    關(guān)鍵詞:背風(fēng)永利進(jìn)氣道

    SUN Zhen-hua,WU Cui-sheng

    (China Airborne Missile Academy,Luoyang 471009,China)

    ?

    The coupling characteristics of supersonic dual inlets for missile①

    SUN Zhen-hua,WU Cui-sheng

    (China Airborne Missile Academy,Luoyang 471009,China)

    The numerical investigation and wind tunnel tests on the coupling characteristics of the dual inlets for the ducted rocket were presented. Once the dual inlets stop working, the windward inlet has to start first when the back pressure decreases to 16.9 times the static pressure of the inflow under stable state. By contrast, the leeward inlet can restart only if the back pressure decreases to 8.9 times the static pressure of the inflow. The results show that the inlets achieve the best performance when the leeward side reaches its critical state with certain angle of sideslip.

    ducted rocket;dual inlets;coupling characteristics;numerical simulation;wind tunnel test

    0 Introduction

    The operation of the inlet determines the performance of the ducted rocket. The layout forms of the inlet can be various on the missile. “Meteor” and “HSAD” employ two inlets located at the downside of the missile; bilateral inlets are used on “ASMP” and “T3”. Four bilateral inlets are placed on “P77M” and “GQM-163A”.

    Under the circumstances of critical phase of the ducted rocket, high maneuvering of the missile and intense perturbation of the airflow, the performance of the supersonic inlet could have certain mutation, including transient choked flow, inlet backflow and inlet buzz. For the unstable working characteristics of the inlet, large quantities of researches are performed, including mechanisms of inlet buzz[1-3], subcritical characteristics of the inlet[4-5], oscillation during starting of the inlet[6-8]and restart mechanism of the inlet[9-10].Researches mentioned above mainly focus on the working characteristics of the single inlet, for the system with multiple inlets, the working characteristics for the whole system is different from each single inlet when the incoming flow from multiple inlets mixes in the chamber abnormally. It is mainly attributed to the variation of the stable working boundaries, matching characteristics with the motor, start and restart characteristics, etc. Thus it is necessary to investigate the coupling characteristics of multiple inlets system.The study focus on the bilateral inlets system model of the missile and the whole process from regular work to working unstable and finally back to normal, in order to provide the solutions for the stable control of the inlet.

    1 Numerical simulation

    1.1 Inlet modeling

    From Fig.1, the inlet employs bilateral mixed-compression model. The front dual cone is applied to compress the air. The inlet is relative longer because the air flows into the engine from the head. The air expands at radial and circumferential direction inside the inlet and finally flows into the combustor.

    1.2 Flow solver

    Fluent is used for the numerical simulation and Gauss-Seidel method is used for the time integration. Roe format with second order difference division is applied for the in-viscid convection flux. Realizablek-εmodel is applied for the turbulence model. Similarly, second-order upwind format is used and non-equilibrium surface function is applied for the region close to the wall. The convergence rule is based on the decrease of each residual of all the functions at three levels of magnitude. In addition, the back pressure of the inlet should be stable and the outlet flow should be constant for convergence requirement.

    Fig.1 Schematic graph for the bilateral inlet

    1.3 Boundary conditions

    Fig.2 indicates boundary conditions used in the simulation. They are: pressure far-field, pressure outlet, no slip adiabatic wall. The typical state for the simulation is chosen asMa=3.0,H=10 km,attack angleα=0° ,yaw angleβ=5°.

    Fig.2 Schematic diagram of boundary conditions for inlet

    1.4 Numerical grid

    ICEM is applied for the generation of numerical grid for the inlet inside and outside flow region. In order to improve the precision and efficiency of the calculation, structured grid is applied and finer mesh is used locally to improve the precision. The thickness of the first mesh layer on the wall is set between 0.01mm to 0.1mm. The increasing ratio from the wall is set between 1.1 to 1.2. The element number is around 2 200 000 and is shown in Fig.3.

    Fig.3 Schematic diagram of numerical grid for the head of the inlet

    2 Results and discussion

    Fig.4 shows the stable working state of the inlet in different throttle condition using steady calculation, as well as the throttle characteristics. More specifically, Fig.4(a) shows the overall throttle characteristics while Fig.4(b) indicates the throttle characteristics for each inlet. In this study, the variation of back pressure at combustor is modeled through increasing the exports of jet flow outside the combustor. From Fig.4, the flow coefficient of inlet is around 0.91 under supercritical condition. Meanwhile, the simulation results indicate that the flow coefficient of the inlet on the upwind side is 1.09 times that of the leeward side. The total pressure recovery coefficient, increasing with the increase of the percentage of blockage, achieve its maximum at 0.56 when the inlet is on the leeward side under supercritical condition. With the decrease of the flow coefficient, the total pressure recovery coefficient decreases correspondingly. The main reason is that the shock wave at the end of the inlet on the leeward side is pushed outside the lip, which results in the sudden drop of the performance. Moreover, with the percentage of blockage keeps increasing, the flow coefficient decreases continuously while the total pressure recovery coefficient increases a little bit (point 3 to point 4 in Fig.4(a)). When the flow coefficient is smaller than 0.82, the performance of the inlet will decrease drastically and the inlet cannot work stably. The Mach number distributions of the mid-surface of dual inlets under throttle condition are shown in Fig.5 and Fig.6.

    (a) The overall throttle characteristics

    (b) The throttle characteristics for each inlet

    Fig.5 Mach number distribution of the mid-surface for the dual side inlet under throttle state

    Fig.6 Mach number distribution of the mid-surface for the dual side inlet during restart process

    If dual supersonic inlets are under the condition of sideslip, the inlet on the upwind side owns better performance of back pressure. Under the same back pressure of combustor, the position of the shock wave is more close to the front inside the inlet. Thus, with the increase of the back pressure to 17.7 times the static pressure of the incoming flow, the inlet on the leeward side will transform to the sub-critical state first(1#). At this time, the shock wave stays at the lip for the inlet on the leeward side while it will be located at the throat for the inlet on the upwind side. With the increase the back pressure, the overflows on the leeward side of the inlet increases while the inlet on the upwind side still stays at the critical state. Once the back pressure reaches 18.4 times the inflow pressure, the shock wave will be pushed outside the lip and then the inlets on both side will be in deep sub-critical state(5#、6#). In this case, the shock wave before the inlet is not stable, and the captured flow and the total pressure will be oscillating with the time.

    If the pressure in the combustor is decreased to 16.9 times the static pressure of the incoming flow under the condition that dual inlets do not start, the inlet on the upwind side will restart first while the shock wave of the inlet on the leeward side still stay at the lip. The main reason for the difference of the back pressure between the non-start and restart of upwind inlet is that the mix-pressure design for the inlet has delay in the certain range (decrease around 1.5 times static pressure of the incoming flow). If the back pressure decreases continuously, the shock wave moves more closely to the lip but inlet still doesn't restart. Meanwhile, the inlet on the upwind side has already reached the super-critical state. If the back pressure decreases to 8.9 times the back pressure of incoming flows, the inlet on the leeward side restarts again. It is obvious that during the starting process, especially with the existence of the sideslip, dual inlets design is different from single inlet design in the engineering perspective, which is needed to pay more attention during the design.

    3 Experimental setup

    3.1 Test model and wind tunnel facility

    During the experiment, the throttle is set at the mixing section of the blowing model. The back pressure of the chamber is modeled through adjusting the position of the throttle vertebral, thereby to obtain the characteristic curve for the inlet. In total 42 pressure holes are distributed along the outer cover and expansion section of the inlet blowing model to monitor the axial distribution of the wave system. For the measurement of total pressure, 81 pressure holes are set at the left and the right side of the export surface as well as the mixing section to measure the inlet characteristics. The inlet model is shown in Fig.7.

    The blowing test of the inlet was performed using wind tunnel named as“FD-06”, half backflow short duration for subsonic, transonic and supersonic wind tunnel. The range of the Mach number is from 0.4 to 4.5. The cross-section area for the experimental section is 0.6 m×0.6 m and the length is 1.575 m. During the supersonic experiment, different Mach number can be obtained via using different nozzles. Two windows, with the diameter of 230 mm, for observation and flow display are equipped at each side of the inlet. Scimitar support machine is used to fix the test model. Shim is used to adjust sideslip angle. To adjust angle of attack, a normal mechanism is used for the angle in the range of -15°~15°,-10°~20° and 0°~30° while the special one is used for the range of -2°~38°.

    The wind tunnel uses 8400 electronic scanning valve to measure the pressure. It could measure 128 pressure holes of the test model in the same time. The maximum speed of the valve is 50 kHz and the range is ±0.2 MPa. For the precision, the valve could reach ±0.05%F.S while ±0.01%F.S for the pressure calibration accuracy. Wind tunnel model setup is shown in Fig.8.

    Fig.7 Schematic graph for inlet model

    Fig.8 Wind tunnel model setup

    3.2 Results for the blowing test

    In the wind tunnel experiment for the inlet, the back pressure is adjusted by adding throttle vertebras at the outlet of the combustor. Fig.9 indicates the throttle curve for the blowing test of the inlet under the state ofMa=3.0,α=0°,β=5°. In Fig.8, the capturing flow coefficient is 0.93 when the dual inlets are in the state of super-critical. With the increase of the percentage of blockage, the capturing flow coefficient stays constant while the total pressure recovery coefficient increases. The performance of the dual inlets can reach their maximum when the total pressure recovery coefficient increases to 0.52. If the percentage of blockage increases continually, the inlet flow will decrease as well as total pressure recovery coefficient. However, the total pressure recovery coefficient cannot decrease more when the inlet flow keeps decreasing in the small scale. Interestingly, the performance of the inlet will decrease dramatically if the shock waves on both inlets are pushed outside the lips. In the same time, the pressure oscillates drastically as indicated in Fig.10, corresponding to the point 1, 2 and 3 in Fig.9. When the dual inlets stop operation, it is required to decrease the back pressure via decreasing the percentage of blockage, thereby to lead the inlet to restart.

    Fig.9 Inlet characteristic diagrams for wind tunnel experiment

    Fig.10 Sequence of schlieren images of the inlet under the condition of Ma=3.0,α=0°,β=5°

    4 Conclusion

    (1) With the sideslip angle of 5°, inlet on the leeward side reaches its critical point and the performance achieves its maximum(σ=0.56). After that, with the increase of back pressure, the flow of inlet decrease in the small amount in the beginning while it decreases drastically after a while. By contrast, the total pressure recovery coefficient almost remains constant in the beginning while it decreases drastically after.

    (2) After dual inlets stops working, the inlet on the upwind side start first with the decrease of the back pressure and it remains consistently 16.9 times the inflow static pressure. In contrast, the inlet on the leeward side requires even more decreasing of the back pressure, around 8.9 times the inflow static pressure, to restart.

    (3) With the existence of the attitude angle, the inlet in the system with multiple inlets does not have the same working state, which should be considered in the research.

    [1] Lu P J,Jain L T. Numerical investigation of inlet buzz flow [J]. Journal of Propulsion and Power,1998,14(1):90-100.

    [2] Yufeng Wang, Bao'e Yang. Study of the buzz mechanism of supersonic inlets[J]. Journal of Rocket Propulsion, 2008,34(1):17-22.

    [3] Wooram Hong,Chongam Kim. Numberical study on supersonic inlet buzz under various throttling conditions and fluid-structure interaction[R]. AIAA 2011-3967.

    [4] Newsome R W. Numberical simulation of near-critical and unsteady, subcritical inlet flow[J]. AIAA Journal, 1984, 22(10):1375-1379.

    [5] Ferri A, Nucci L M. The origin of aerodynamic instablility of supersonic inlets at subcritical conditions[R]. NASA RM L50K30, 1951.

    [6] Liu Zhansheng, Zhang Yunfeng, Tian Xin. Research on self-excited oscillation flows in inlet of ramjet[J].Journal of Aerospace Power,2008(9).

    [7] Fujiwara H,Murakami A,Watanabe Y. Numerical analysis on shock oscillation of two-dimensional external compression intakes [R]. AIAA 2002-2740.

    [8] Nishizawa U,Kameda M. Computational simulation of shock oscillation around a supersonic air-intake [R]. AIAA 2006-3042.

    [9] Van Wie D M,Kwok F T. Starting characteristics of supersonic inlets[R]. AIAA 96-2914.

    [10] Ryan Throckmorton and Joseph A Schetz. Experimental and computational investigation of a dynamic starting method for supersonic/hypersonic inlets[R]. AIAA 2010-589.

    (編輯:薛永利)

    彈用雙進(jìn)氣道耦合特性

    孫振華,吳催生

    (中國(guó)空空導(dǎo)彈研究院,洛陽 471009)

    針對(duì)某彈用雙進(jìn)氣道系統(tǒng)之間的耦合特性進(jìn)行數(shù)值模擬和風(fēng)洞試驗(yàn)研究。結(jié)果表明,雙側(cè)進(jìn)氣道均不起動(dòng)后,減小反壓至16.9倍來流靜壓時(shí),迎風(fēng)側(cè)進(jìn)氣道先起動(dòng),而背風(fēng)側(cè)進(jìn)氣道需要大幅降低反壓至8.9倍來流靜壓才能實(shí)現(xiàn)再起動(dòng);有彈體側(cè)滑角狀態(tài)下,雙進(jìn)氣道的背風(fēng)側(cè)進(jìn)氣道處于臨界時(shí),性能達(dá)到最大。

    沖壓發(fā)動(dòng)機(jī);雙進(jìn)氣道;耦合特性;數(shù)值模擬;風(fēng)洞試驗(yàn)

    V435 Do cument code:A Article ID:1006-2793(2015)06-0793-05

    10.7673/j.issn.1006-2793.2015.06.008

    ① Received date: 2015-03-03; Revised date: 2015-04-21。

    Biography: SUN Zhen-hua( 1976—) ,male,doctor,speciality: ducted rocket design and research.

    猜你喜歡
    背風(fēng)永利進(jìn)氣道
    海邊即景
    環(huán)境(2025年1期)2025-02-21 00:00:00
    完整
    科技興邦 創(chuàng)新強(qiáng)國(guó)
    基于AVL-Fire的某1.5L發(fā)動(dòng)機(jī)進(jìn)氣道優(yōu)化設(shè)計(jì)
    深圳市永利種業(yè)有限公司
    辣椒雜志(2021年4期)2021-04-14 08:28:14
    基于輔助進(jìn)氣門的進(jìn)氣道/發(fā)動(dòng)機(jī)一體化控制
    畢永利教授簡(jiǎn)介
    射流對(duì)高超聲速進(jìn)氣道起動(dòng)性能的影響
    新型沙丘形突擴(kuò)燃燒室三維冷態(tài)背風(fēng)角度研究*
    某柴油機(jī)進(jìn)氣道數(shù)值模擬及試驗(yàn)研究
    汽車零部件(2014年2期)2014-03-11 17:46:30
    精品福利观看| 免费少妇av软件| 一二三四社区在线视频社区8| 亚洲欧美中文字幕日韩二区| 亚洲国产中文字幕在线视频| 免费观看a级毛片全部| 99精国产麻豆久久婷婷| 国产又色又爽无遮挡免| 蜜桃国产av成人99| 欧美成狂野欧美在线观看| 亚洲第一青青草原| 精品亚洲成a人片在线观看| 久久久精品94久久精品| 亚洲av国产av综合av卡| 久久精品aⅴ一区二区三区四区| 免费少妇av软件| 一二三四在线观看免费中文在| 自拍欧美九色日韩亚洲蝌蚪91| 视频在线观看一区二区三区| 91麻豆精品激情在线观看国产 | 欧美在线黄色| 成年动漫av网址| 99热全是精品| 日韩一区二区三区影片| 欧美精品亚洲一区二区| 亚洲欧美一区二区三区久久| 亚洲精品av麻豆狂野| 亚洲 欧美一区二区三区| 又粗又硬又长又爽又黄的视频| 精品一品国产午夜福利视频| 老司机深夜福利视频在线观看 | 中文字幕人妻熟女乱码| 免费高清在线观看视频在线观看| 在线看a的网站| 欧美xxⅹ黑人| 国产一卡二卡三卡精品| 亚洲精品成人av观看孕妇| 曰老女人黄片| 亚洲欧美日韩高清在线视频 | 国产高清视频在线播放一区 | 成人亚洲精品一区在线观看| 亚洲,欧美,日韩| 国产精品久久久av美女十八| 十八禁网站网址无遮挡| 国产在视频线精品| 一级片'在线观看视频| av福利片在线| 18在线观看网站| 天天操日日干夜夜撸| 亚洲黑人精品在线| 欧美黄色片欧美黄色片| 国产欧美日韩一区二区三区在线| 亚洲一区中文字幕在线| 丁香六月欧美| 亚洲精品国产一区二区精华液| 日本色播在线视频| 亚洲精品自拍成人| 99国产精品一区二区蜜桃av | 妹子高潮喷水视频| 婷婷色综合www| 老司机深夜福利视频在线观看 | 亚洲,欧美精品.| 亚洲欧美中文字幕日韩二区| 好男人视频免费观看在线| 我的亚洲天堂| 欧美久久黑人一区二区| 男女国产视频网站| www.熟女人妻精品国产| 青青草视频在线视频观看| 女人精品久久久久毛片| bbb黄色大片| 日韩一本色道免费dvd| 美女高潮到喷水免费观看| 热99久久久久精品小说推荐| 国产在线一区二区三区精| 激情视频va一区二区三区| 亚洲国产精品成人久久小说| 夜夜骑夜夜射夜夜干| 9191精品国产免费久久| 中国国产av一级| 自拍欧美九色日韩亚洲蝌蚪91| 菩萨蛮人人尽说江南好唐韦庄| 免费观看a级毛片全部| 别揉我奶头~嗯~啊~动态视频 | 国产色视频综合| 精品熟女少妇八av免费久了| 日韩伦理黄色片| 日韩大片免费观看网站| av天堂久久9| 午夜福利视频精品| 精品少妇内射三级| 伦理电影免费视频| 国产成人欧美在线观看 | 国产成人影院久久av| 中文字幕另类日韩欧美亚洲嫩草| 久久中文字幕一级| 久久天躁狠狠躁夜夜2o2o | 每晚都被弄得嗷嗷叫到高潮| av在线app专区| 手机成人av网站| 亚洲精品久久午夜乱码| 久久综合国产亚洲精品| 欧美日韩视频高清一区二区三区二| 国产人伦9x9x在线观看| 高潮久久久久久久久久久不卡| 久久性视频一级片| av视频免费观看在线观看| 在现免费观看毛片| 啦啦啦视频在线资源免费观看| 久久精品久久精品一区二区三区| 亚洲欧美日韩高清在线视频 | 久久毛片免费看一区二区三区| 青春草视频在线免费观看| 亚洲国产成人一精品久久久| 婷婷色综合www| 一区二区三区四区激情视频| 国产一区二区 视频在线| 精品少妇内射三级| 王馨瑶露胸无遮挡在线观看| 男人爽女人下面视频在线观看| 在线观看免费高清a一片| www.熟女人妻精品国产| 国产97色在线日韩免费| 欧美久久黑人一区二区| 别揉我奶头~嗯~啊~动态视频 | 人体艺术视频欧美日本| 美女脱内裤让男人舔精品视频| 精品久久久久久久毛片微露脸 | 蜜桃国产av成人99| 欧美成人午夜精品| 日本欧美国产在线视频| 丝袜脚勾引网站| 日韩一区二区三区影片| 亚洲欧美清纯卡通| 国产无遮挡羞羞视频在线观看| 久久久久久久大尺度免费视频| 纯流量卡能插随身wifi吗| 在线观看人妻少妇| 午夜福利乱码中文字幕| 少妇被粗大的猛进出69影院| 久久久欧美国产精品| 精品亚洲乱码少妇综合久久| 欧美亚洲日本最大视频资源| 国产无遮挡羞羞视频在线观看| 午夜精品国产一区二区电影| 在线亚洲精品国产二区图片欧美| 97在线人人人人妻| 天天躁夜夜躁狠狠躁躁| 亚洲av成人不卡在线观看播放网 | 黄网站色视频无遮挡免费观看| 飞空精品影院首页| 国产精品麻豆人妻色哟哟久久| 久久国产精品男人的天堂亚洲| 少妇被粗大的猛进出69影院| 五月开心婷婷网| 天天添夜夜摸| 精品国产乱码久久久久久男人| 中文字幕人妻丝袜一区二区| 少妇裸体淫交视频免费看高清 | 久久精品国产亚洲av涩爱| 国产一区二区三区综合在线观看| 国产精品一区二区在线观看99| 丝袜美腿诱惑在线| 精品国产乱码久久久久久小说| 大码成人一级视频| 青青草视频在线视频观看| 精品高清国产在线一区| 国产精品久久久久成人av| 久久人人爽人人片av| 曰老女人黄片| 国产老妇伦熟女老妇高清| 欧美 日韩 精品 国产| 国产在线观看jvid| 国产精品国产av在线观看| 亚洲精品美女久久久久99蜜臀 | 搡老乐熟女国产| 午夜免费鲁丝| 黄色毛片三级朝国网站| netflix在线观看网站| 人妻人人澡人人爽人人| 一区二区三区乱码不卡18| 99国产精品一区二区三区| 亚洲一区中文字幕在线| 亚洲欧美激情在线| 亚洲中文字幕日韩| 欧美成人精品欧美一级黄| 99久久人妻综合| 精品人妻1区二区| 久久精品国产a三级三级三级| 免费黄频网站在线观看国产| 午夜福利一区二区在线看| 亚洲男人天堂网一区| 人体艺术视频欧美日本| 国产黄频视频在线观看| 少妇的丰满在线观看| 国产免费视频播放在线视频| 欧美日韩精品网址| 老熟女久久久| 在线精品无人区一区二区三| 51午夜福利影视在线观看| 久久久久视频综合| 我的亚洲天堂| 国产黄色视频一区二区在线观看| 亚洲国产精品国产精品| 亚洲,欧美,日韩| 亚洲国产精品一区二区三区在线| av又黄又爽大尺度在线免费看| 少妇猛男粗大的猛烈进出视频| 777久久人妻少妇嫩草av网站| 亚洲 国产 在线| 18禁国产床啪视频网站| 国产福利在线免费观看视频| 久久99精品国语久久久| 99热国产这里只有精品6| 老汉色av国产亚洲站长工具| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品自拍成人| 久久久国产一区二区| 制服人妻中文乱码| 纯流量卡能插随身wifi吗| 91精品三级在线观看| 成在线人永久免费视频| 女人久久www免费人成看片| 亚洲一区二区三区欧美精品| 黑人猛操日本美女一级片| 久久精品久久久久久久性| 人人妻人人爽人人添夜夜欢视频| 久久性视频一级片| 久久综合国产亚洲精品| 侵犯人妻中文字幕一二三四区| 777久久人妻少妇嫩草av网站| 91字幕亚洲| 久久久久久久大尺度免费视频| 韩国精品一区二区三区| 青春草视频在线免费观看| videosex国产| 国产精品久久久久久人妻精品电影 | 宅男免费午夜| 中文字幕另类日韩欧美亚洲嫩草| 丝袜人妻中文字幕| 亚洲av成人精品一二三区| 久久久久国产一级毛片高清牌| 色视频在线一区二区三区| 下体分泌物呈黄色| 亚洲国产看品久久| 满18在线观看网站| 亚洲成国产人片在线观看| 中文字幕高清在线视频| 热re99久久精品国产66热6| 国产精品久久久av美女十八| 久久亚洲国产成人精品v| 国产亚洲欧美在线一区二区| 纵有疾风起免费观看全集完整版| 亚洲欧洲国产日韩| 欧美另类一区| 我要看黄色一级片免费的| 亚洲国产成人一精品久久久| 国产又色又爽无遮挡免| 国产免费现黄频在线看| bbb黄色大片| 久久国产亚洲av麻豆专区| 日韩 亚洲 欧美在线| 韩国精品一区二区三区| 国产午夜精品一二区理论片| 欧美人与善性xxx| 久久精品国产亚洲av高清一级| 婷婷色综合大香蕉| 午夜久久久在线观看| 亚洲 欧美一区二区三区| 我要看黄色一级片免费的| 国产老妇伦熟女老妇高清| 久久久精品区二区三区| 精品一区二区三卡| 国产成人精品久久二区二区91| 日本vs欧美在线观看视频| 高清不卡的av网站| 亚洲国产欧美日韩在线播放| 欧美老熟妇乱子伦牲交| 免费人妻精品一区二区三区视频| 久久久久久久久免费视频了| 国产成人a∨麻豆精品| 国产无遮挡羞羞视频在线观看| 午夜福利,免费看| 男女边摸边吃奶| 777米奇影视久久| 亚洲欧美中文字幕日韩二区| 日韩欧美一区视频在线观看| 亚洲七黄色美女视频| 麻豆国产av国片精品| 午夜av观看不卡| 黑人欧美特级aaaaaa片| 欧美国产精品va在线观看不卡| 每晚都被弄得嗷嗷叫到高潮| 国产午夜精品一二区理论片| 电影成人av| 国产激情久久老熟女| 在线 av 中文字幕| 国产日韩欧美亚洲二区| 国产成人精品在线电影| 亚洲国产欧美一区二区综合| 狂野欧美激情性xxxx| 男男h啪啪无遮挡| 日本av免费视频播放| 精品福利永久在线观看| 欧美日韩综合久久久久久| 99热网站在线观看| 精品久久久精品久久久| av电影中文网址| 女人被躁到高潮嗷嗷叫费观| 午夜影院在线不卡| 亚洲精品日韩在线中文字幕| 久久人人爽av亚洲精品天堂| 欧美日韩亚洲高清精品| 欧美精品一区二区大全| 美女扒开内裤让男人捅视频| 亚洲熟女毛片儿| 国产高清不卡午夜福利| 国产视频首页在线观看| 18禁观看日本| 美女大奶头黄色视频| 欧美日韩国产mv在线观看视频| 热99久久久久精品小说推荐| 麻豆国产av国片精品| 一本大道久久a久久精品| 亚洲精品一二三| 亚洲国产av影院在线观看| av不卡在线播放| 免费看不卡的av| 一区二区三区精品91| 国产精品免费大片| 精品久久久久久电影网| 成年人午夜在线观看视频| 亚洲成av片中文字幕在线观看| 18禁黄网站禁片午夜丰满| 9热在线视频观看99| 国产在线观看jvid| 最近最新中文字幕大全免费视频 | 51午夜福利影视在线观看| 99香蕉大伊视频| 国产免费视频播放在线视频| 在线观看www视频免费| 99精国产麻豆久久婷婷| 色综合欧美亚洲国产小说| 丝袜脚勾引网站| 精品亚洲成a人片在线观看| 久久天堂一区二区三区四区| 精品久久久久久久毛片微露脸 | 亚洲av成人不卡在线观看播放网 | av视频免费观看在线观看| 天堂中文最新版在线下载| 99国产精品一区二区蜜桃av | 国产麻豆69| 观看av在线不卡| 国产精品欧美亚洲77777| 性高湖久久久久久久久免费观看| 丰满少妇做爰视频| 免费人妻精品一区二区三区视频| 在线观看国产h片| 黄色视频不卡| 婷婷色综合www| 纵有疾风起免费观看全集完整版| 三上悠亚av全集在线观看| 国产精品国产三级专区第一集| 亚洲五月色婷婷综合| 国产国语露脸激情在线看| 18禁观看日本| 国产爽快片一区二区三区| 嫩草影视91久久| 欧美成人午夜精品| 三上悠亚av全集在线观看| 午夜免费成人在线视频| 在线天堂中文资源库| 亚洲熟女精品中文字幕| 伦理电影免费视频| 50天的宝宝边吃奶边哭怎么回事| 国产人伦9x9x在线观看| 大片免费播放器 马上看| 国产1区2区3区精品| 一区二区三区四区激情视频| 亚洲精品日本国产第一区| 精品福利观看| 国产精品久久久久成人av| 午夜激情av网站| av线在线观看网站| 考比视频在线观看| 亚洲第一青青草原| 精品人妻熟女毛片av久久网站| 色94色欧美一区二区| 制服诱惑二区| 国产男女内射视频| 国语对白做爰xxxⅹ性视频网站| 老司机影院成人| 国产深夜福利视频在线观看| 亚洲成av片中文字幕在线观看| 久久久亚洲精品成人影院| 丝袜人妻中文字幕| 日本一区二区免费在线视频| 国产片内射在线| www.精华液| 欧美大码av| 黑人欧美特级aaaaaa片| 国产成人一区二区三区免费视频网站 | 男的添女的下面高潮视频| 国产高清不卡午夜福利| 日韩电影二区| 亚洲精品久久成人aⅴ小说| 美女视频免费永久观看网站| 啦啦啦在线免费观看视频4| 天堂8中文在线网| √禁漫天堂资源中文www| 大片电影免费在线观看免费| 国产精品秋霞免费鲁丝片| 午夜老司机福利片| 熟女少妇亚洲综合色aaa.| 久久国产精品人妻蜜桃| av网站在线播放免费| 在线观看国产h片| 久久久久精品国产欧美久久久 | 成人三级做爰电影| 熟女少妇亚洲综合色aaa.| 91精品伊人久久大香线蕉| 亚洲一区中文字幕在线| 秋霞在线观看毛片| 在线观看一区二区三区激情| 99国产综合亚洲精品| 一级毛片 在线播放| netflix在线观看网站| 国产野战对白在线观看| 久久国产精品大桥未久av| 色婷婷av一区二区三区视频| 免费在线观看日本一区| 老司机靠b影院| 成人亚洲精品一区在线观看| 麻豆国产av国片精品| 啦啦啦视频在线资源免费观看| 日韩 亚洲 欧美在线| 日韩精品免费视频一区二区三区| 最近最新中文字幕大全免费视频 | 9191精品国产免费久久| 国产真人三级小视频在线观看| 肉色欧美久久久久久久蜜桃| 狠狠精品人妻久久久久久综合| 侵犯人妻中文字幕一二三四区| 国产欧美日韩一区二区三 | 一级,二级,三级黄色视频| 女警被强在线播放| xxxhd国产人妻xxx| 成人国产一区最新在线观看 | 久久久国产欧美日韩av| av欧美777| 交换朋友夫妻互换小说| 人人妻人人添人人爽欧美一区卜| 国产在线一区二区三区精| 人体艺术视频欧美日本| 久久久久视频综合| 一级a爱视频在线免费观看| 日韩视频在线欧美| 亚洲国产欧美一区二区综合| 十分钟在线观看高清视频www| av在线播放精品| 国产亚洲一区二区精品| 国产高清不卡午夜福利| 久久久久国产一级毛片高清牌| 精品少妇内射三级| 日韩视频在线欧美| 国产亚洲欧美在线一区二区| 嫁个100分男人电影在线观看 | 男女国产视频网站| 丝袜美足系列| 丝袜喷水一区| 99国产精品免费福利视频| 一级,二级,三级黄色视频| 国产精品三级大全| 99九九在线精品视频| 丝袜在线中文字幕| 国产亚洲欧美在线一区二区| 精品国产乱码久久久久久小说| 国产精品久久久久成人av| 新久久久久国产一级毛片| 夫妻性生交免费视频一级片| 国产色视频综合| 两个人看的免费小视频| 精品少妇内射三级| avwww免费| 国产伦人伦偷精品视频| 免费一级毛片在线播放高清视频 | 久久久久久久久免费视频了| 亚洲欧美一区二区三区国产| avwww免费| 超色免费av| 少妇 在线观看| 午夜福利免费观看在线| 亚洲av男天堂| 在线观看www视频免费| 国产成人精品久久久久久| 国产精品三级大全| 成人国产一区最新在线观看 | 亚洲av电影在线观看一区二区三区| 久久久久久人人人人人| 交换朋友夫妻互换小说| 校园人妻丝袜中文字幕| 美女中出高潮动态图| 婷婷色麻豆天堂久久| 亚洲成人手机| 80岁老熟妇乱子伦牲交| 日本色播在线视频| 99九九在线精品视频| 欧美人与善性xxx| 亚洲欧洲国产日韩| 亚洲精品成人av观看孕妇| 看十八女毛片水多多多| 中国国产av一级| 久久精品国产a三级三级三级| 国产黄色免费在线视频| 亚洲色图综合在线观看| 日韩欧美一区视频在线观看| 麻豆国产av国片精品| 狂野欧美激情性bbbbbb| 高清视频免费观看一区二区| 午夜久久久在线观看| 一级黄色大片毛片| 亚洲精品美女久久av网站| 亚洲国产欧美在线一区| 久久人人爽人人片av| 久久精品国产亚洲av高清一级| 黑人猛操日本美女一级片| 日本91视频免费播放| 母亲3免费完整高清在线观看| 一级毛片我不卡| 久久av网站| 亚洲欧洲日产国产| 成年av动漫网址| 99热国产这里只有精品6| www日本在线高清视频| 久久久国产精品麻豆| 熟女少妇亚洲综合色aaa.| videos熟女内射| 亚洲一区二区三区欧美精品| 一本综合久久免费| 久久精品aⅴ一区二区三区四区| 十分钟在线观看高清视频www| 欧美精品亚洲一区二区| 90打野战视频偷拍视频| 校园人妻丝袜中文字幕| 国产精品久久久av美女十八| 精品国产乱码久久久久久小说| 夜夜骑夜夜射夜夜干| 国产三级黄色录像| 亚洲综合色网址| av在线app专区| 在线观看免费日韩欧美大片| 国产精品久久久久久精品电影小说| 尾随美女入室| 91麻豆av在线| 欧美成人精品欧美一级黄| 免费人妻精品一区二区三区视频| 丰满少妇做爰视频| 人妻一区二区av| 亚洲av成人精品一二三区| 纯流量卡能插随身wifi吗| 久久九九热精品免费| 国产精品一区二区精品视频观看| 久久精品熟女亚洲av麻豆精品| 大话2 男鬼变身卡| svipshipincom国产片| 精品亚洲成a人片在线观看| 亚洲欧美一区二区三区黑人| 美国免费a级毛片| 尾随美女入室| 在线观看国产h片| 国产精品久久久久久精品古装| 一区二区三区精品91| 一级黄色大片毛片| 天堂中文最新版在线下载| av电影中文网址| 精品少妇黑人巨大在线播放| 久久久久久久久免费视频了| 91麻豆精品激情在线观看国产 | 亚洲欧美一区二区三区久久| 成人免费观看视频高清| 又粗又硬又长又爽又黄的视频| 十八禁高潮呻吟视频| 亚洲av国产av综合av卡| 国产精品99久久99久久久不卡| 国产精品.久久久| 真人做人爱边吃奶动态| 性高湖久久久久久久久免费观看| 两个人看的免费小视频| 一本一本久久a久久精品综合妖精| 亚洲综合色网址| 成人午夜精彩视频在线观看| 国产亚洲午夜精品一区二区久久| 国产亚洲精品第一综合不卡| 爱豆传媒免费全集在线观看| 欧美成人精品欧美一级黄| 美女主播在线视频| 丝袜脚勾引网站| 最新的欧美精品一区二区| 一二三四在线观看免费中文在| 午夜福利在线免费观看网站| 久久精品国产综合久久久| 欧美日本中文国产一区发布| 一级毛片女人18水好多 | 18在线观看网站| 免费在线观看视频国产中文字幕亚洲 | 最近手机中文字幕大全| 99re6热这里在线精品视频| av国产精品久久久久影院| 一本一本久久a久久精品综合妖精| 久久久久久久精品精品| 国产精品久久久av美女十八| 日本猛色少妇xxxxx猛交久久| 两个人免费观看高清视频| 精品欧美一区二区三区在线| 在线观看一区二区三区激情|