• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Destructive effect of magnesium and calcium atoms on TEX

    2017-11-14 01:21:09Lemirker
    Defence Technology 2017年5期

    Lemi Türker

    Middle East Technical University,Department of Chemistry,06800,?ankaya,Ankara,Turkey

    Destructive effect of magnesium and calcium atoms on TEX

    Lemi Türker

    Middle East Technical University,Department of Chemistry,06800,?ankaya,Ankara,Turkey

    1.Introduction

    4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazawurtzitane,known as TEX(see Fig.1)is an energetic material which has attracted attention in recent years[1].The synthesis of TEX was achieved couple of decades ago by Boyer and coworkers starting with formamide and glyoxal[2].Structurally TEX is a nitramine type explosive.Beside,two nitramine groups,it additionally contains two embedded five-membered cyclic dietheric(also can be considered as acetal) structures resembling 1,3-dioxalane structure.

    TEX is much less sensitive to impact and friction stimuli as compared to the well known explosives,RDX and HMX.In addition to those properties,it possesses high density(1.99 g/cm3),excellent thermal stability(m.p>240°C)as well as high detonation velocity(8665 m/s)and pressure(370 kbar)[1-7].

    The presence of two embedded 1,3-dioxalane structures in TEX molecule calls some well known reactions of ethers and acetals(acyclic or cyclic),such as the acid catalyzed ring opening reactions of cyclic ethers[8-10].The embedded 1,3-dioxalane structure(s)in TEX can also be considered as full acetal of glyoxal(a dialdehyde(C2H2O2)).Note that acetal formation and destruction reactions are acid catalyzed[8-10].Computations based on density functionaltheory(DFT)have been highly employed on TEX molecule in order to predict the crystal densities[11],detonation velocity[12],bond dissociation energies and impact sensitivity[13],sensitivity and performance relation[14]etc.[15-17].Zuo and coworkers considered the thermal stability of TEX in the presence of widely used RDX and HMX[18].Various modeling work which involve TEX and other explosives within the realm of density functional theory(DFT)have been reported[19-21].By employing the density functional theory at the B3LYP/6-31+G(d,p)level of theory Schutt et al.,calculated the heat of reactions of free dinitramidic acid(HN(NO2)2)with derivativesof2,4-(R)-2,6,8,12-tetraoxa-4,10-diazatetracyclo[5.5.0.05.903.11]dodecane(R=H,CH3,F,NO2(TEX))[22].Zeng et al.,calculated the heat of formation(HOF)for a caged wurtzitane analog compound(4,10-dinitro-2,6,8,12-tetraoxa-4,10-diaza-tetracyclododecane(TEX))by using density functional theory(B3LYP method with 6-31+G(d,p)basis set)[23].

    On the other hand,certain metals usually are added into explosive compositions to improve their performances.Aluminum and magnesium are the most widely used materials for this purpose.Titanium,zirconium and tungsten are also used[24].

    In the present study,interaction of magnesium and calcium atom(s)with TEX molecule(in 1:1 and 1:2 mol ratios)has been investigated within the limitations of density functional approach.

    2.Methods of calculation

    Fig.1.Structure of TEX.

    In the present study,all the theoretical methods have been applied using the restricted level of theory,because all the structures considered are closed shell systems(no radicals)[25].The initial optimizations of the structures leading to energy minima were achieved by using MM2 method followed by semi-empirical PM3 self-consistent fields molecular orbital(SCF-MO)method[25,26].Then,further structure optimizations were achieved using successively STO and RHF levels of theory(6-31G(d,p))and then within the framework of Density Functional Theory(DFT,B3LYP/6-311++G(d,p))[26-28].All the structures are dealt in their singlet states(restricted type calculations have been done).The exchange term of B3LYP consists of hybrid Hartree-Fock and local spin density(LSD)exchange functions with Becke's gradient correlation to LSD exchange[29].The correlation term of B3LYP consists of the Vosko,Wilk,Nusair(VWN3)local correlation functional[30]and Lee,Yang,Parr(LYP)correlation correction functional[31].

    Total electronic energy calculations of all the considered structures finally have been done at B3LYP/6-311++G(d,p)level.The normal mode analysis(at the same level of calculations)for each structure yielded no imaginary frequencies,which indicates that each compound has at least a local minimum on the potential energy surface.The total electronic energies were corrected for zero point vibrational energies(ZPVE or ZPE).All these computations were performed by using Spartan 06 package program at standard conditions of 298.15 K and 1.00 atm[32].

    3.Results and discussion

    Metal additives are not uncommon in explosive composites.For condensed explosives,having metal particle additives,interaction of the detonation shock and reaction zone with solid inclusions yields high rates of momentum and heat transfer that consequently introduce non-ideal detonation phenomena[33,34].

    Mg and Ca are just two of various elements used in fireworks(Mg is used as fuel and Ca salts for color agent)[35,36].Mg can also be employed in thermobaric and enhanced blast explosives explosives as fuel[37].Their wide application is due to their thermochemical properties that at the standard states Mg and Ca liberate considerable amount of heat energy(602 kJ/mol and 635 kJ/mol,respectively)as they form their oxides,MgO and CaO.Whereas Al,when oxides to Al2O3,produces 1669 kJ/mol of heat and 822 kJ/mol heat energy accompanies formation of Fe2O3at the standard states[38].Mg and Ca are in the second group of the Periodic Table and are highly electro positive,namely easily oxidized.Their oxidation potentials(2.87 V and 2.38 V for Ca and Mg,respectively)are much higher than for Al(1.66 V),Fe(0.44 V)and Zn(0.76 V)[38].Therefore,Mg and Ca have more tendencies to reduce nitro groups than Al and Zn.Note that Zn in organic chemistry is employed to reduce nitro groups,like some other metals in various reactions.

    Fig.2.Optimized structures of TEX composites considered(B3LYP/6-311++G(d,p)).

    Magnesium is a very reactive metal and makes an excellent fuel under the proper conditions in composition of explosives.Alkali(like Na,K)and alkali earth(like Mg,Ca,Ba)metals,in theory would make excellent high-energy fuels,but except for magnesium;they are too reactive and interact with moisture and atmospheric oxygen[24].Therefore,their usage requires certain precautions.The most widely used metallic fuel is probably aluminum,followed by magnesium.Calcium does not have any usage in that sense.

    TEX contains etheric linkages(in the form of acetal).It is known that especially Mg forms complexes with ethers(such as in the Grignard reagents[39-41])and thus it is expected to have some influence on the structure of TEX.

    Because of all the above said points it would be interesting to consider the interaction of Mg and Ca atoms with TEX molecule within the realm of DFT.

    3.1.Compositions and structures

    Fig.3.Bond lengths of the optimized structures of TEX composite systems presently considered(B3LYP/6-311++G(d,p)).

    Fig.4.Electrostatic charges in the composite systems considered(B3LYP/6-311++G(d,p)).

    Complexation of Mg with ethers has been studied extensively since the discovery of Grignard reaction[8,9,39-41].TEX being a cyclic ether(it has four etheric linkages)should form complexes with Mg.Starting from this idea,quantum chemical investigation has been achieved presently.For that purpose 1-2 atoms of Mg and Ca is/are introduced in the vicinity of TEX molecule.The composite systems(TEX+nMe;n:1,2,;8.48,15.64%Mg,and 14.13,26.06%Ca,respectively)is/are optimized structurally as described in the method part.Fig.2 shows the optimized structures(B3LYP/6-311++G(d,p)).

    As seen in the figure,Mg atom causes the cleavage of one of the nitramine bonds in TEX+Mg composition(see Fig.3).However,the presence of second Mg atom shows some counter effect and in TEX+2 Mg composite,TEX molecule preserves its bond integrity,albeit the fact that some bond elongations and distortions.It is to be noted that although Mg atom exhibits some tendency to complex with oxygen of ordinary ethers,such as diethyl ether or tetrahydrofuran,in the case of TEX+Mg,the etheric oxygen bonds on the Mg side are only slightly affected.This is also true for TEX+Ca composition.Whereas,the presence of second Ca atom,highly perturbs not only the nitramine bonds,but also affects the etheric bonds unequally(see Fig.3).

    Fig.5.Local ionization maps of the TEX composites(B3LYP/6-311++G(d,p)).

    Fig.3 shows the bond lengths of the optimized structures of TEX composites considered.Fig.4 shows the electrostatic charge distribution in the composites of the present concern.Note that the metal atoms are all positively charged.The Ca atom(s)is/are more positive than Mg atoms in their counterpart compositions.While those destructive interactions happen,the nature of the leaving group(NO2)seems to be resembling the nitrite ion.Fig.5 displays the local ionization maps of the TEX composites in which leaving group NO2moieties(s)is/are relatively electron rich with respect to the remnant of TEX structure.

    The dipole moments(in Debye unit)of the composites are 1.86 and 4.38,for Mg and 1.63 and 4.80,for Ca in 1:1 and 1:2 TEX:Metal compositions,respectively(see Fig.2 for their directions).

    3.2.Energies

    Table 1 shows the total electronic energies(E),the zero point vibrational energies(ZPE)and the corrected total electronic energies(Ec).Note that the energies in the table hold for the composite systems in the perturbed forms shown in Fig.2.Initially constructed composite systems having TEX molecule in the intact form undergo some sorts of perturbations and lower the energy,mostly by expelling one or two NO2group(s).

    3.3.IR spectra

    Fig.6 shows the calculated IR spectra of the composites.As seen there the spectra for TEX+Mg and TEX+2 Mg are very similar in appearance.Only some band shifts occur.The bands at 1647 cm-1and 1565 cm-1stand for stretching of NO2group still attached to main body of TEX.

    Table 1 Various energies of the composites.

    Fig.6.IR spectra of the TEX composites considered(B3LYP/6-311++G(d,p)).

    The IR spectra for calcium composites are quite different from each other.The band at 1641 cm-1(stretching of NO2group still linked to the remnant of TEX)in the TEX+Ca composite is mostly lost in TEX+2Ca case.Also,the one at 957 cm-1(bending of rings)does not appear in the presence of second Ca atom.

    3.4.Molecular orbital energies and frontier molecular orbitals

    Fig.7 shows some of the molecular orbital energy levels of the composite Mg and Ca systems presently the focus of concern.As seen in the figure,by the presence of second Mg atom the highest occupied molecular orbital(HOMO)energy level raises up,whereas the lowest unoccupied molecular orbital(LUMO)energy level decreases in unequal extents.The presence of second Ca atom in the optimized composite structure lowers the LUMO but raises the HOMO energy levels(note that in the figure for the Ca case,the energy scales are different.The figure should not mislead).

    This situation usually arises whenever some sorts of increased delocalization occurs(extended conjugation)[42].Most probably the Mg atom nearby the distorted NO2group interacts strongly with it.A similar argument should hold for the Ca atom.However,in this case the narrowing of interfrontier molecular orbital(FMO)energy gap is less pronounced as compared to the respective Mg case.

    Table 2 displays the HOMO,LUMO energies and the HOMOLUMO energy gap(Δε).As seen there,the presence of second metallic atom in both the Mg and Ca cases causes the narrowing of the interfrontier energy gap[42].So in the respective electronicspectra,a bathochromic effect is expected and the calculated UVVIS spectra exhibit this fact for TEX+2 Mg and TEX+2Ca cases as compared to their respective mono metallic compositions(see Fig.8).

    Table 2 Various energies of the composites.

    Fig.8 shows the UV-VIS spectra for the TEX composites considered.As seen in Fig.7 and Table 2,the presence of second Mg atom causes an appreciable narrowing of the interfrontier molecular orbital energy gap.Thus it is accompanied by a bathochromic shift to visible region of the spectrum.The bathochromic effect caused by the presence of second Ca atom is less pronounced as compared to the Mg case.Note that the direction of the dipole moments strikingly change by the insertion of second Mg atom in to the system.This type of change does not occur in the case of Ca insertion.All these data imply that the second Mg atom is more influential on some sort of conjugative effects than the second Ca atom is.

    Fig.9 shows the HOMO and LUMO pattern of the composites.In the case of TEX+Mg,the HOMO is constituted by the expelled NO2moiety around the Mg atom.Whereas,the LUMO gets contribution from the remnant of TEX molecule,especially from the remaining nitramine moiety.

    Fig.7.Molecular orbital energy spectra of the composite systems(B3LYP/6-311++G(d,p)).

    Fig.8.UV-VIS spectra of the TEX composites considered(B3LYP/6-311++G(d,p)).

    In the TEX+2 Mg composite,the HOMO gets contribution from the nitramine bond atoms nearby the less positive Mg atom(see Fig.4)whereas the LUMO is constituted by the distorted nitramine bond atoms and the Mg atom nearby which is more positive than the other Mg atom.

    On the other hand,TEX+Ca systems are characterized by effective contributions of etheric oxygen atoms into the HOMO.In the case of TEX+Ca composite,the LUMO is mainly on the intact nitramine bond atoms.As for the TEX+2Ca case,the contributions to LUMO are only from the remnant of TEX molecule and the expelled NO2moieties contribute nil.The properties mentioned above for the HOMO and LUMO have been implicitly reflected into the electrostatic maps for the TEX composites where around the expelled/distorted NO2group(s)nearby the metal atom,more negative potential develops(Fig.10).Those site atoms contribute the HOMO.The cage of TEX remnant is generally possesses positive potential.

    4.Conclusion

    The present study,within the limitations of the DFT level of calculations,indicates that Mg and Ca can detoriate the chemical structure of TEX molecule.Hence,it is not a suitable additive material to increase/improve certain thermal behavior of TEX.Topologically symmetrical chemical structure of TEX is perturbed at different extent and pattern depending on the Mg and Ca atom contents of the composite.In contrast to usual interaction of Mg with ethers,(etheric oxygen coordinates with Mg)in the case of TEX,Mg(also Ca)denotes electron(s)to nitramine NO2moiety.Hence,any contact of TEX with those alkaline earth metals should be avoided in the preparation or manufacture of ammunitions.

    Fig.9.Frontier molecular orbitals of the TEX composites(B3LYP/6-311++G(d,p)).

    Fig.10.Electrostatic potential maps of the TEX composites(B3LYP/6-311++G(d,p)).

    [1]Sikder AK,Sikder N.A review of advanced high performance,insensitive and thermally stable energetic materials emerging for military and space applications.J Hazard Mater A1 2004;12:1-15.

    [2]Ramarkrishnan VT,Vedachalam M,Boyer JM.4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazatetracyclo(5,5,0,0,3,11)dodecane.Heterocycles 1990;3:479-80.

    [3]Legard J.The preparatory manual of explosives.Third ed.2007.

    [4]Olah GA,Squire DR.Chemistry of energetic materials.Boston:Academic Press;1991.

    [5]Agrawal JP,Hodgson RD.Organic chemistry of explosives.Sussex:Wiley;2007.

    [6]Klap¨otke TM.Chemistry of high energy materials.Berlin:De Gruyter;2011.

    [7]Karaghiosoff K,Klap¨otke TM,Michalowsky A,Hall G.4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazawurtzitane(TEX):a nitramine with an exceptionally high density.Acta Crystallogr 2002;C58:580-1.

    [8]March J.Advanced organic chemistry.London:Mc Graw-Hill Int.;1977.

    [9]Fuson RC.Reactions of organic compounds.New York:Wiley;1962.

    [10]Streitwieser Jr A,Heatcock CH.Introduction to organic chemistry.New York:Macmillan Pub.;1976.

    [11]Qui L,Xiao H,Gong X,Ju X,Zhu W.Crystal density predictions for nitramines based on quantum chemistry.J Hazard Mater 2007;141:280-8.

    [12]Zeman S,Atalar T.A new view of relationships of the N-N bond dissociation energies of cyclic nitramines.Part III.Relationship with detonation velocity.J Energetic Mater 2009;27:217-29.

    [13]Atalar T,Jungova M,Zeman S.A new view of relationships of the N-N bond dissociation energies of cyclic nitramines.Part II.Relationships with impact sensitivity of cyclic nitramines.J Energetic Mater 2009;27:200-16.

    [14]Vagenknecht J,Marecek P,Trzcinski WA.Sensitivity and performance properties of TEX explosives.J Energetic Mater 2002;20:245-53.

    [15]Türker L.Nitrogen analogs of TEX-a computational study.Def Technol 2014;10:328-33.

    [16]Türker L.Contemplation on protonation of TEX.CEJEM 2014;11:3-15.

    [17]Türker L.Destructive effect of an α-particle on TEX.Z Anorg Allg Chem 2014;640(10):2025-9.

    [18]Zuo YF,Xu R,Kun C,Qiang P,Liu JB.Influence of RDX and HMX on the thermal stability of TEX.Hanneng Cailiao 2005;13:110-2.

    [19]Türker L.A trigonometric approach to a limiting law on detonation velocity.Comm math Comput chem(MATCH)2012;67:127-46.

    [20]Türker L.An elliptic model for detonation velocity.Int J Chem Model 2012;4:261-72.

    [21]Türker L.Velocity of detonation-a mathematical model.Acta Chim Slov 2010;57:288-96.

    [22]Schutt T,Ang HG,Klap¨otke TM.New high energy density materials(HEDM)based on derivatives of 2,4-dinitro-2,6,8,12-tetraoxa-4,10-diazatetracyclo[5.5.0.05,903,11]dodecane cations and dinitramidic anions.International Annual Conference of ICT(33rd)(Energetic Materials).141/1-141/12.2002.

    [23]Zeng XL,Ju XH,Gao HX.Theoretical study of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diaza-tetracyclododecane(TEX)(Durnten-Zurich,Switzerland),554-556(Pt.3,Advances in Chemistry Research II)Adv Mater Res 2012:1618-23.

    [24]Conkling JA.Chemistry of pyrotechnics.Boca Raton:CRC press;1985.

    [25]Stewart JJP.Optimization of parameters for semi empirical methods II.Appl J Comput Chem 1989;10:221-64.

    [26]Stewart JJP.Optimization of parameters for semi empirical methods I.Method J comput Chem 1989;10:209-20.

    [27]Kohn W,Sham LJ.Self-consistent equations including exchange and correlation Effects.Phys Rev 1965;140:1133-8.

    [28]Parr RG,Yang W.Density functional theory of atoms and molecules.London:Oxford University Press;1989.

    [29]Becke AD.Density-functional exchange-energy approximation with correct asymptotic behavior.Phys Rev A 1988;38:3098-100.

    [30]Vosko SH,Vilk L,Nusair M.Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis.Can J Phys 1980;58:1200-11.

    [31]Lee C,Yang W,Parr RG.Development of the Colle-Salvetti correlation energy formula into a functional of the electron density.Phys Rev B 1988;37:785-9.

    [32]SPARTAN 06.Irvine CA,USA:Wavefunction Inc.;2006.

    [33]Ripley RC,Zhang F,Lien FS.Acceleration and heating of metal particles in condensed matter detonation.Proc R Soc A 2012;468:1564-90.

    [34]Zhang F,Thibault PA,Link R,Conor AL.Momentum transfer during shock Interaction with metal particles in condensed explosives.0-7354-0068-7.In:Furnish MD,Thadhani NN,Horie Y,editors.Shock compression of condensed mattervol.2001.American Institute of Physics;2002.

    [35]Russell MS.The chemistry of fireworks.Cambridge:RSC Pub;2009.

    [36]Conkling JA.Chemistry of pyrotechnics.Boca Raton:CRC Press;1985.

    [37]Türker L.Thermobaric and enhanced blast explosives(TBX and EBX).Def Technol 2016;12:423-45.

    [38]Stark JG,Wallace HG.Chemistry data book.London:Hodder Pub;2004.

    [39]Loudon GM.Organic chemistry.Reading:Addison-Wesley;1984.

    [40]Clayden J,Greeves N,Warren S,Wothers P.Organic chemistry.New York:Oxford University Press;2001.

    [41]Smith MB.Organic synthesis.New York:McGraw-Hill;1994.

    [42]Fleming I.Frontier orbitals and organic chemical reactions.New York:Wiley;1976.

    A R T I C L E I N F O

    Article history:

    3 October 2016

    in revised form

    9 February 2017

    Accepted 20 February 2017

    Available online 21 February 2017

    TEX

    Magnesium

    Calcium

    Explosive

    Structure

    DFT calculations

    The interaction of TEX(an explosive recently attracts attention)with Mg and Ca atom(s)has been investigated within the limitations of density functional theory at the level of B3LYP/6-311++G(d,p).The effect of Mg in 1:1 mol ratio is very drastic on TEX and one of the NO2moieties is expelled as preform of nitrite ion.The second Mg atom in the composite(1:2 mol ratio of TEX:Mg)shows balancing effect of the first Mg atom,thus no bond cleavage occurs but some distortions happen.As for the effect of calcium,in 1:1 and 1:2(TEX:Ca)ratios nitramine bond cleavage(s)occur(s)drastically.Some structural and quantum chemical data are presented.

    ?2017 Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    E-mail address:lturker@metu.edu.tr.

    Peer review under responsibility of China Ordnance Society.

    一个人看的www免费观看视频| 在线天堂最新版资源| 亚洲激情五月婷婷啪啪| 日韩伦理黄色片| 高清av免费在线| 午夜福利视频精品| 久久久久久久大尺度免费视频| 国产在线男女| 午夜福利高清视频| 搡老乐熟女国产| 亚洲精品国产av成人精品| 蜜桃亚洲精品一区二区三区| 国产毛片a区久久久久| 久久99蜜桃精品久久| 日韩av免费高清视频| 免费观看的影片在线观看| 高清毛片免费看| 欧美激情国产日韩精品一区| 亚洲自拍偷在线| 我要看日韩黄色一级片| 亚洲精品456在线播放app| 亚洲精华国产精华液的使用体验| 只有这里有精品99| 久久精品久久精品一区二区三区| 免费黄网站久久成人精品| 不卡视频在线观看欧美| 最新中文字幕久久久久| 国产高清有码在线观看视频| 国产精品久久久久久精品古装| 80岁老熟妇乱子伦牲交| 成人毛片a级毛片在线播放| 大码成人一级视频| 国产精品99久久99久久久不卡 | 精品熟女少妇av免费看| 18禁裸乳无遮挡动漫免费视频 | 亚洲第一区二区三区不卡| 久久久成人免费电影| 一二三四中文在线观看免费高清| 日日啪夜夜爽| 寂寞人妻少妇视频99o| 精品午夜福利在线看| 日本一二三区视频观看| 精品视频人人做人人爽| 亚洲精品亚洲一区二区| 综合色丁香网| 亚洲精品中文字幕在线视频 | 久久99热6这里只有精品| 国产精品国产av在线观看| 国产乱人视频| 一级二级三级毛片免费看| 日韩一区二区三区影片| 欧美激情久久久久久爽电影| 婷婷色综合大香蕉| 欧美性猛交╳xxx乱大交人| 国产中年淑女户外野战色| 看黄色毛片网站| 亚洲精品视频女| 欧美另类一区| 青春草国产在线视频| 国产精品人妻久久久久久| 亚洲精品日韩在线中文字幕| 亚洲av电影在线观看一区二区三区 | 免费av观看视频| 亚洲av国产av综合av卡| 亚洲av电影在线观看一区二区三区 | 99精国产麻豆久久婷婷| 久久久国产一区二区| 亚洲国产色片| 中国美白少妇内射xxxbb| 日韩av不卡免费在线播放| 97在线视频观看| 国产人妻一区二区三区在| 人妻 亚洲 视频| 男女边摸边吃奶| 狂野欧美激情性xxxx在线观看| 亚洲精品成人av观看孕妇| 日韩成人伦理影院| 久久精品久久久久久噜噜老黄| 91精品伊人久久大香线蕉| 国产久久久一区二区三区| 亚洲经典国产精华液单| 亚洲内射少妇av| 熟女人妻精品中文字幕| 日韩国内少妇激情av| 在线观看一区二区三区| 毛片女人毛片| 欧美高清成人免费视频www| 亚洲真实伦在线观看| 99九九线精品视频在线观看视频| 亚洲美女搞黄在线观看| 成年版毛片免费区| 日本免费在线观看一区| 成人亚洲欧美一区二区av| 国产男女超爽视频在线观看| 精品国产一区二区三区久久久樱花 | 国产久久久一区二区三区| 99久久精品一区二区三区| 80岁老熟妇乱子伦牲交| 日本免费在线观看一区| 99热国产这里只有精品6| 少妇的逼好多水| 天天躁日日操中文字幕| 麻豆精品久久久久久蜜桃| 国产黄片视频在线免费观看| 啦啦啦在线观看免费高清www| 国产高清有码在线观看视频| 日日摸夜夜添夜夜爱| av卡一久久| 春色校园在线视频观看| 国产亚洲一区二区精品| 国产 一区 欧美 日韩| 欧美+日韩+精品| 91久久精品电影网| 免费看a级黄色片| 一本色道久久久久久精品综合| 美女内射精品一级片tv| av女优亚洲男人天堂| 久久国内精品自在自线图片| 久久久久国产精品人妻一区二区| 99久久人妻综合| 国产伦精品一区二区三区四那| 在线精品无人区一区二区三 | 伦理电影大哥的女人| 永久免费av网站大全| 黄片wwwwww| 亚洲国产欧美人成| 啦啦啦中文免费视频观看日本| 色婷婷久久久亚洲欧美| 熟妇人妻不卡中文字幕| 尾随美女入室| 肉色欧美久久久久久久蜜桃 | 欧美+日韩+精品| 免费播放大片免费观看视频在线观看| 国产精品久久久久久精品电影小说 | 欧美人与善性xxx| 又大又黄又爽视频免费| 男人爽女人下面视频在线观看| 免费av观看视频| 日韩中字成人| 久久久久网色| 国产探花极品一区二区| 亚洲av福利一区| 亚洲精品第二区| 久久鲁丝午夜福利片| 久久久久久久久大av| 一本一本综合久久| 国产伦在线观看视频一区| 少妇丰满av| 99久久精品国产国产毛片| 亚洲人成网站在线观看播放| 日韩精品有码人妻一区| 国产成人aa在线观看| 国产成人一区二区在线| 国产精品国产三级国产av玫瑰| 欧美xxxx性猛交bbbb| 免费看光身美女| 国产精品一及| 免费看av在线观看网站| 纵有疾风起免费观看全集完整版| 黄色怎么调成土黄色| 精品亚洲乱码少妇综合久久| 国产精品国产三级专区第一集| 啦啦啦中文免费视频观看日本| 国产大屁股一区二区在线视频| 男女啪啪激烈高潮av片| videossex国产| 秋霞伦理黄片| 99久久精品热视频| 久久精品国产亚洲网站| 国产精品久久久久久久电影| 免费观看性生交大片5| 老女人水多毛片| 亚洲精品日韩在线中文字幕| videossex国产| 久久这里有精品视频免费| av免费观看日本| 婷婷色综合www| 日韩在线高清观看一区二区三区| 亚洲自偷自拍三级| 国产精品久久久久久精品古装| 美女脱内裤让男人舔精品视频| 国产精品三级大全| av黄色大香蕉| 神马国产精品三级电影在线观看| 亚洲婷婷狠狠爱综合网| 伦精品一区二区三区| 美女国产视频在线观看| 国产69精品久久久久777片| 国产有黄有色有爽视频| 在线观看国产h片| 99久久人妻综合| 中文字幕av成人在线电影| 国产黄片视频在线免费观看| 赤兔流量卡办理| 少妇丰满av| 国产精品一区www在线观看| 免费看光身美女| 777米奇影视久久| 啦啦啦啦在线视频资源| 纵有疾风起免费观看全集完整版| 国模一区二区三区四区视频| 搞女人的毛片| 久久久精品94久久精品| 日本一本二区三区精品| 在线观看一区二区三区| 久久精品久久久久久久性| 99视频精品全部免费 在线| 国产视频首页在线观看| 极品少妇高潮喷水抽搐| eeuss影院久久| 在线 av 中文字幕| 亚洲色图av天堂| 男女边吃奶边做爰视频| 老师上课跳d突然被开到最大视频| 日日啪夜夜撸| 国产片特级美女逼逼视频| 伊人久久精品亚洲午夜| 亚洲精品国产成人久久av| 国产乱人偷精品视频| 亚洲一区二区三区欧美精品 | 精品人妻偷拍中文字幕| 日本一二三区视频观看| 亚洲成色77777| 男女国产视频网站| 精品一区二区三卡| 色吧在线观看| 午夜精品国产一区二区电影 | 亚洲精品国产av成人精品| 麻豆成人av视频| 日韩大片免费观看网站| 免费观看的影片在线观看| 免费黄色在线免费观看| 丰满人妻一区二区三区视频av| 国产男人的电影天堂91| 中国三级夫妇交换| 欧美+日韩+精品| 天堂中文最新版在线下载 | 在线观看国产h片| 麻豆成人av视频| 国产亚洲5aaaaa淫片| 黄色怎么调成土黄色| 国产综合懂色| 边亲边吃奶的免费视频| 亚洲国产欧美人成| 亚洲精品成人av观看孕妇| 国产伦理片在线播放av一区| 男的添女的下面高潮视频| 精品一区在线观看国产| 久久精品久久久久久久性| 九草在线视频观看| 免费不卡的大黄色大毛片视频在线观看| 精品一区在线观看国产| 麻豆乱淫一区二区| 亚洲欧美成人精品一区二区| 久久久久久九九精品二区国产| 日韩成人av中文字幕在线观看| 国产 一区 欧美 日韩| 麻豆久久精品国产亚洲av| 欧美国产精品一级二级三级 | 男女国产视频网站| 亚洲国产成人一精品久久久| 国产免费福利视频在线观看| 黄色怎么调成土黄色| 免费少妇av软件| 成人毛片a级毛片在线播放| 国产视频首页在线观看| 久久精品国产鲁丝片午夜精品| 亚洲精品自拍成人| 亚洲精品影视一区二区三区av| a级一级毛片免费在线观看| 亚洲欧美成人综合另类久久久| 乱系列少妇在线播放| 成人亚洲精品一区在线观看 | 一边亲一边摸免费视频| 在线亚洲精品国产二区图片欧美 | 一级毛片久久久久久久久女| 成年av动漫网址| 欧美三级亚洲精品| 亚洲精品色激情综合| 精品一区二区三区视频在线| 在线播放无遮挡| 久久久久精品久久久久真实原创| 简卡轻食公司| 精品酒店卫生间| 各种免费的搞黄视频| a级毛色黄片| 色综合色国产| 男女边吃奶边做爰视频| 99热这里只有精品一区| 欧美精品人与动牲交sv欧美| 一区二区三区四区激情视频| 国产成人精品一,二区| 日本色播在线视频| 在现免费观看毛片| 欧美一级a爱片免费观看看| 亚洲真实伦在线观看| 国产亚洲精品久久久com| 少妇的逼水好多| 亚洲精品成人久久久久久| 精品少妇久久久久久888优播| 亚洲精品第二区| 免费看不卡的av| 汤姆久久久久久久影院中文字幕| 国产男人的电影天堂91| 人妻系列 视频| 欧美日本视频| 最新中文字幕久久久久| 能在线免费看毛片的网站| 国产一区有黄有色的免费视频| 在线看a的网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99久久人妻综合| 日本免费在线观看一区| 爱豆传媒免费全集在线观看| 日韩亚洲欧美综合| 国产又色又爽无遮挡免| 国产国拍精品亚洲av在线观看| 老女人水多毛片| 久久久成人免费电影| 中文字幕免费在线视频6| 深夜a级毛片| 建设人人有责人人尽责人人享有的 | 伦理电影大哥的女人| 色视频在线一区二区三区| 少妇的逼水好多| 国产男女内射视频| 成年女人在线观看亚洲视频 | 欧美人与善性xxx| 久久久精品欧美日韩精品| 99久久精品一区二区三区| 一级片'在线观看视频| 丝袜喷水一区| 国产欧美另类精品又又久久亚洲欧美| 免费少妇av软件| 爱豆传媒免费全集在线观看| 成人美女网站在线观看视频| 中文精品一卡2卡3卡4更新| 国产高清三级在线| 亚洲自偷自拍三级| 男女无遮挡免费网站观看| 国产欧美另类精品又又久久亚洲欧美| 黄色欧美视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 国产久久久一区二区三区| 久久精品久久久久久噜噜老黄| 久热久热在线精品观看| 国产精品无大码| 美女高潮的动态| 亚洲精品,欧美精品| 日韩一区二区三区影片| 亚洲成人精品中文字幕电影| 建设人人有责人人尽责人人享有的 | 免费观看av网站的网址| 五月天丁香电影| 亚洲第一区二区三区不卡| 亚洲欧美清纯卡通| 在线看a的网站| 一本一本综合久久| 午夜福利高清视频| 日韩一区二区三区影片| 精品人妻视频免费看| 成人二区视频| 又大又黄又爽视频免费| 高清在线视频一区二区三区| 各种免费的搞黄视频| 免费黄频网站在线观看国产| 中文精品一卡2卡3卡4更新| 精品亚洲乱码少妇综合久久| 国产极品天堂在线| 最后的刺客免费高清国语| 欧美变态另类bdsm刘玥| 欧美日韩在线观看h| 日本爱情动作片www.在线观看| 日日啪夜夜爽| 亚洲激情五月婷婷啪啪| 久久6这里有精品| 青春草视频在线免费观看| 街头女战士在线观看网站| 亚洲婷婷狠狠爱综合网| 人妻 亚洲 视频| 久久99精品国语久久久| 深爱激情五月婷婷| 在线观看一区二区三区激情| av在线观看视频网站免费| 欧美成人一区二区免费高清观看| 成人国产麻豆网| 简卡轻食公司| 色综合色国产| 欧美精品国产亚洲| 国产精品伦人一区二区| 精品熟女少妇av免费看| 2021少妇久久久久久久久久久| 午夜福利在线观看免费完整高清在| 日本欧美国产在线视频| 国产永久视频网站| 少妇人妻精品综合一区二区| av在线观看视频网站免费| 超碰97精品在线观看| 美女主播在线视频| 亚洲国产精品国产精品| 一级毛片 在线播放| 亚洲av成人精品一区久久| 五月玫瑰六月丁香| 国产在线男女| 校园人妻丝袜中文字幕| 亚洲成色77777| 一本久久精品| 国产女主播在线喷水免费视频网站| 人妻少妇偷人精品九色| av播播在线观看一区| 极品教师在线视频| 日日撸夜夜添| 久久精品熟女亚洲av麻豆精品| 男女国产视频网站| 日韩,欧美,国产一区二区三区| 欧美zozozo另类| 免费av不卡在线播放| 亚洲精品国产av成人精品| 国产精品一区二区性色av| 最近2019中文字幕mv第一页| 亚洲成人精品中文字幕电影| 国产久久久一区二区三区| 高清日韩中文字幕在线| 国产淫语在线视频| 免费大片18禁| 伦理电影大哥的女人| 午夜老司机福利剧场| 夜夜看夜夜爽夜夜摸| av女优亚洲男人天堂| 日日啪夜夜撸| 亚洲人成网站在线播| 亚洲伊人久久精品综合| 联通29元200g的流量卡| 欧美一区二区亚洲| 久久久久久久久久久免费av| 毛片女人毛片| 日产精品乱码卡一卡2卡三| 极品教师在线视频| 最近最新中文字幕免费大全7| 一级爰片在线观看| 精品一区在线观看国产| 岛国毛片在线播放| 日本一二三区视频观看| 亚洲精品日韩在线中文字幕| 午夜精品国产一区二区电影 | 91精品国产九色| 少妇人妻久久综合中文| 成人一区二区视频在线观看| 在线观看美女被高潮喷水网站| 成人免费观看视频高清| 日韩亚洲欧美综合| 久久99蜜桃精品久久| 亚洲人成网站在线播| 一本色道久久久久久精品综合| av专区在线播放| 深爱激情五月婷婷| 国产高清不卡午夜福利| 国产美女午夜福利| 3wmmmm亚洲av在线观看| 老女人水多毛片| 欧美国产精品一级二级三级 | 国产精品国产av在线观看| 久久久久久久精品精品| 欧美日韩综合久久久久久| 国产精品三级大全| 国产毛片在线视频| 亚洲高清免费不卡视频| 亚洲av日韩在线播放| 欧美xxxx性猛交bbbb| 97人妻精品一区二区三区麻豆| 精品人妻一区二区三区麻豆| 夫妻午夜视频| 亚洲最大成人中文| 免费观看的影片在线观看| 男女边摸边吃奶| 亚洲国产成人一精品久久久| 精品午夜福利在线看| 在线播放无遮挡| 午夜福利视频精品| 交换朋友夫妻互换小说| 国产精品久久久久久久久免| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产伦精品一区二区三区视频9| 天堂网av新在线| 青春草亚洲视频在线观看| 三级经典国产精品| 久久久久精品性色| 婷婷色综合大香蕉| 成人综合一区亚洲| 精品少妇久久久久久888优播| 欧美区成人在线视频| 狂野欧美激情性bbbbbb| 成人国产麻豆网| 免费人成在线观看视频色| 天美传媒精品一区二区| 国产午夜福利久久久久久| 亚洲国产精品成人久久小说| 亚洲成人中文字幕在线播放| 久久久久久久亚洲中文字幕| 欧美性猛交╳xxx乱大交人| 免费av不卡在线播放| 亚洲成人久久爱视频| eeuss影院久久| 黄色欧美视频在线观看| 久久99热这里只频精品6学生| 肉色欧美久久久久久久蜜桃 | 亚洲综合色惰| 亚洲精华国产精华液的使用体验| 久久午夜福利片| 日韩一本色道免费dvd| 晚上一个人看的免费电影| 国产一区亚洲一区在线观看| 国产成人一区二区在线| 高清欧美精品videossex| 免费看a级黄色片| 国产日韩欧美亚洲二区| 国产高清国产精品国产三级 | 国产成人免费观看mmmm| kizo精华| 国语对白做爰xxxⅹ性视频网站| 神马国产精品三级电影在线观看| 亚洲av在线观看美女高潮| 成人特级av手机在线观看| 亚洲经典国产精华液单| 少妇人妻精品综合一区二区| www.色视频.com| 国产精品国产av在线观看| 亚洲高清免费不卡视频| 婷婷色麻豆天堂久久| 亚洲精品一区蜜桃| 日韩强制内射视频| 99久久九九国产精品国产免费| 亚洲欧美中文字幕日韩二区| 免费播放大片免费观看视频在线观看| 99久久精品一区二区三区| 少妇猛男粗大的猛烈进出视频 | 亚洲国产成人一精品久久久| 精品久久久久久久久av| www.av在线官网国产| 简卡轻食公司| 国产精品av视频在线免费观看| 欧美变态另类bdsm刘玥| 欧美xxxx黑人xx丫x性爽| 久久久午夜欧美精品| av在线app专区| 深爱激情五月婷婷| 制服丝袜香蕉在线| 中文字幕亚洲精品专区| 一级a做视频免费观看| 网址你懂的国产日韩在线| 国产精品99久久99久久久不卡 | 国产午夜精品一二区理论片| 97热精品久久久久久| 国产亚洲5aaaaa淫片| 最近最新中文字幕大全电影3| 在线观看美女被高潮喷水网站| 国产午夜福利久久久久久| 国产精品久久久久久久久免| 国产黄a三级三级三级人| 欧美激情久久久久久爽电影| 亚洲欧美一区二区三区国产| 免费av毛片视频| 国产精品不卡视频一区二区| 国产亚洲av嫩草精品影院| 国产 一区精品| 欧美潮喷喷水| 欧美xxxx黑人xx丫x性爽| 国产精品偷伦视频观看了| 国产日韩欧美在线精品| 久久6这里有精品| 亚洲激情五月婷婷啪啪| 涩涩av久久男人的天堂| 天美传媒精品一区二区| av网站免费在线观看视频| av线在线观看网站| 激情 狠狠 欧美| 亚洲第一区二区三区不卡| 欧美日韩亚洲高清精品| 久久久精品94久久精品| 一级毛片黄色毛片免费观看视频| 嘟嘟电影网在线观看| 国产男女内射视频| 成人亚洲欧美一区二区av| 女人被狂操c到高潮| 国产黄a三级三级三级人| av天堂中文字幕网| 啦啦啦啦在线视频资源| 日韩av免费高清视频| 老司机影院毛片| 婷婷色av中文字幕| 有码 亚洲区| 欧美日韩综合久久久久久| 亚洲精品中文字幕在线视频 | 久久久午夜欧美精品| 亚洲人成网站高清观看| 啦啦啦中文免费视频观看日本| 男女啪啪激烈高潮av片| 久久人人爽人人片av| 亚洲av免费在线观看| 看免费成人av毛片| 日韩 亚洲 欧美在线| 国产精品国产三级国产av玫瑰| 黄色配什么色好看| 麻豆乱淫一区二区| 又粗又硬又长又爽又黄的视频| 久久久久久久久久久免费av| 日本黄色片子视频| 一级a做视频免费观看| 精品国产露脸久久av麻豆| 18禁动态无遮挡网站| 久久久精品欧美日韩精品| 人妻夜夜爽99麻豆av| 97在线人人人人妻| av在线播放精品| 欧美亚洲 丝袜 人妻 在线|