• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    通過有機(jī)配體中四嗪基團(tuán)的原位水解提高金屬有機(jī)框架的CO2吸附性能

    2017-11-13 12:22:00錢彬彬卜顯和
    關(guān)鍵詞:基團(tuán)原位配體

    錢彬彬 趙 萌 常 澤*, 卜顯和*,,2

    通過有機(jī)配體中四嗪基團(tuán)的原位水解提高金屬有機(jī)框架的CO2吸附性能

    錢彬彬1趙 萌1常 澤*,1卜顯和*,1,2

    (1南開大學(xué)材料科學(xué)與工程學(xué)院,國(guó)家新材料研究院,天津市金屬與分子基材料化學(xué)重點(diǎn)實(shí)驗(yàn)室,天津 300350)
    (2南開大學(xué)化學(xué)學(xué)院,先進(jìn)能源材料化學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,天津 300071)

    在保持原有“層-柱”MOF,[Zn4(bpta)2(dipytz)2(H2O)2]·4DMF·H2O (1)(H4bpta=2,2′,6,6′-聯(lián)苯四羧酸,dipytz=3,6-二(4-吡啶基)-1,2,4,5-四嗪)主體結(jié)構(gòu)不變的情況下,通過dipytz配體中四嗪環(huán)的原位水解反應(yīng)將極性的二芳酰基聯(lián)氨基團(tuán)引入框架,成功構(gòu)筑出配合物[Zn4(bpta)2(dipytzhydr)2(H2O)2]·solvent(2)(dipytzhydr=1,2-二異煙?;拢?。 對(duì)配合物 2 的系統(tǒng)表征和氣體吸附性質(zhì)研究結(jié)果證實(shí)了功能化目標(biāo)的實(shí)現(xiàn):配合物2相比于配合物1展現(xiàn)出更高的二氧化碳吸附熱(由28.8 kJ·mol-1升高至30.3 kJ·mol-1)和CO2/CH4吸附選擇性。以上結(jié)果表明基于配體中四嗪基團(tuán)的原位水解后修飾能夠有效提高相關(guān)MOFs材料的CO2吸附性能。

    金屬有機(jī)框架;四嗪;后合成;性能調(diào)控;CO2吸附

    0 Introduction

    With the rapid development of modern industry,CO2release from burning fossil fuels has been a global environmental issue[1]and it calls for much efforts on the capture and separation of CO2[2-4].Among the various strategiesforCO2capture,physical adsorption with porous materials is considered to be one of the effective methods[5],and the development of porous materials with high CO2adsorption capacity has attracted much attention in recent years[6-7].

    Due to the adjustable pore size,high porosity and large surface area,metal-organic frameworks (MOFs)has become a promising candidate for gas adsorption and separation[8-15].The strategies for improving CO2adsorption capacity and selectivity of MOFs include the incorporation of unsaturated metal cation centers,metal doping and chemical functionalization.Among them,chemical functionalization has been proved to be simple and efficient due to the diversity of functionalized groups[16-17].

    Among numerous organic ligands,tetrazine derivative ligands are widely used in function-oriented construction of MOFs[18-24],and the tetrazine moiety can be hydrolyzed to form polar acyl hydrazine groups[25-26].This feature can help to enhance the affinity toward CO2and promote the adsorption and separation performance of the corresponding MOFs.However,in contrast to the rigid aromatic moiety of the parental tetrazine moiety,the flexible backbone of the acyl hydrazine moiety may affect the assembly of porous MOFs with desirable structure,which could limit the application of direct synthesis method.On the other hand,as an alternative method,the post-synthesis insitu hydrolysis of tetrazine moiety into acyl hydrazine requires high stability and strong resistance toward moisture,which is difficult to meet for most MOFs.Therefore,it is our interest to overcome the disadvantage and achieve the targeted introduction of acyl hydrazine moiety into MOFs from hydrolysis of tetrazine for enhanced CO2sorption and separation.

    Based on our previous studies,the “pillar-layer”strategy,where the “l(fā)ayers”are composed of 1,1′-biphenyl-2,2′,6,6′-tetracarboxylic acid (H4bpta)and Zn2+ions and the bipyridine ligands serve as “pillar”,has been proved to be effective for the targeted construction of porous framework with distinct sorption behaviors[27-28]. In this system,the utilization of pillar ligand di-3,6-(4-pyridyl)-1,2,4,5-tetrazine (dipytz)can result in desired “pillar-layer” structure [Zn4(bpta)2(dipytz)2(H2O)2]·4DMF·H2O and can tune the pore geometry[28],as is estimated from the powder X-ray diffraction patterns.Considering the feature of tetrazine moieties,[Zn4(bpta)2(dipytz)2(H2O)2]was chosen and the post-synthesis in-situ hydrolysis modification is achieved.Herein,we report the structure of [Zn4(bpta)2(dipytz)2(H2O)2]·4DMF·H2O (1)and the construction of[Zn4(bpta)2(dipytzhydr)2(H2O)2]·solvent (2)(dipytzhydr=1,2-diisonicotinoylhydrazine)from complex 1 through post-synthesis in-situ hydrolysis modification(Scheme 1).Due to the moisture stability of the framework of complex 1,the porous “pillar-layer” framework is well retained afterthe modification process,and the resulted complex 2 reveals enhanced affinity toward CO2compared to that of complex 1.The presence of polar acyl hydrazine moiety in complex 2 results in better CO2/CH4selectivity as expected.

    1 Experimental

    1.1 Materials and methods

    All solvents and chemicals for synthesis were obtained commercially and used withoutfurther purification.H4bpta and dipytz were synthesized according to the reported methods[29-30].The powder X-ray diffraction (PXRD)patterns were recorded by a Rigaku Miniflex 600 diffractometer at 40 kV and 15 mA with a Cu Kα radiation (λ=0.154 18 nm)and a graphite monochromator in the range of 3°~50°.Thermogravimetric analysis (TGA)was performed with a Rigaku standard TG-DTA analyzer with heating rate of 10℃·min-1between room temperature and 800℃ in air;empty Al2O3crucible was used as reference.IR spectra were carried out on a Tensor 37 (Bruker,German)FT-IR spectrometer in the range of 400~4 000 cm-1using KBr pellets.Elemental Analysis (C,H and N)were performed on a Vario EL cube analyzer.

    Scheme 1 Structure of ligands,synthesis process of complexes and the corresponding images of the products

    1.2 Synthesis of the complexes

    [Zn4(bpta)2(dipytz)2(H2O)2]·4DMF·H2O (1).Zn(NO3)2·6H2O (0.1 mmol),H4bpta (0.05 mmol)and dipytz(0.05 mmol)were added to a DMF/ethanol mixture (10 mL,VDMF/VEtOH=1),sealed in a capped vial and ultrasonicated for 30 min.Then the vial was kept at 80℃for 24 h.Pale red bulk crystals were collected by filtration,then washed with DMF,and dried in air(Yield:70%based on H4bpta).FT-IR (KBr pellets,cm-1):3 855 w,3 742 m,3 423 s,2 362 m,2 322 m,1 835 w,1 601 s,1 550 s,1 459 m,1 386 s,1 220 w,1 159 w,1 063 w,1 025 w,924 w,839 m,777 m,715 m,601 m,534 w,454 w.Anal.Calcd.for C68H62N16O23Zn4(%):C,47.13;H,3.61;N,12.93.Found(%):C,47.31;H,3.30;N,12.90.

    [Zn4(bpta)2(dipytzhydr)2(H2O)2]·solvent (2).Complex 2 was produced by heating complex 1 in water at 80℃for 12 h.Yellow crystalline powder were collected by filtration,washed with H2O and dried in air (Yield:98%,based on complex 1).FT-IR (KBr pellets,cm-1):3 925 w,3 897 w,3 862 w,3 743 w,3 423 s,2 362 m,2 333 m,1 917 w,1 868 w,1 837 w,1 677 m,1 611 s,1 551s,1 458 m,1 372 s,1 294 m,1 222 w,1 154 w,1 102 w,1 067 w,1 028 w,930 w,835 m,778 m,713 m,666 m,589 w,539 w,451 w,422 w.

    1.3 Crystal structure determination

    Single-crystal X-ray diffraction measurement was conducted at BL16B1 beamline at Shanghai Synchrotron Radiation Facility (SSRF)at 113 K.The determinations of unit cell parameters and data collections were performed with Mo Kα radiation (λ=0.071 073 nm),and unit cell dimensions were obtained with least-squares refinements.The structure of 1 was solved by direct methods using the SHELXS of the SHELXTL and refined by SHELXL[31].Zinc atoms in 1 were located from the E maps,and other nonhydrogen atoms were located in successive difference Fourier synthesis and refined anisotropically.The hydrogen atoms were added theoretically,riding on the concerned atoms,and refined with fixed thermal factor.The final refinement was performed by fullmatrix least-squares methods with anisotropic thermal parameters for non-hydrogen atoms on F2.The solvent molecules in 1 were disordered and could not be modeled properly,so the contribution of disordered solvent molecules were removed by SQUEEZE in PLATON[32]and the results were appended in the CIF file.Detailed crystallographic data were summarized in Table S1,and the selected bond lengths and angles are given in Table S2 and S3(Supporting Information).CCDC:1567303,1.

    1.4 Gas sorption measurements

    Gas sorption measurements were performed with an ASAP 2020 M gas adsorption analyzer.UHP-grade gases were used in measurements.The N2sorption isotherm measurements were proceeded at 77 K.The CO2and CH4sorption isotherm measurements were carried out at 273 and 298 K,respectively.

    Before measurements,the samples were soaked in anhydrous methanol for 3 days to exchange solvent molecules in the channels and then filtrated and dried at room temperature.Activation of the methanolexchanged samples was performed under high vacuum(less than 1.33 mPa)at 50 ℃ overnight.About 100 mg of the desolvated samples were used for gas sorption measurements.

    2 Results and discussion

    2.1 Synthesis of complexes

    Complex 1 was synthesized based on the reported method[28],while single-crystal suitable for X-ray diffraction analysiswereobtained.Therefore,the structure of complex 1 was determined straightforwardly.

    To achieve the post-synthesis in-situ hydrolysis modification of complex 1,various methods have been tried,and it was found that direct heating of complex 1 in water could be a straightforward way,proved by the fading of the characteristic red color of tetrazine moiety of the sample originated from the opening of rings.It should be noted that the crystallinity of the sample is well retained after the hydrolysis.This should be attributed to the relatively high moisture stability of the Zn4(bpta)2(H2O)2layer structure and the Zn-N coor-dination bonds that could survive the hydrolysis reaction conditions.As a result,complex 2 was obtained as expected.Though no suitable crystal for single-crystal X-ray diffraction analysiswasobtained forcomplex 2,the high crystallinity just benefits its further characterization and properties investigations.

    2.2 Structure determination

    Single-crystal X-ray diffraction analysis reveals that complex 1 crystallizes in the monoclinic space group C2/c.As shown in Fig.1a,there are two types of crystallographically independent Zn2+ions,one bpta4-ligand,one dipytz ligand and one H2O molecule in the asymmetricunitof1.The Zn1 centerisfourcoordinated by three carboxylate oxygen atoms from three different bpta4-ligands and one nitrogen atom from one dipytz ligand to form a tetrahedral geometry.The Zn2 center adopts a six-coordinated distorted octahedral geometry,completed by four O atoms of three carboxylate groups from two bpta4-ligands,one O atom from the terminal H2O,and one N atom from one dipytz ligand.In the direction of the a axis,twodimensional (2D)layers are constructed by bpta4-ligands connecting with Zn2+ions.Each bpta4-coordinates to five Zn2+centers through four carboxylate groups by mondentate or bidentate coordination modes(Fig.1b).Furthermore,dipytz ligands serve as “pillar”and connect adjacent layers to form three-dimensional(3D)“pillar-layered” frameworks,which contain channels alone the b and c axis (Fig.1c and 1d).The channels are filled with solvent molecules.PLATON analysis showed that the accessible volume of 1 is 38.9%of the crystal volume(3.138 9 nm3out of 8.076 0 nm3for unit cell volumes)after removal solvent molecules in frameworks.It should be noted that the cell parameters determined herein consist well with that obtained from PXRD patterns[28],and the increased porosity of complex 1 compared with other complexes based on shorter pillar ligands suggests that the application of longer ligand could benefit the formation of porous framework.

    Fig.1 Crystal structure of 1:(a)Coordination environment of Zn2+ions;(b)2D layer assembled by Zn2+ions and bpta4-ligands viewing along the a direction;(c)Channels along b direction;(d)Channels along c direction

    As no suitable crystal of complex 2 for singlecrystal X-ray diffraction measurement was obtained,the structure aswellasthe componentofthe crystalline product was determined by comprehensive characterization by FT-IR and PXRD.As mentioned in the synthesis part,the complete fading of the red color of complex 1 in the hydrolysis reaction can be ascribed to the ring opening of tetrazine moiety in the dipytz ligand and the corresponding formation of acyl hydrazine group.Beside the change of color,this reaction can also be proved by the FT-IR spectra:two new characteristic absorption peaks appear in the location of 1 677 and 1 294 cm-1in the spectrum of complex 2 compared with that of complex 1 (Fig.2),which should be attributed to the presence of carbonyl and imino groups in the sample from the hydrolysis of tetrazine.Furthermore,the elementalanalysisof complex 2 after removal of solvent at 150℃also confirms the result.The experimental values (C,47.47;H,2.93;N,7.58)matches the theoretical values(calculated as C56H35N8Zn4O21.5,C,47.18;H,2.47;N,7.86)well,which directly proves the occurrence of the hydrolysis reaction.All these results suggest the complete hydrolysis of dipytz and the formation of dipytzhydrduring the post-synthesis reaction.On the other hand,the similar PXRD pattern indicates that complex 2 possessesthe similar “pillar-layered”structure of 1 (Fig.3)with the dipytzhydrligand serve as pillars.Then the framework of complex 2 could be assigned as Zn4(bpta)2(dipytzhydr)2(H2O)2according to the component and structure of complex 1.

    Fig.2 FI-IR spectra of complexes 1 and 2

    2.3 Phase purity and stability investigations

    PXRD was performed to confirm the phase purity and stability of complexes 1 and 2 after solvent exchange and degas process,as shown in Fig.3.For 1,the pattern of as-synthesized sample matches well with the simulated pattern from single-crystal data,suggesting the phase purity of the bulk sample.While forcomplex 2,the PXRD patternsofthe assynthesized sample is nearly the same as that of complex 1,indicating the structural similarity of these two complexes.Furthermore,solvent-exchanged and activated samples of both complexes are still crystalline,indicating the good stability of complexes.The shift of peaks and appearance of new peaks should be attributed to the distortion of the crystal lattice in response to removal of guest molecules,which iscommonly observed in many MOFs[28].Interestingly,the peak displacement of complex 2 after degassed at 50℃is more significant than that of complex 1.This phenomenon should be attributed to the more flexible backbone of dipytzhydrcompared with thatofdipytz.The hydrolysisreaction ofrigid tetrazine ring result in acyl hydrazine group with nonrigid backbone.Accordingly,the framework of complex 2 should be more flexible and more responsive to the removal of guest molecules.It should be noted that when the samples of complexes 1 and 2 were exposed to air after gas adsorption experiments,the patterns could restore well.These results suggest the structure transformation is reversible upon the removaland recoveryofguestmolecules,which should be originated from the flexibility of the pillar ligands and the framework.

    TGA experiments reflect the thermal stability of materials (Fig.S1 and S2,Supporting Information).The TG curve of complex 1 shows weight loss of 12.1%from 30 to 140℃corresponding to the loss of solvent molecules.A sustained weight loss followed from 140 to 210℃responses to hydrolysis of dipytz with ring opening.However,after the sample was soaked in methanol for 3 days,hydrolysis is prevented.What′s more,the loss of coordinated H2O occurs at 163 ℃and the framework could be stable up to 340℃.

    The TG curve of complex 2 shows 20%weight loss before 100℃,which should be assigned to the removal of solvent molecules.Then it reveals a weight loss of 3%in the temperature range of 100~177 ℃,which responses to the weight of coordinated H2O molecules.Also,the activated sample 2 shows high thermal stability up to 340℃,indicating the high thermal stability of these “pillar-layered” MOFs.

    Fig.3 PXRD patterns of complexes 1 (a)and 2 (b)

    2.4 Adsorption studies

    Fig.4 Isotherms of N2at 77 K for 1 and 2

    Nitrogen gas adsorption experiments at 77 K were performed to investigate the porosity of complexes 1 and 2 (Fig.4).All samples were activated at 50℃ before the measurements.As shown in Fig.4,both the N2sorption isothermsofthe activated samples of 1 and 2 illustrate fully reversible typeⅠisotherms,which indicates the microporous structure of the complexes.The saturation uptake is 180.6 cm3·g-1for 1 and 155.2 cm3·g-1for 2,respectively.The total microporous volume is calculated to be 0.28 cm3·g-1for 1 and 0.24 cm3·g-1for 2 (calculated by Horvath-Kawazoe model), while the pore size distributions are almost identical (Fig.4 inset).These sorption isotherms were analyzed by the methods of Brunauer-Emmett-Teller (BET)and Langmuir.The apparent BET and Langmuir surface areas are 514 and 712 m2·g-1for 1 and 420 and 586 m2·g-1for 2,respectively.Considering the conclusions from PXRD discussions,the reduced surface area and pore volume of complex 2 compared to those of 1 should be attributed to the shrink of flexible framework in response to the removal of guest molecules.

    Fig.5 CO2and CH4isotherms of 1 (a)and 2 (b)at 273 and 298 K;IAST adsorption selectivity of 1 (c)and 2 (d)for CO2/CH4at 273 and 298 K

    On the basis of previous research,the presence ofcarboxamidegroup in MOFsmaybenefitits selectivity adsorption performance toward CO2due to the enhanced gas-framework affinity.Therefore,CO2adsorption isotherms of 1 and 2 were recorded at 273 and 298 K,respectively,to evaluate the effect of postsynthesis modification on CO2sorption and separation(Fig.5a and 5b).The maximum CO2uptake of 1 reaches to 72.2 cm3·g-1at 273 K,120 kPa and 47.3 cm3·g-1at 298 K,120 kPa.For 2,the CO2maximum adsorption amounts are 62.8 cm3·g-1at 273 K ,120 kPa and 41.3 cm3·g-1at 298 K,120 kPa.The differences between the CO2uptakes of complexes 1 and 2 under the same conditions fit their differences in pore volume determined from N2sorption well.To further evaluate the interaction between the adsorbed CO2molecules and the frameworks,the CO2adsorption enthalpies (Qst)of 1 and 2 are calculated using the Virial equation by fitting adsorption isotherms at 273 and 298 K (Fig.6).The CO2Qstvalue of 1 is 28.8 kJ·mol-1at zero loading,while the initial Qstvalue of 2 increasesto 30.3 kJ·mol-1,which indicatesa relatively stronger interaction between CO2and the framework of complex 2.It should be noted that Qstvalue of complex 2 surpass that of complex 1 in the whole range of loading.This should be attributed to the readily accessible polar acyl hydrazine sites on the pore surface defined by the backbone of dipytzhydrpillar,which could be accessed in the whole gas sorption procedure due to the limited pore dimension.These results prove that the post-synthesis in-situ hydrolysis of tetrazine could be an effective method for the targeted modification of MOFs toward CO2sorption.

    Fig.6 CO2adsorption enthalpies (Qst)of complexes 1 and 2

    In addition to the evaluation of Qst,the ideal adsorbed solution theory (IAST)calculation was also employed to further evaluate the effect of modification on selective CO2adsorption over CH4.The binary CO2/CH4mixtures with molar ratio of 5∶95 and 50∶50 were selected as model system.To establish the relationship between the CH4uptake and pressure for calculation,the CH4adsorption isotherm were also measured at 273 and 298 K.The maximum CH4uptakes of 1 are 20.6 cm3·g-1at 273 K and 12.3 cm3·g-1at 298 K.For 2,the values are 17.1 cm3·g-1at 273 K and 9.7 cm3·g-1at 298 K,respectively.Then,the single-component isotherms of CO2and CH4at 273 and 298 K were fitted with Langmuir-Freundlich equation (Fig.S3,Supporting Information),and the fitting parameters(Table S4)are used for the IAST calculations.

    As shown in Fig.5c,the calculated selectivity of CO2over CH4for complex 1 are 11.1 (nCO2∶nCH4=5∶95),10.3 (nCO2∶nCH4=50∶50)at 273 K and 7.9 (5∶95),7.3 (50∶50)at 298 K.While the calculated CO2/CH4selectivity of complex 2 are 13.5 (5∶95),12.4 (50∶50)at 273 K and 8.1 (5∶95),7.9 (50∶50)at 298 K as shown in Fig.5d.Obviously,the CO2/CH4selectivity of complex 2 are enhanced compared with that of complex 1,which in line with the results calculated from Qst.For complexes 1 and 2,the relatively higher selectivity occurs at lower pressure and lower temperature,which benefiting from the improved CO2storage capacities and enhanced CO2binding affinity of frameworks.

    3 Conclusions

    In summary,the post-synthesis in-situ hydrolysis of tetrazine moiety in MOFs was investigated for improving CO2sorption performance.With this method,[Zn4(bpta)2(dipytz)2(H2O)2]·4DMF·H2O (1)was successfully modified into [Zn4(bpta)2(dipytzhydr)2(H2O)2]·solvent(2)with polar acyl hydrazine groups,of which the “pillar-layer” framework structure is well retained.Complex 2 represents enhanced CO2-framework affinity and CO2/CH4selectivity compared with that of complex 1,as expected.The achievement in this work provides a valuable strategy for the targeted construction and modification of MOFs toward CO2sorption applications.

    Acknowledgments:This work was supported by the National Natural Science Foundation of China (Grants No.21531005,21421001,21671112)and Natural Science Fund of Tianjin,China (Grant No.15JCZDJC38800).We thank the staffs from BL16B1 beamline of National Facility for Protein Science in Shanghai(NFPS)at Shanghai Synchrotron Radiation Facility,for assistance during data collection.

    Supporting information is available at http://www.wjhxxb.cn

    [1]D′Alessandro D M,Smit B,Long J R.Angew.Chem.Int.Ed.,2010,49:6058-6082

    [2]Jacobson M Z.Energy Environ.Sci.,2009,2:148-155

    [3]Sumida K,Rogow D L,Mason J A,et al.Chem.Rev.,2012,112:724-781

    [4]Nugent P,Belmabkhout Y,Burd S D,et al.Nature,2013,495:80-84

    [5]Haszeldine R S.Science,2009,325:1647-1652

    [6]Christopher W J,Edward J M.ChemSusChem,2010,3:863-864

    [7]Rubin E S,John H,Marks A,et al.Prog.Energy Combust.Sci.,2012,38:630-671

    [8]Wang H,Xu J,Bu X H,et al.Angew.Chem.Int.Ed.,2015,54:5966-5699

    [9]Tian D,Chen Q,Bu X H,et al.Angew.Chem.Int.Ed.,2014,53:837-849

    [10]Chang,Z,Yang D H,Bu X H,et al.Adv.Mater.,2015,27:5432-5435

    [11]Chen K J,Chen X M,Zaworotko M J,et al.Angew.Chem.Int.Ed.,2016,55:10268-10272

    [12]Lin R B,Li T Y,Chen X M,et al.Chem.Sci.,2015,6:2516-2521

    [13]Wang L,He C T,Chen X M,et al.J.Am.Chem.Soc.,2017,139:8086-8089

    [14]Chen C,Wei Z,Su C Y,et al.Angew.Chem.Int.Ed.,2016,55:9932-9937

    [15]Liu D,Chang Y J,Lang J P.CrystEngCommun,2011,13:1851-1857

    [16]Liu B,Yao S,Liu Y L,et al.Chem.Commun.,2016,52:3223-3229

    [17]Luo X L,Cao Y,Liu Y L,et al.J.Am.Chem.Soc.,2016,138:2969-2972

    [18]Yao S,Wang D M,Liu Y L,et al.J.Am.Chem.Soc.,2015,3:16627-16631

    [19]Philipp M F,Wisser V B,Stefan K,et al.Chem.Mater.,2015,27:2460-2467

    [20]Li C,Ge H,Li J L,et al.RSC Adv.,2015,5:12277-12286

    [21]Zhang Z X,Ding N N,Zhang W H,et al.Angew.Chem.Int.Ed.,2014,53:4628-4632

    [22]John E C,Jason R P,Cameron J K,et al.Angew.Chem.Int.Ed.,2014,53:10164-10168

    [23]Lu Z Z,Zhang R,Zheng H G,et al.J.Am.Chem.Soc.,2011,133:4172-4174

    [24]Yoshihiro Y,Yuya H,Takahiro I,et al.J.Am.Chem.Soc.,2010,132:9555-9557

    [25]Vagin S I,Ott A K,Rieger B,et al.Chem.Eur.J.,2009,15:5845-5853

    [26]Bu X H,Liu H,Shionoya J,et al.Inorg.Chem.,2002,41:1855-1861

    [27]Xuan Z H,Chang Z,Bu X H,et al.Inorg.Chem.,2014,53:8985-8990

    [28]Chang Z,Zhang D S,Bu X H,et al.Inorg.Chem.,2011,50:7555-7562

    [29]Peter H D,Mary E W,Charlotte L S,et al.J.Am.Chem.Soc.,2010,126:12989-13001

    [30]Suh M P,Moon H R,Lee E Y,et al.J.Am.Chem.Soc.,2006,14:4710-4718

    [31]Sheldrick G M.Acta Crystallogr.Sect.A:Found.Crystallogr.,2008,A64:112-122

    [32]Spek A L.J.Appl.Crystallogr.,2003,36:7-13

    Enhanced CO2Sorption Performance of Metal-Organic Frameworks by in-Situ Hydrolysis of Tetrazine Moiety in the Ligand

    QIAN Bin-Bin1ZHAO Meng1CHANG Ze*,1BU Xian-He*,1,2
    (1School of Materials Science and Engineering,National Institute for Advanced Materials,TKL of Metal and Molecule-Based Material Chemistry,Nankai University,Tianjin 300350,China)
    (2College of Chemistry,Key Laboratory of Advanced Energy Materials Chemistry
    (Ministry of Education),Nankai University,Tianjin 300071,China)

    The polar acyl hydrazine groups were introduced into a “pillar-layer” MOF,[Zn4(bpta)2(dipytz)2(H2O)2]·4DMF·H2O (1)(H4bpta=1,1′-biphenyl-2,2′,6,6′-tetracarboxylic acid and dipytz=di-3,6-(4-pyridyl)-1,2,4,5-tetrazine),through the in-situ hydrolysis modification of the dipytz pillar ligand,and [Zn4(bpta)2(dipytzhydr)2(H2O)2]·solvent (2)(dipytzhydr=1,2-diisonicotinoylhydrazine)was obtained.The results of gas sorption measurement show that complex 2 has an enhanced CO2-framework affinity (initial CO2adsorption enthalpies increase from 28.8 to 30.3 kJ·mol-1)and higher CO2/CH4selectivity compared with that of complex 1.The present work indicates that in-situ hydrolysis modification is highly potential for the enhancement of CO2adsorption performance of tetrazine functionalized MOFs.CCDC:1567303,1.

    metal-organic frameworks;tetrazine;post-synthesis;property modulation;CO2sorption

    O614.24+1

    A

    1001-4861(2017)11-2051-09

    10.11862/CJIC.2017.251

    2017-08-22。收修改稿日期:2017-09-29。

    國(guó)家自然科學(xué)基金(No.21531005,21421001,21671112)和天津市自然科學(xué)基金(No.15JCZDJC38800)資助項(xiàng)目。

    *通信聯(lián)系人。E-mail:changze@nankai.edu.cn,buxh@nankai.edu.cn

    猜你喜歡
    基團(tuán)原位配體
    物歸原位
    幼兒100(2024年19期)2024-05-29 07:43:34
    R基團(tuán)篩選技術(shù)用于HDACIs的分子設(shè)計(jì)
    未培養(yǎng)微生物原位培養(yǎng)技術(shù)研究進(jìn)展
    基于配體鄰菲啰啉和肉桂酸構(gòu)筑的銅配合物的合成、電化學(xué)性質(zhì)及與DNA的相互作用
    芳烴ArCOR的構(gòu)象分析和基團(tuán)對(duì)親電取代反應(yīng)的定位作用
    新型三卟啉醚類配體的合成及其光學(xué)性能
    內(nèi)含雙二氯均三嗪基團(tuán)的真絲織物抗皺劑的合成
    兩個(gè)含雙磺酸基團(tuán)化合物的合成、晶體結(jié)構(gòu)及熒光性質(zhì)
    基于Schiff Base配體及吡啶環(huán)的銅(Ⅱ)、鎳(Ⅱ)配合物構(gòu)筑、表征與熱穩(wěn)定性
    系列含4,5-二氮雜-9,9′-螺二芴配體的釕配合物的合成及其性能研究
    久久久国产成人精品二区| 国产av一区在线观看免费| 99riav亚洲国产免费| 国产黄a三级三级三级人| 91久久精品电影网| 国产一区二区三区视频了| 亚洲乱码一区二区免费版| 久久久成人免费电影| 自拍偷自拍亚洲精品老妇| 少妇丰满av| 国产伦精品一区二区三区视频9| 国产精品国产高清国产av| 国产成人欧美在线观看| 久久久久久久精品吃奶| 免费观看人在逋| 午夜福利在线观看吧| 美女 人体艺术 gogo| 欧美xxxx性猛交bbbb| 精品日产1卡2卡| 免费人成在线观看视频色| 欧美精品啪啪一区二区三区| 日韩欧美 国产精品| 亚洲自拍偷在线| 亚洲精品色激情综合| 观看美女的网站| 男人和女人高潮做爰伦理| 极品教师在线视频| 国产精品野战在线观看| 亚洲国产高清在线一区二区三| 美女大奶头视频| 九色成人免费人妻av| 日本a在线网址| 好男人在线观看高清免费视频| 欧美另类亚洲清纯唯美| 国产熟女xx| 亚洲精品在线美女| 最新中文字幕久久久久| 超碰av人人做人人爽久久| 国产亚洲精品久久久com| 最新在线观看一区二区三区| 午夜精品一区二区三区免费看| 欧美绝顶高潮抽搐喷水| 国产av在哪里看| 亚洲自偷自拍三级| 亚洲精品久久国产高清桃花| 内地一区二区视频在线| 欧美精品啪啪一区二区三区| 自拍偷自拍亚洲精品老妇| 免费高清视频大片| 午夜亚洲福利在线播放| 亚洲欧美激情综合另类| 免费观看精品视频网站| 久久精品91蜜桃| 欧美bdsm另类| 亚洲欧美日韩卡通动漫| 国产美女午夜福利| 国产伦精品一区二区三区四那| 在线观看66精品国产| 免费看a级黄色片| 亚洲自偷自拍三级| 久久性视频一级片| 夜夜夜夜夜久久久久| 精品一区二区三区av网在线观看| 在线观看66精品国产| 久久人人精品亚洲av| 欧美精品国产亚洲| 久久九九热精品免费| 亚洲av不卡在线观看| 看片在线看免费视频| 九九在线视频观看精品| 男人舔女人下体高潮全视频| 搡老妇女老女人老熟妇| 99在线视频只有这里精品首页| 国产成人啪精品午夜网站| 久久久久久久久久成人| 国产精品久久久久久亚洲av鲁大| 丰满乱子伦码专区| 99热6这里只有精品| 亚洲人成网站高清观看| 全区人妻精品视频| 宅男免费午夜| 高清毛片免费观看视频网站| 日韩欧美国产在线观看| 欧美激情久久久久久爽电影| 五月伊人婷婷丁香| 一夜夜www| 99热6这里只有精品| 免费在线观看日本一区| 99久久久亚洲精品蜜臀av| 亚洲激情在线av| 亚洲国产精品成人综合色| 97超级碰碰碰精品色视频在线观看| 高潮久久久久久久久久久不卡| 在线十欧美十亚洲十日本专区| 成人国产一区最新在线观看| 十八禁网站免费在线| 亚洲精品影视一区二区三区av| 久久久国产成人精品二区| 日日夜夜操网爽| 少妇高潮的动态图| 欧美不卡视频在线免费观看| 国产精品影院久久| 色尼玛亚洲综合影院| 成人精品一区二区免费| 久久精品人妻少妇| 丰满乱子伦码专区| 女人十人毛片免费观看3o分钟| 18禁黄网站禁片午夜丰满| 亚洲在线自拍视频| 国产精品一区二区性色av| 香蕉av资源在线| 99国产综合亚洲精品| 熟女人妻精品中文字幕| 尤物成人国产欧美一区二区三区| 日本成人三级电影网站| 男女床上黄色一级片免费看| 国产精品嫩草影院av在线观看 | av国产免费在线观看| 一个人免费在线观看的高清视频| 精品欧美国产一区二区三| 欧美3d第一页| 国产熟女xx| 婷婷精品国产亚洲av在线| 国产黄a三级三级三级人| 欧美激情在线99| aaaaa片日本免费| 亚洲三级黄色毛片| 91午夜精品亚洲一区二区三区 | 精品午夜福利在线看| 国模一区二区三区四区视频| 狂野欧美白嫩少妇大欣赏| x7x7x7水蜜桃| 可以在线观看的亚洲视频| 久久伊人香网站| 91麻豆av在线| 天堂网av新在线| 日本成人三级电影网站| 自拍偷自拍亚洲精品老妇| 亚洲国产高清在线一区二区三| 亚洲精品日韩av片在线观看| 岛国在线免费视频观看| 99久国产av精品| 日日摸夜夜添夜夜添av毛片 | 免费无遮挡裸体视频| 97人妻精品一区二区三区麻豆| 中亚洲国语对白在线视频| 国产在线精品亚洲第一网站| 久久人人精品亚洲av| 欧美黑人巨大hd| 99热这里只有是精品50| 网址你懂的国产日韩在线| 日本免费一区二区三区高清不卡| a级毛片a级免费在线| 国产真实乱freesex| 亚洲欧美日韩高清在线视频| 久久香蕉精品热| av天堂在线播放| 一个人免费在线观看的高清视频| xxxwww97欧美| 婷婷亚洲欧美| 我的女老师完整版在线观看| 色精品久久人妻99蜜桃| 国产av一区在线观看免费| 又紧又爽又黄一区二区| 91久久精品电影网| 国产v大片淫在线免费观看| 无人区码免费观看不卡| 可以在线观看的亚洲视频| 性色av乱码一区二区三区2| 国产黄色小视频在线观看| 有码 亚洲区| 欧美黑人巨大hd| 可以在线观看的亚洲视频| 亚洲久久久久久中文字幕| 国产亚洲精品综合一区在线观看| 黄色日韩在线| 亚洲av成人精品一区久久| 99久久九九国产精品国产免费| ponron亚洲| av天堂在线播放| 色吧在线观看| 久久久久久国产a免费观看| 国产一区二区在线av高清观看| 日日干狠狠操夜夜爽| 日本一二三区视频观看| 18禁黄网站禁片午夜丰满| 人妻久久中文字幕网| 乱码一卡2卡4卡精品| 国产av一区在线观看免费| 日韩欧美国产在线观看| 中文在线观看免费www的网站| 乱码一卡2卡4卡精品| 欧美激情国产日韩精品一区| 不卡一级毛片| eeuss影院久久| 淫秽高清视频在线观看| 免费av毛片视频| 亚洲精品粉嫩美女一区| www.色视频.com| 在线观看美女被高潮喷水网站 | 亚洲国产精品999在线| av中文乱码字幕在线| 草草在线视频免费看| 黄色女人牲交| 九九久久精品国产亚洲av麻豆| 国产精品女同一区二区软件 | 蜜桃久久精品国产亚洲av| 亚洲av二区三区四区| 美女黄网站色视频| av女优亚洲男人天堂| 国产精品人妻久久久久久| 亚洲欧美日韩无卡精品| 国产伦在线观看视频一区| 97人妻精品一区二区三区麻豆| 观看美女的网站| 亚洲久久久久久中文字幕| 在线观看免费视频日本深夜| 久久精品影院6| 中国美女看黄片| 国产精品一区二区免费欧美| 最好的美女福利视频网| 欧美黑人巨大hd| 中文字幕人妻熟人妻熟丝袜美| 亚洲中文字幕一区二区三区有码在线看| 精品久久国产蜜桃| 最新在线观看一区二区三区| 99视频精品全部免费 在线| 亚洲av成人av| 国产精品亚洲av一区麻豆| 精品福利观看| 90打野战视频偷拍视频| 可以在线观看的亚洲视频| 亚洲午夜理论影院| 91久久精品电影网| 舔av片在线| 精品人妻一区二区三区麻豆 | 亚洲欧美日韩高清在线视频| 欧美午夜高清在线| 亚洲久久久久久中文字幕| 日韩精品青青久久久久久| 嫩草影院入口| 免费看光身美女| 天堂动漫精品| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | www.www免费av| 亚洲无线观看免费| 长腿黑丝高跟| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99精品久久久久人妻精品| 激情在线观看视频在线高清| 午夜亚洲福利在线播放| 国产精品不卡视频一区二区 | 中文资源天堂在线| 国产三级黄色录像| 久久伊人香网站| 亚洲美女黄片视频| 免费在线观看亚洲国产| 亚洲成人免费电影在线观看| 两个人视频免费观看高清| 小蜜桃在线观看免费完整版高清| 男女床上黄色一级片免费看| 欧洲精品卡2卡3卡4卡5卡区| 男人舔奶头视频| 国产成人影院久久av| 亚洲,欧美,日韩| 变态另类丝袜制服| 国产色爽女视频免费观看| 婷婷精品国产亚洲av在线| 久久午夜亚洲精品久久| 亚洲经典国产精华液单 | 在线十欧美十亚洲十日本专区| 国产精品三级大全| 免费在线观看日本一区| 精品午夜福利在线看| 久久伊人香网站| 日韩成人在线观看一区二区三区| 99久久精品国产亚洲精品| 国产一区二区三区视频了| 欧美成人a在线观看| 搡老熟女国产l中国老女人| 哪里可以看免费的av片| 国产精品一区二区免费欧美| 我的女老师完整版在线观看| 色av中文字幕| 少妇人妻一区二区三区视频| 在线看三级毛片| 一区二区三区高清视频在线| 欧美色视频一区免费| 波野结衣二区三区在线| 老鸭窝网址在线观看| 搡老熟女国产l中国老女人| 有码 亚洲区| 最近最新中文字幕大全电影3| 久久国产乱子免费精品| 欧美黄色淫秽网站| 国产男靠女视频免费网站| 国产欧美日韩一区二区精品| 三级国产精品欧美在线观看| 亚洲精品久久国产高清桃花| 在线a可以看的网站| 岛国在线免费视频观看| 亚洲国产精品合色在线| 搡老妇女老女人老熟妇| 久久久久久久久久成人| 少妇裸体淫交视频免费看高清| 中文字幕高清在线视频| 综合色av麻豆| 小蜜桃在线观看免费完整版高清| 国产亚洲欧美在线一区二区| 免费人成在线观看视频色| 亚洲,欧美精品.| 色尼玛亚洲综合影院| 五月伊人婷婷丁香| 人妻久久中文字幕网| 日本与韩国留学比较| 亚洲五月婷婷丁香| 欧美最新免费一区二区三区 | 韩国av一区二区三区四区| 成年女人永久免费观看视频| 人妻丰满熟妇av一区二区三区| 国产精品av视频在线免费观看| 特大巨黑吊av在线直播| 色噜噜av男人的天堂激情| 夜夜夜夜夜久久久久| 亚洲av成人不卡在线观看播放网| 亚洲成人久久爱视频| 国产一区二区三区视频了| 俺也久久电影网| 国语自产精品视频在线第100页| 日日干狠狠操夜夜爽| 国产精品99久久久久久久久| 国产伦人伦偷精品视频| 亚洲av电影不卡..在线观看| 自拍偷自拍亚洲精品老妇| 中文字幕精品亚洲无线码一区| 欧美日韩黄片免| 俺也久久电影网| 在线a可以看的网站| 日韩av在线大香蕉| 伦理电影大哥的女人| 两个人视频免费观看高清| av在线老鸭窝| 亚洲精品成人久久久久久| 嫩草影院入口| 欧美另类亚洲清纯唯美| 久久热精品热| 91久久精品国产一区二区成人| 精品久久久久久久人妻蜜臀av| 国产高清激情床上av| 免费在线观看成人毛片| 亚洲 欧美 日韩 在线 免费| 男女床上黄色一级片免费看| 国产亚洲欧美98| 国产精品98久久久久久宅男小说| 国产高潮美女av| 亚洲国产欧美人成| 国产精品伦人一区二区| 亚洲国产高清在线一区二区三| а√天堂www在线а√下载| 老司机深夜福利视频在线观看| 国产一区二区三区在线臀色熟女| netflix在线观看网站| 琪琪午夜伦伦电影理论片6080| 啦啦啦观看免费观看视频高清| 亚洲精品色激情综合| 亚洲在线自拍视频| 麻豆国产97在线/欧美| 欧美潮喷喷水| 久久久久久国产a免费观看| 免费一级毛片在线播放高清视频| 色综合站精品国产| 亚洲国产日韩欧美精品在线观看| 我要搜黄色片| 婷婷亚洲欧美| 久久久久国内视频| 色哟哟哟哟哟哟| 久久午夜亚洲精品久久| 精品人妻偷拍中文字幕| 一级黄片播放器| 直男gayav资源| 国产伦精品一区二区三区视频9| 99久国产av精品| 国产一区二区在线观看日韩| 蜜桃久久精品国产亚洲av| 草草在线视频免费看| 黄色丝袜av网址大全| 国产高清激情床上av| 亚洲第一电影网av| 五月玫瑰六月丁香| 国内精品久久久久精免费| 天堂√8在线中文| 国产成人a区在线观看| 99热只有精品国产| 怎么达到女性高潮| 成人特级av手机在线观看| 9191精品国产免费久久| 极品教师在线免费播放| 亚洲一区二区三区不卡视频| 亚洲av熟女| 国产亚洲精品av在线| 欧美日韩中文字幕国产精品一区二区三区| 99精品在免费线老司机午夜| 淫秽高清视频在线观看| 日韩国内少妇激情av| 欧美在线一区亚洲| 熟女电影av网| 日韩有码中文字幕| 亚洲自拍偷在线| 成人亚洲精品av一区二区| 国产伦精品一区二区三区视频9| 国产在视频线在精品| 国产精品,欧美在线| 国产高清三级在线| 久久久久久久午夜电影| 国产精品亚洲美女久久久| 观看美女的网站| 激情在线观看视频在线高清| 在线观看午夜福利视频| 国内精品美女久久久久久| 亚洲国产色片| 午夜免费成人在线视频| 极品教师在线视频| 国产免费av片在线观看野外av| 国产 一区 欧美 日韩| 深夜精品福利| 国产激情偷乱视频一区二区| 深爱激情五月婷婷| 亚洲va日本ⅴa欧美va伊人久久| 99久久无色码亚洲精品果冻| 网址你懂的国产日韩在线| 成人无遮挡网站| 亚洲中文字幕日韩| 狂野欧美白嫩少妇大欣赏| 亚洲美女黄片视频| 国内久久婷婷六月综合欲色啪| 国产精品免费一区二区三区在线| 日韩大尺度精品在线看网址| 嫩草影院精品99| 少妇熟女aⅴ在线视频| 精品久久久久久久末码| 亚洲成人久久性| xxxwww97欧美| 久久这里只有精品中国| 亚洲三级黄色毛片| 偷拍熟女少妇极品色| 又黄又爽又免费观看的视频| 国产精华一区二区三区| 神马国产精品三级电影在线观看| 欧美成人免费av一区二区三区| www.色视频.com| 怎么达到女性高潮| 一级毛片久久久久久久久女| av福利片在线观看| 麻豆成人午夜福利视频| 亚洲成人精品中文字幕电影| 亚洲精品乱码久久久v下载方式| 久久久久久久久久黄片| 9191精品国产免费久久| 精品免费久久久久久久清纯| 国产精品一区二区三区四区免费观看 | 日本免费一区二区三区高清不卡| 性欧美人与动物交配| 久久精品国产亚洲av香蕉五月| 久久久精品大字幕| 18禁在线播放成人免费| 又紧又爽又黄一区二区| 亚洲人与动物交配视频| 91av网一区二区| 天堂影院成人在线观看| 女生性感内裤真人,穿戴方法视频| 91狼人影院| 亚洲精华国产精华精| 亚洲一区二区三区色噜噜| 99久久精品国产亚洲精品| 一区福利在线观看| 精品一区二区三区av网在线观看| 国产精品精品国产色婷婷| 网址你懂的国产日韩在线| 日韩亚洲欧美综合| 日韩成人在线观看一区二区三区| 国产又黄又爽又无遮挡在线| 国产精品日韩av在线免费观看| 亚洲欧美日韩东京热| 一边摸一边抽搐一进一小说| 嫩草影视91久久| 欧美另类亚洲清纯唯美| 天堂√8在线中文| 欧美乱色亚洲激情| 欧美成人一区二区免费高清观看| 成人毛片a级毛片在线播放| 性欧美人与动物交配| 欧美午夜高清在线| 国产亚洲精品综合一区在线观看| 性插视频无遮挡在线免费观看| 999久久久精品免费观看国产| 久久久久性生活片| 亚洲综合色惰| 99久久99久久久精品蜜桃| 夜夜爽天天搞| 99久久久亚洲精品蜜臀av| 国产单亲对白刺激| 亚洲自偷自拍三级| 国产精品99久久久久久久久| 午夜福利视频1000在线观看| 午夜影院日韩av| av黄色大香蕉| 欧美一区二区国产精品久久精品| 伦理电影大哥的女人| 精品一区二区三区视频在线| 91av网一区二区| 亚洲人成网站高清观看| 观看美女的网站| 亚洲国产高清在线一区二区三| 99久久精品国产亚洲精品| 丰满的人妻完整版| 午夜视频国产福利| 91久久精品国产一区二区成人| 我的老师免费观看完整版| 国产精品伦人一区二区| 亚洲国产欧洲综合997久久,| 内射极品少妇av片p| 日本一二三区视频观看| 精品久久久久久,| 午夜久久久久精精品| 成人特级av手机在线观看| h日本视频在线播放| 国产成人aa在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美日韩高清在线视频| а√天堂www在线а√下载| 身体一侧抽搐| 如何舔出高潮| 久久人人爽人人爽人人片va | 国产精品自产拍在线观看55亚洲| 日本成人三级电影网站| 夜夜夜夜夜久久久久| 色吧在线观看| 欧美激情国产日韩精品一区| 一本久久中文字幕| 精品久久久久久,| 最近最新中文字幕大全电影3| 俄罗斯特黄特色一大片| 亚洲专区国产一区二区| 99在线视频只有这里精品首页| 美女大奶头视频| 中文字幕久久专区| 欧美激情在线99| 日韩免费av在线播放| 校园春色视频在线观看| 国产欧美日韩精品亚洲av| 又黄又爽又免费观看的视频| 亚洲成人久久爱视频| 深夜a级毛片| 国产在线精品亚洲第一网站| 精品免费久久久久久久清纯| 99久久久亚洲精品蜜臀av| 中文字幕免费在线视频6| 琪琪午夜伦伦电影理论片6080| 亚洲精品一卡2卡三卡4卡5卡| 99热6这里只有精品| 91麻豆精品激情在线观看国产| 久久久久免费精品人妻一区二区| 给我免费播放毛片高清在线观看| 亚洲精品成人久久久久久| 国产欧美日韩精品一区二区| 最近最新免费中文字幕在线| 国产av在哪里看| 亚洲av成人精品一区久久| 91在线精品国自产拍蜜月| 亚洲av五月六月丁香网| 美女 人体艺术 gogo| 久久精品国产清高在天天线| 搞女人的毛片| 亚洲人成电影免费在线| 男女做爰动态图高潮gif福利片| 免费av观看视频| 桃红色精品国产亚洲av| 亚洲成人中文字幕在线播放| 日日摸夜夜添夜夜添小说| 夜夜爽天天搞| 自拍偷自拍亚洲精品老妇| 精品一区二区三区av网在线观看| 一级毛片久久久久久久久女| 悠悠久久av| 日本在线视频免费播放| 国产精品女同一区二区软件 | 精品久久久久久久久av| 亚洲精品一卡2卡三卡4卡5卡| 国产日本99.免费观看| 丰满人妻一区二区三区视频av| 欧美日韩国产亚洲二区| 日韩欧美精品免费久久 | 国产aⅴ精品一区二区三区波| 国产伦人伦偷精品视频| 久久热精品热| 观看免费一级毛片| 欧美zozozo另类| 嫩草影视91久久| 国产在线精品亚洲第一网站| 欧美日韩乱码在线| 免费在线观看影片大全网站| 国产精品永久免费网站| 欧美日韩乱码在线| 日韩人妻高清精品专区| 亚洲天堂国产精品一区在线| 日日干狠狠操夜夜爽| 嫩草影视91久久| 国产成人a区在线观看| 男女视频在线观看网站免费| 在线播放国产精品三级| 欧美日韩乱码在线| 大型黄色视频在线免费观看| 国产aⅴ精品一区二区三区波| 久久6这里有精品| 国产免费一级a男人的天堂|