• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    結(jié)晶性的多孔高分子-金屬配合物的最新研究進(jìn)展
    ——合成、表征和性質(zhì)

    2017-11-13 12:21:49張振杰
    無機(jī)化學(xué)學(xué)報 2017年11期
    關(guān)鍵詞:南開大學(xué)高分子研究進(jìn)展

    喻 琪 陳 瑤 張振杰*,,2 程 鵬*,

    結(jié)晶性的多孔高分子-金屬配合物的最新研究進(jìn)展
    ——合成、表征和性質(zhì)

    喻 琪1陳 瑤2,3張振杰*,1,2程 鵬*,1

    (1南開大學(xué)化學(xué)學(xué)院,天津 300071)
    (2藥物化學(xué)生物學(xué)國家重點實驗室,南開大學(xué),天津 300071)
    (3南開大學(xué)藥學(xué)院,天津 300071)

    由于高分子具有尺寸長短不一、柔性等特點,很難通過普通方法合成具有結(jié)晶性和多孔性的高分子材料。而高分子金屬配合物材料不僅繼承了高分子材料的傳統(tǒng)性質(zhì),同時也可以獲得配合物的優(yōu)點,比如高結(jié)晶性和多孔性。本文系統(tǒng)總結(jié)了合成結(jié)晶性的多孔高分子配合物材料的方法,包括光誘導(dǎo)聚合法、配位自主裝法、分步合成法以及后修飾法。同時介紹了它們的表征方法以及潛在應(yīng)用領(lǐng)域,并討論了該領(lǐng)域研究中存在的各種機(jī)遇與挑戰(zhàn)。

    結(jié)晶性;多孔性;高分子金屬配合物;后修飾;自組裝

    0 Introduction

    Polymer-metal coordination complexes (PMCCs)demonstrate as an emerging functional material in which polymer ligands attach to metal ions usually via coordination bonds.PMCCs are attracting increasing attention since the mid of 1990s because of the development of new synthesis strategies and theirpotentialapplicationsasfunctionalmaterialsfor conductive[1],sensing[2],self-healing[3],luminescent[4-5],stimuli responsive[6],nanoscience[7],etc[8-9].However,it is always a great challenge to prepare crystalline and porous PMCCs due to the high flexibility,random conformation of polymer ligands and lack of appropriate synthesis methods.Coordination complexes including coordination polymers (CPs)and metalorganic frameworks (MOFs)consist of central metal ions or metal clusters connected by organic ligands via coordination bonds.Due to the regular coordination geometry of metal centers (e.g.Fe favors to form 6-coordinated octahedral geometry)and the reversibility of coordination bonds,coordination complexes can form highly crystalline materials with defined structures of various topologies (e.g.pcu,nbo,rho,sql)[10-13].Coordination complexes are feasible to form large crystals which are suitable to single-crystal X-ray diffraction(SCXRD).Moreover,coordination complexes especially MOFs possess the word-record highest surface areas[14](Langmuir surface area around 10 000 m2·g-1)among all known porous materials including zeolite,carbon,mesoporous silica and so on.Coordination complexes have attracted great attentions because they demonstrate plenty of promising applications such as gas storage and separation[15],drug delivery[16],conductivity[17]and so on.PMCCs possess the potential to harness not only the advantage of polymers such as facile fabrication of films,good processability and high chemical stability,but also the advantage of coordination complexes such as structure robustness,high crystallinity,well-determined structures and permanent porosity.In this review,we summarize the reported PMCCs which possess high crystallinity and porosity,and discuss how to design and synthesize this kind of functional PMCCs.Moreover,we will discuss how to characterize PMCCs and list the challenges and chances in this area.

    1 Photo-induced polymerization method

    The topochemical solid-sate reaction have attracted scientists′great attention since this reaction is solvent-free,atom economic and environmental friendly.Ascribed to the mild reaction condition and gentle treatment,materials can possess their crystallinity via a single-crystal to single-crystal transformation manner under photo irradiation.Both singlecrystal,powder X-ray diffraction spectra (PXRD)and Infrared Spectroscopy (IR)spectra can help to understand the structural changes in anatomic-level[18-19].Therefore,photo-induced polymerization reaction is a feasible method to transform a crystalline coordination complex which contains photo reactive monomer into a crystalline PMCC.A wide variety of photo-active groups have been employed for photo-polymerization reactions such as olefins[20-21],anthracenes[22-24]and acetylenes[25-27]or their derivatives.For olefin groups,in order to undergo [2+2]photo-cycloaddition reaction,the C=C bonds should be aligned parallel and the distance should be lower than 0.42 nm proposed by Schmidt et al.[28].For the anthracenes,the carbon atoms in 9,10 positions of the anthracenes also follow the same rules to perform the [4+4]cycloaddition reactions[29].However,the acetylenes obey a new rule to perform 1,4-cycloaddition reaction.The distance of acetylene groups is approximately 0.35 nm,which represents the van der Waals contact between the adjacent molecules.And when the aligned angle is about 45°[30-31],acetylene groups can be polymerized via topochemical1,4-cycloaddition.In order to perform a photocycloaddition reaction,a lot of effort has been made to align the photo-active groups in a favorable stacking arrangement which is the key factor in photocycloaddition reactions with the help of selfassembly techniques such as hydrogen bonds,donor acceptor,coordination bonds and π-π stacking interactions[32-34]etc.If the photo-active groups can be stacked head to tail,when the photo-active groups link together under light source,polymer-metal coordination complexes will be obtained.This method will make it possible to synthesis large crystal of polymers.However,among these interactions,coordination bond is rarely studied and employed in the preparation of PMCCs.

    Vittal et al.reported to use 1,4-bis[2-(4′-pyridyl)ethenyl]benzene(bpeb)as a photo-active ligand to form a non-porous MOF,[Zn2(bpeb)-(bdc)(fa)2][35].This MOF can undergo [2+2]cycloaddition reaction in a singlecrystal to single-crystal manner to generate a noninterpenetrated 3D structure in which bpeb ligands polymerized to form 1D chain polymers (Fig.1).The solid-state photoluminescence spectra are also recorded to tract the reaction process.The MOF before irradiation shows a strong green emission,while the MOF after irradiation has a weaker emission which is blue shifted to stronger blue emission.This new PMCC compound is unlikely prepared by a direct synthesis strategy from polymer ligands.

    Vittal et al.[36]reported the crystal structure of a 3D Zn-based PMCC fused with an 1D organic polymer ligand which is made in situ by a[2+2]cycloaddition reaction of a six-fold interpenetrated 3D MOFs.The crystallinity of starting 3D MOF after irradiation under 365 nm UV lamp is retained and the structure of the 1D organic polymer is determined by single-crystal X-ray diffraction.This organic polymer ligand can be depolymerized in a SCSC fashion by heating at 250℃for 3 h,the powder X-ray diffraction (PXRD)date(Fig.2b)shows that the structure reverts back to the original MOF structure.Gas sorption study reveals that this PMCC can adsorb a small amount of CO2at 195 K and 100 kPa.

    Fig.2 Reversible polymerization by[2+2]photo-cycloaddition under UV lamp and depolymerization on heating (a),PXRD patterns for as synthesized,after UV-irradiation and after heating (b)[36]

    2 Coordination induced self-assembly method

    According to the knowledge of traditional coordination chemistry,organic chain polymer cannot directly react with metals to form crystalline PMCCs because organic chain polymers are mostly amorphous,flexible and non-porous.Moreover,almost all coordination complexesare prepared from small organicligands.Therefore,itisalwaysa great challenge to directly prepare PMCCs from organic polymers.Until recently,Cohen et al.,for the first time, demonstrate that amorphous, linear, and nonporous polymer ligands are possible to coordinate with metalions to constructhighly crystalline coordination polymers (polyMOFs)via coordination bond induced self-assembly processes.This method makes use of the polymer ligands to react with metal ions directly to synthesize PMCCs which possess not only high crystalline and high porosity inheriting from MOFs,but also the chemical stability,flexibility,easy film formation and good proccessability from the organic polymer.

    In 2015,Zhang et al.[37]reported a straightforward strategy to prepare highly crystalline MCPs from polyether ligands (pbdc-xa)which contain repeated 1,4-benzenedicarboxylic acid (H2bdc)unites.A series of polycrystalline hybrid materials with IRMOF networks were prepared upon hydrothermal reactions of pbdc-xa ligands with ZnⅡcations.PXRD and scanning electron microscope (SEM)confirm these materials exhibit the same structures as IRMOF-1.Gas-sorption studies confirm these materials are highly porous.As shown in Fig.3,Zn-pbdc-7a and Zn-pbdc-8a all exhibit typical type Ⅰ isotherms,indicating a uniform microporous structure (Fig.3b)compared to pbdc-xa polymers.Moreover,these materials can sorb more CO2than the parent MOF-5.

    Fig.3 IRMOF derivatives construct from an H2bdc ligand derivative,a cross-linked H2bdc ligand,and a polymeric H2bdc polymer ligand with Zn2+ (a),N2sorption isotherms for polyMOFs (top)and CO2adsorption isotherms at 298 K (bottom)(b)[37]

    Zhang et al.also demonstrate that this synthesis strategy can not only access the IRMOF structure,but also generates more MOF structures via a mixed ligands strategy (Fig.4)[38].Reaction of pbdc-xa and bridging linkers including dabco (1,4-diazabicyclo octane),bpy(4,4′-bipyridine)with Zn2+or Cu2+cations afford a series of new PMCCs.Gas sorption studies reveal that these materials exhibit relatively high CO2sorption but low N2sorption,making them promising materials for CO2/N2separations.Furthermore,these new PMCCs exhibit much higher water stability compared to their parent MOFs without polymers inside.It can be ascribed to the hydrophobicity of polymers ligands.

    Very recently,Cohen et al.reported the first PMCCs with a UiO-66 architecture,prepared from polymer with various alkyl spacers,molecular weights,and dispersities[39].Indeed,PXRD confirm that polyUiO-66 form only with polymers of a certain linker spacing(pbdc-xa,x=3~8).The morphology and particle size of polyUiO-66 are investigated using SEM.The pbdc-6au is obtained composed of very small,crystalline nanostructures (Fig.5a).Pbdc-8a-u exhibit thin and brittle crystalline films (Fig.5b).The pbdc-10a does not form crystalline polyUiO-66 and only amorphous materialis produced.The sorption behaviorof polyUiO-66 is provided by nitrogen gas adsorption.From Fig.5c and Fig.5d,the surface area of polyUiO-66 materials were about 200~400 m2·g-1,which were lower than the parent UiO-66 (1 000~1 500 m2·g-1).This result is ascribed to the pore filling of methylene in the polymer ligands, however, indicate the polyMOF is micro-and meso-porous material.

    Johnson et al.[40]synthesized a series of uniform oligomeric polyMOF ligands with alkyne end groups via an iterative exponential growth (IEG)strategy.When these ligands are coupled with Zn ions,a novel“block co-polyMOF” (BCPMOF)is yielded.Revealed by PXRD,BCPMOFs possessed the MOF-5 (IRMOF-1)structure same as polyMOFs reported by Cohen et al.and represent a higher stability than the parent MOF-5 and polyMOF.SEM and transmission electron microscope (TEM) (Fig.6)images reveal BCPMOFs can form a thin polymer film.

    3 Two-step synthesis method

    Some coordination complexes such as metalorganic polyhedral (MOPs)are inherently porous.Therefore,a two-step synthesis starting from coordination complexes with polymerization groups can afford crystalline and porous PMCCs. This approach includes two steps:first preparation of coordination complex with polymerization groups and second cross-linking of coordination complexes through homopolymerization or copolymerization reactions.

    Fig.4 Design concept for creating a polyMOF analogue of MOF via replacing dangling groups by polymer chains (a),N2sorption and CO2sorption isotherms for polyMOFs (b)[38]

    Fig.5 PXRD patterns,SEM images and N2sorption isotherms of polyMOF prepared from different polymer ligands (a~d)[39]

    Fig.6 SEM images of L4-Zn (a),L4PS-Zn dried at RT (b)and TEM image of L4PS-Zn dried at RT (c),Schematic of L4PS-Zn depicting a crystalline polyMOF domain embedded within a PS matrix (d)[40]

    Kitagawa et al.[41]in Japan reported the divergent and convergent synthesis of coordination star polymers(CSPs)by using MOPs as a multifunctional core.The great rhombicuboctahedral MOPs as a multifunctional core consists of a total of 24 isophthalic acid ligands interconnected via 12 dicopper paddle wheel clusters.Reversible addition-fragmentation chain transfer polymerization mediated with the MOP led to MOP-star polymers.Atomic force microscope (AFM)images show CSPs exhibit the nanoscale particles.

    Thibonnet et al.[42]reported titanium-doped porous polymers obtained from specific Ti-containing monomerswith polymerization groups.Thisfree radicalco-polymerization reaction affords several titanium-containing polymers,which were dried under supercriticalconditions to afford porous organic aerogels.As shown in Fig.8,the IR spectra reveal that the strong signal at 3 400 cm-1for the Ti aerogel may be corresponded to the presence of hydrogen bonded OH groups.Moreover,two carbonylsignalsare observed at 1 708 and 1 200 cm-1which confirm the existence of Ti carboxylate complexes.The porosity is investigated using N2adsorption-desorption isotherms.The BET value of PMCCs was about 454 m2·g-1.There are mesopores and microporosity characterized through pore size distribution.

    Fig.7 Schematic diagram of the divergent route for MOP-core CSPs (a)and AFM height image of individual particles of MOP with scale bar=1 μm (b)[41]

    Fig.8 Different porous co-polymers obtained with Ti-complex (a)and IR spectra of a 50/50 Ti1/DVB co-polymer foam and a DVB homopolymer foam (b),N2adsorption-desorption isotherms of polymer (c,d)[42]

    A facile and scalable route to prepare PMCCs were employed by Dai et al.[43]The bifunctional 1-vinylimidazole (VIm)with a coordinating site and a polymerizable organic group is introduced as the ligand.Subsequently,the radical polymerization of[Zn(VIm)4][NO3]2coordination complex is carried out under solvothermal conditions to gain a higher degree ofcross-linking.Thismaterialexhibitsexcellent stability in boiling water and can be stable up to 390℃in air.Fig.9 displays the abundant pores within a large domain of CIN-1.It is observed that mesopores exist side by side among CIN-1 particles.This strategy will inspire a number of stable metal-supported porous polymers by careful selection of ligands,thus opening a new pathway to porous PMCCs.

    Fig.9 Strategy to prepare coordination-supported imidazolate networks (A)and STEM-HAADF images of CIN-1 at 60 kV (B)[43]

    Fig.10 Depiction of polymer imprinting with metal-oxo-hydroxo carboxylate clusters,the adsorption of Fe3+on unimprinted polymer and imprinted polymer[44]

    By using the same synthesis strategy,Walton′s group[44]synthesized three new ion-oxo-hydroxo cluster coordinated by vinyl-derivatized carboxylates,[Fe6O2(OH)2(O2CC(Cl)=CH2)12(H2O)2] (1),[{Fe(O2CC(Cl)=CH2)(OMe)2}10] (2)and [Fe6O2(OH)2(O2C-Ph-(CH)=CH2)12(H2O)2](3).Polymerization these Fe-based coordination complexes afford a series of PMCCs.For E-L(nonimprinted copolymer of chloroacrylic acid and egdma)the maximum iron uptake is 1.1 mg·g-1of polymer,for E-1 (egdma polymer imprinted with 1)this figure is 1.8 mg·g-1of polymer.Hence,the imprinted polymer shows a greater than 60%increase in the amount of iron removed from solution compared to the nonimprinted polymer.

    4 Post-synthetic modification method

    Fig.11 Schematic illustration of cross-linking of the organic linkers in MOF and subsequent decomposition to obtain polymer gel(a),Photographs of resulting MOF-templated polymers from various combinations of organic ligands and metal ions (b),Powder X-ray diffraction pattern of a single piece of whole chimera-type hybrid (c)[45]

    Fig.12 Schematic images for the CC method using CD-MOF to obtain a cubic gel particle (a),SEM images of CL-CD-MOF and CGP with different sizes (b)[46]

    Compared with other porous materials,a great advantage of MOFs is the ability to perform postsynthetic modifications (PSMs).The clear crystal structures and defined pores of MOFs make them as suitable platforms to perform post-synthetic PSMs in MOF crystals without destroying MOFs′crystallinity.Therefore,if MOFs are functionalized with polymerization groups in their structures,it is possible to employ PSMs method to form crystalline and porous PMCCs.

    An azide-functionalized terphenyl dicarboxylic acid derivative was selected as the organic ligand for the PSM strategies[45].Starting from dicarboxylic acid ligands,treatment of Zn2+,Cu2+and Zr4+provid colorless cubic and green truncated octahedral MOF crystals under the solvothermal reactions.The polymer gels(PG)are produced from the transformation of various MOFs via inner cross-linking of the organic linkers in the void space of MOFs,followed by decomposition of the metal coordination.As expected,all crystals are successfully transformed into polymer gels with the same shape as the corresponding MOF,indicating that the PSM method should be applicable to many MOFs systems.

    The uniform cubic gel particles with well-defined edges and square faces using internal cross-linking of the CD-MOF crystals followed by loss of coordinating metal ions[46].The cubic gel particles retain the shape and size of the original CD-MOF crystals,indicating that by controlling the recrystallization conditions a wide range of sizes of CGPs,from millimeters to nanometers,can be produced.Moreover,a variety of polyhedral gel particles from the MOF crystals with controlled polyhedral shapes can be produced.

    5 Characterization and application of coordination polymers

    Similarto the characterization methods for traditional coordination polymers,single crystal and powder X-ray diffraction data can be used to study the crystallinity of PMCCs.For example,the structure of PMCCs in Fig.2a are firstly determined via the single crystal X-ray diffraction.Furthermore,PXRD is used to confirm that bulky samples possesse the same structure as single crystal.In addition,IR,photolu-minescence spectra (PL)and solid nuclear magnetic resonance (NMR)data can be employed to study whether there are polymer groups formed.As shown in Fig.13a,the complete polymerization ofthe[Zn(VIm)4][NO3]2monomer is indicated by the disappearance of the characteristic peak for vinyl group(1 650 cm-1)in IR spectra[43].Solid state photoluminescence spectra in Fig.14 are recorded for 1 (MOF)and 2 (MOPF)after photopolymerization.Compound 1 shows a strong green emission while 2 has a weaker emission which is blue shifted to more strong blue emission which may be due to the loss of extended conjugation upon polymerization[35].The presence of a broad signal at δ 46.5 indicates the formation of the cyclobutane ring in the Solid NMR spectra[36]in Fig.15.SEM,TEM and AFM are widely applied to check the PMCCs particles′surface morphology,fracture characteristics of cross section and the nanoscale.The SEM images[39]in Fig.5 show that the obtained PMCCs are composed of tiny crystalline nanostructures.TEM images[43]in Fig.9 display the abundant pores within a large domain of CIN-1,wormhole-like mesopores side by side are observed in a high-resolution image,and the apparent pore sizes are in the range of 4~7 nm.AFM spectra[41]in Fig.7 are used to visualize the shape of individual particles of MOP.All particles are clearly shown to possess an individual core that is covered by a polymeric corona.

    PMCCs have been reported to possess some promising applications such as catalysis,gas separation and film fabrications.For example,Dai et al.reported thatCINsare interesting catalystsforselective oxidations[43].CINs were used in phenol oxidation with water as solvent and H2O2as oxidant.No products are observed in the blank run.However,the CIN-3 with Co2+centers coordinated by imidazole ligand shows a good activity in the oxidation of phenol,and a high turnover frequency (TOF)of 779 h-1was achieved.As a solid catalyst,CIN-3 could be easily recovered by centrifugation and reused for at least three cycles with slight loss in efficiency.Hence,CIN-3 could be considered as a promising catalyst in the catalytic oxidation of phenol.

    Fig.13 IR spectra of[Zn(VIm)4][NO3]2and CIN-1 (a),formation process of[Zn(VIm)4][NO3]2to CIN-1 (b)[43]

    Fig.14 SCSC transformation from MOF (1)to MOPF (2)by polymerization (a)and their UV spectra (b)[35]

    Fig.15 SCSC transformation (a)and its13C CPMAS solid-state NMR spectra (b)[36]

    Fig.16 Catalytic oxidation of phenol by CINs[43]

    Cohen et al.reported that PMCCs could be applied in gas separation[38].The observed selective adsorption of PMCCs can be attributed to a kinetic sieving effect,where the small windows limit the diffusion of larger N2molecules into pores resulting in reduced adsorption.Attempts to quantitatively evaluate the CO2/N2and CO2/CH4separation performance at 273 and 298 K for these PMCCs are performed in Fig.17.The PMCCs can absorb significant amounts of CO2at 100 kPa and 298 or 273 K,however low N2and methane uptake.The relative high CO2sorption but very low N2sorption makes these PMCCs as promising materials for CO2/N2separation.

    Except the above application,PMCCs also are easy to fabricate films as shown in Fig.18.Cohen et al.reported that at a low temperature,rather than forming spheroidal structures,Zn-pbdc-7a and Znpbdc-8a produce crystalline films,showing an intergrown network of crystallites.The films are about 20 μm thick.Such films may prove useful for small molecule and gas separations[37].

    Fig.17 CO2,CH4and N2sorption isotherms at 273 K (a)and CO2,CH4and N2sorption isotherms at 298 K for polyMOFs (b)

    Fig.18 Film morphology of Zn-pbdc-7a (a)and Zn-pbdc-8a (b)

    6 Summary and outlook

    In this review article,we have discussed four approaches how to construct polymer-metal coordination complexes (PMCCs)with good crystalline and high porosity.We also display the characterization methods of PMCCs.Although PMCCs are in the process of rapid development,there are still some challenges and potentialchances.Forthe first approach,the limited numbers of coordination complexes for realizing the single crystal to single crystal manner is a big challenge in the research.Therefore,design coordination complexes with novel topologies suitable for photo-polymerization is of great significance in the future research.During the transformation process,crystals are easy to lose their crystallinity.So how to control the completeness of polymerization and retain the crystallinity of PMCCs is deserved to explore.For the second approach,it is difficult to synthesize crystalline PMCCs because the organic chain polymers are mostly amorphous,flexible and non-porous.Finding appropriate polymer ligands react directly with metal ions is extremely urgent.For the third approach,finding right coordination complexes with polymerization groups is very important and theconditionsforhomopolymerization orcopolymerization of the complex is also needed to be explored to find the appropriate condition reactions.For the fourth approach,how to control the reaction condition to retain the crystallinity of coordination polymers is the key in research.These techniques will enable the as-yet unexplored precise structural control of PMCCs on the molecular,which are advanced materials for novel properties and applications discovered in the future.

    Acknowledgements:We acknowledge the China Young 1000 Talents program and NSFC (Grant No.21601093).

    [1]Holliday B J,Swager T M.Chem.Commun.,2005,1:23-26

    [2]Holliday B J,Stanford,T B,Swager T M.Chem.Mater.,2006,18:5649-5651

    [3]Burnworth M,Tang L,Kumpfer J R,et al.Nature,2011,472:334-337

    [4]Dobrawa R,Lysetska M,Ballester P,et al.Macromolecules,2005,38:1315-1325

    [5]Dobrawa R,Wurthner F.Chem.Commun.,2002,17:1878-1879

    [6]Beck J B,Rowan S J.J.Am.Chem.Soc.,2003,125:13922-13923

    [7]Zou S,Hempenius M A,Schnherr H,et al.Macromol.Rapid Commun.,2006,27:103-108

    [8]Whittell G R,Hager M D,Schubert U S,et al.Nat.Mater.,2011,10:176-188

    [9]Whittell G R,Manners I.Adv.Mater.,2007,19:3439-3468

    [10]Guillerm V,Kim D,Eubank J F,et al.Chem.Soc.Rev.,2014,43:6141-6172

    [11]Navarro J A R,Barea E,Galindo M A,et al.J.Solid State Chem.,2005,178:2436-2451

    [12]Zhang Y B,F(xiàn)urukawa H,Ko N,et al.J.Am.Chem.Soc.,2015,137:2641-2650

    [13]Wang T C,Vermeulen N A,Kim I S,et al.Nat.Protoc.,2016,11:149-162

    [14]Farha O K,Eryazici I,Jeong N C,et al.J.Am.Chem.Soc.,2012,134:15016-15021

    [15]Li J R,Kuppler R J,Zhou H C.Chem.Soc.Rev.,2009,38:1477-1504

    [16]Rojas S,Wheatley P S,Quartapelle-Procopio E,et al.CrystEngComm,2013,15:9364-9367

    [17]Nagarkar S S,Anothumakkool B,Desai A V,et al.Chem.Commun.,2016,52:8459-8462

    [18]Liu D,Wang H F,Abrahams B F,et al.Chem.Commun.,2014,4:1-3

    [19]Liu D,Ren Z G,Li H X,et al.Angew.Chem.Int.Ed.,2010,49:4767-4770

    [20]Hasegawa M.Adv.Phys.Org.Chem.,1995,30:117-171

    [21]Garai M,Santra R,Biradha K.Angew.Chem.Int.Ed.,2013,52:5548-5551

    [22]Champness N R.Nat.Chem.,2014,6:757-759

    [23]Kissel P,Murray D J,Wulftange W J,et al.Nat.Chem.,2014,6:774-778

    [24]Kory M J,Wrle M,Weber T,et al.Nat.Chem.,2014,6:779-784

    [25]Itoh T,Shichi T,Yui T,et al.Langmuir,2005,21:3217-3220

    [26]Sun A,Lauher J W,Goroff N S.Science,2006,312:1030-1034

    [27]Arai M,Okada S.Chem.Lett.,2006,35:1012-1013

    [28]Schmidt G M.Pure Appl.Chem.,1971,27:647-678

    [29]Bhola R,Payamyar P,Murray D J,et al.J.Am.Chem.Soc.,2013,135:14134-14141

    [30]Sarkar A,Okada S,Komatsu K,et al.Macromolecules,1998,31:5624-5630

    [31]Fahsi K,Deschamps J,Chougrani K,et al.CrystEngComm,2013,15:4261-4279

    [32]Bhattacharya S,Stojakovi J,Saha B K,et al.Org.Lett.,2013,15:744-747

    [33]Yang S Y,Deng X L,Jin R F,et al.J.Am.Chem.Soc.,2014,136:558-561

    [34]Papaefstathiou G S,Zhong Z,Geng L,et al.J.Am.Chem.Soc.,2004,126:9158-9159

    [35]Park I H,Chanthapally A,Lee H H,et al.Chem.Commun.,2014,50:3665-3667

    [36]Park I H,Chanthapally A,Zhang Z J,et al.Angew.Chem.Int.Ed.,2014,53:414-419

    [37]Zhang Z J,Nguyen H T H,Miller S A,et al.Angew.Chem.Int.Ed.,2015,54:6152-6157

    [38]Zhang Z J,Nguyen H T H,Miller S A,et al.J.Am.Chem.Soc.,2016,138:920-925

    [39]Ayala S,Zhang Z,Cohen S M.Chem.Commun.,2017,53:3058-3061

    [40]MacLeod M J,Johnson J A.Polym.Chem.,2017,8:4488-4493

    [41]Hosono N,Gochomori M,Matsuda R,et al.J.Am.Chem.Soc.,2016,138:6525-6531

    [42]Cadra S,Velasquez E,Moreau L,et al.Tetrahedron Lett.,2011,52:3982-3986

    [43]Zhang P,Yang S,Chisholm M F,et al.Chem.Eur.J.,2017,23:10038-10042

    [44]Harben S M,Mosselmans J F W,Ryan A T,et al.Dalton Trans.,2012,41:208-218

    [45]Ishiwata T,F(xiàn)urukawa Y,Sugikawa K,et al.J.Am.Chem.Soc.,2013,135:5427-5432

    [46]Furukawa Y,Ishiwata T,Sugikawa K,et al.Angew.Chem.Int.Ed.,2012,51:10566-10569

    Recent Progress of Crystalline and Porous Polymer-Metal Coordination Complexes:Synthesis,Characterization and Properties

    YU Qi1CHEN Yao2,3ZHANG Zhen-Jie*,1,2CHENG Peng*,1
    (1College of Chemistry,Nankai University,Tianjin 300071,China)
    (2State Key Laboratory of Medicinal Chemical Biology,Nankai University,Tianjin 300071,China)
    (3College of Pharmacy,Nankai University,Tianjin 300071,China)

    It is always a great challenge to synthesize crystalline and porous polymer materials due to the random configuration and flexibility of polymers.However,polymer-metal coordination complexes (PMCCs)can exhibit high porosity and crystallinity because PMCCs possess not only the properties of polymers such as flexibility and good processability but also the properties of coordination complexes such as high crystallinity and porosity.Herein,this review article summarizes the methods how to construct porous and crystalline PMCCs including photo-induced polymerization method,coordination bond induced self-assembly method,two-step synthesis method and post-synthetic modification method.Finally,we discusse the characterization methods and the potential applications of PMCCs,and list the challenges and chances in the field.

    crystallinity;porosity;polymer-metal coordination complexes;post-synthetic modification;self-assembly

    O641.4

    A

    1001-4861(2017)11-1991-14

    10.11862/CJIC.2017.243

    2017-08-07。收修改稿日期:2017-08-22。

    國家自然科學(xué)基金(No.21601093)和中國青年千人計劃資助項目。

    *通信聯(lián)系人。E-mail:zhangzhenjie@nankai.edu.cn,pcheng@nankai.edu.cn

    猜你喜歡
    南開大學(xué)高分子研究進(jìn)展
    《功能高分子學(xué)報》征稿簡則
    《功能高分子學(xué)報》征稿簡則
    MiRNA-145在消化系統(tǒng)惡性腫瘤中的研究進(jìn)展
    南開大學(xué)制備新型超強(qiáng)韌人造蜘蛛絲
    離子束拋光研究進(jìn)展
    一道南開大學(xué)自主招生試題的推廣
    獨腳金的研究進(jìn)展
    中成藥(2017年9期)2017-12-19 13:34:44
    精細(xì)高分子課程教學(xué)改革
    多糖類天然高分子絮凝濟(jì)在污泥處理中的應(yīng)用
    Suggestionsfor Speeding Up the Development of Audiobook Websitesby Changing Them to SNS
    科技視界(2015年35期)2015-01-10 07:50:00
    老司机福利观看| 久久精品亚洲精品国产色婷小说| 悠悠久久av| h视频一区二区三区| 久久中文字幕一级| 热99re8久久精品国产| 久久人人爽av亚洲精品天堂| 欧美日韩av久久| 免费看a级黄色片| 国产三级黄色录像| 69精品国产乱码久久久| 啦啦啦在线免费观看视频4| 麻豆乱淫一区二区| 亚洲视频免费观看视频| 男女边摸边吃奶| av网站在线播放免费| 欧美日韩国产mv在线观看视频| 女人被躁到高潮嗷嗷叫费观| 99精品欧美一区二区三区四区| 中文字幕人妻丝袜一区二区| 亚洲av欧美aⅴ国产| 高清毛片免费观看视频网站 | 亚洲成人国产一区在线观看| 99riav亚洲国产免费| 亚洲avbb在线观看| 9热在线视频观看99| 国产精品久久久av美女十八| 满18在线观看网站| 午夜激情久久久久久久| 国产精品一区二区精品视频观看| av视频免费观看在线观看| cao死你这个sao货| www.熟女人妻精品国产| 欧美成人午夜精品| 人人妻人人爽人人添夜夜欢视频| 国产熟女午夜一区二区三区| 啦啦啦视频在线资源免费观看| 妹子高潮喷水视频| 99re6热这里在线精品视频| 最新的欧美精品一区二区| 欧美中文综合在线视频| 天堂俺去俺来也www色官网| 国产精品久久久人人做人人爽| 大型av网站在线播放| 亚洲精品乱久久久久久| 久久久久久亚洲精品国产蜜桃av| 无限看片的www在线观看| 国产男靠女视频免费网站| 国产免费现黄频在线看| 在线av久久热| 久久久久网色| 国产精品久久久人人做人人爽| a级毛片在线看网站| 亚洲精品国产一区二区精华液| 免费日韩欧美在线观看| 在线观看免费视频网站a站| 久久精品国产亚洲av高清一级| 在线av久久热| 少妇猛男粗大的猛烈进出视频| 一级黄色大片毛片| 欧美精品亚洲一区二区| 嫁个100分男人电影在线观看| aaaaa片日本免费| 欧美大码av| 成人18禁高潮啪啪吃奶动态图| 免费在线观看视频国产中文字幕亚洲| 精品少妇一区二区三区视频日本电影| 麻豆成人av在线观看| 美女视频免费永久观看网站| 999久久久精品免费观看国产| 午夜福利欧美成人| 精品乱码久久久久久99久播| 日本a在线网址| 天天操日日干夜夜撸| 欧美日韩一级在线毛片| 免费久久久久久久精品成人欧美视频| 丁香六月欧美| 亚洲国产av新网站| www.熟女人妻精品国产| 国产精品99久久99久久久不卡| 国产男靠女视频免费网站| 日本精品一区二区三区蜜桃| 69av精品久久久久久 | 一边摸一边抽搐一进一出视频| 97在线人人人人妻| 久久国产精品大桥未久av| 操出白浆在线播放| 黄片播放在线免费| 侵犯人妻中文字幕一二三四区| 精品亚洲成a人片在线观看| 亚洲精品美女久久久久99蜜臀| 国产福利在线免费观看视频| 国产国语露脸激情在线看| 久久久久国产一级毛片高清牌| 黄色怎么调成土黄色| 757午夜福利合集在线观看| 中文字幕制服av| 丁香欧美五月| 国产精品二区激情视频| 亚洲精品美女久久久久99蜜臀| 国产精品一区二区在线观看99| 狠狠狠狠99中文字幕| 青草久久国产| 日本一区二区免费在线视频| 亚洲精品国产一区二区精华液| 成人影院久久| 黑人操中国人逼视频| 国产亚洲av高清不卡| 久久精品国产a三级三级三级| 一区福利在线观看| 国产成人精品在线电影| 十八禁人妻一区二区| 久久影院123| 国产一区二区三区视频了| 大香蕉久久网| 色婷婷av一区二区三区视频| 久久精品亚洲熟妇少妇任你| 欧美变态另类bdsm刘玥| 成年人黄色毛片网站| 一级毛片精品| 欧美在线黄色| 麻豆av在线久日| 两个人看的免费小视频| 黄色 视频免费看| 成人免费观看视频高清| 人妻久久中文字幕网| 国产精品1区2区在线观看. | 美女高潮到喷水免费观看| aaaaa片日本免费| www日本在线高清视频| 国产高清激情床上av| 久久九九热精品免费| 国精品久久久久久国模美| 极品少妇高潮喷水抽搐| 色精品久久人妻99蜜桃| 国产1区2区3区精品| 99国产极品粉嫩在线观看| 国产精品av久久久久免费| 亚洲精品乱久久久久久| 亚洲欧美精品综合一区二区三区| 国产精品久久久av美女十八| 国产精品偷伦视频观看了| 久久久国产一区二区| 女人爽到高潮嗷嗷叫在线视频| 丁香欧美五月| 波多野结衣一区麻豆| 热re99久久国产66热| 一个人免费看片子| 久久精品成人免费网站| 怎么达到女性高潮| 国产精品影院久久| 国产有黄有色有爽视频| 精品国产一区二区久久| 欧美日韩亚洲国产一区二区在线观看 | 天堂8中文在线网| 麻豆乱淫一区二区| 人人妻人人爽人人添夜夜欢视频| 中国美女看黄片| 久久久久精品国产欧美久久久| 色婷婷久久久亚洲欧美| 极品少妇高潮喷水抽搐| videosex国产| 一区二区av电影网| 丝袜美足系列| 女人高潮潮喷娇喘18禁视频| 日本a在线网址| 男女边摸边吃奶| 欧美日韩福利视频一区二区| 中文字幕av电影在线播放| 自线自在国产av| 少妇裸体淫交视频免费看高清 | 色婷婷久久久亚洲欧美| 久久人人97超碰香蕉20202| 岛国毛片在线播放| 日本av免费视频播放| 9色porny在线观看| 热re99久久精品国产66热6| 深夜精品福利| 最黄视频免费看| 国精品久久久久久国模美| 三上悠亚av全集在线观看| 久久中文看片网| 国产精品成人在线| 怎么达到女性高潮| 老熟妇仑乱视频hdxx| 亚洲av日韩精品久久久久久密| 香蕉国产在线看| 国产成人av激情在线播放| 一区二区三区激情视频| 91精品三级在线观看| 别揉我奶头~嗯~啊~动态视频| 正在播放国产对白刺激| 变态另类成人亚洲欧美熟女 | 国产精品免费一区二区三区在线 | 国产91精品成人一区二区三区 | 久久精品亚洲熟妇少妇任你| 新久久久久国产一级毛片| 亚洲av美国av| 男人操女人黄网站| 久久国产精品人妻蜜桃| 成年人午夜在线观看视频| 十八禁高潮呻吟视频| 欧美黄色片欧美黄色片| 亚洲av欧美aⅴ国产| 久久精品国产99精品国产亚洲性色 | 大码成人一级视频| 国产精品久久久久久精品电影小说| 久久狼人影院| 亚洲七黄色美女视频| 日本撒尿小便嘘嘘汇集6| 免费一级毛片在线播放高清视频 | 热99久久久久精品小说推荐| 天堂中文最新版在线下载| 国产精品秋霞免费鲁丝片| 久久99热这里只频精品6学生| 激情视频va一区二区三区| 99在线人妻在线中文字幕 | 一本大道久久a久久精品| 欧美变态另类bdsm刘玥| av又黄又爽大尺度在线免费看| 亚洲精品中文字幕在线视频| 麻豆av在线久日| 在线观看舔阴道视频| 日韩欧美三级三区| 夫妻午夜视频| 亚洲av成人不卡在线观看播放网| 高清毛片免费观看视频网站 | 久久久久国产一级毛片高清牌| 老汉色∧v一级毛片| 大型av网站在线播放| 日日摸夜夜添夜夜添小说| 国产主播在线观看一区二区| 欧美黄色淫秽网站| 婷婷成人精品国产| 亚洲av国产av综合av卡| 国产精品久久久久久精品电影小说| 成人免费观看视频高清| 精品国产乱子伦一区二区三区| 国产xxxxx性猛交| 99精品久久久久人妻精品| 国产老妇伦熟女老妇高清| 亚洲精品国产精品久久久不卡| 夫妻午夜视频| 日韩视频在线欧美| 色婷婷av一区二区三区视频| 欧美亚洲日本最大视频资源| 18在线观看网站| 女人爽到高潮嗷嗷叫在线视频| 人人妻人人爽人人添夜夜欢视频| 在线播放国产精品三级| videos熟女内射| 亚洲熟女精品中文字幕| 黄网站色视频无遮挡免费观看| 51午夜福利影视在线观看| 精品少妇久久久久久888优播| av欧美777| 国产成人av教育| 一级黄色大片毛片| av网站免费在线观看视频| 色综合婷婷激情| 一本一本久久a久久精品综合妖精| av又黄又爽大尺度在线免费看| 久久久久久人人人人人| 在线观看免费日韩欧美大片| 变态另类成人亚洲欧美熟女 | 成人特级黄色片久久久久久久 | 丝袜美足系列| 成年人免费黄色播放视频| 高清在线国产一区| h视频一区二区三区| 99久久精品国产亚洲精品| 999久久久精品免费观看国产| 人成视频在线观看免费观看| 色婷婷久久久亚洲欧美| 精品久久久久久久毛片微露脸| 亚洲情色 制服丝袜| 日本欧美视频一区| 亚洲成a人片在线一区二区| 黄色 视频免费看| 午夜福利在线观看吧| av电影中文网址| 亚洲精品国产精品久久久不卡| 搡老乐熟女国产| 日韩 欧美 亚洲 中文字幕| 三级毛片av免费| 不卡一级毛片| 这个男人来自地球电影免费观看| 亚洲欧美精品综合一区二区三区| 亚洲黑人精品在线| 不卡av一区二区三区| videosex国产| 男男h啪啪无遮挡| 精品乱码久久久久久99久播| 国产精品一区二区在线不卡| 一区二区日韩欧美中文字幕| 老司机福利观看| 涩涩av久久男人的天堂| 免费不卡黄色视频| 午夜视频精品福利| 汤姆久久久久久久影院中文字幕| 777久久人妻少妇嫩草av网站| 国产精品av久久久久免费| 久久99热这里只频精品6学生| 热99久久久久精品小说推荐| 国产片内射在线| 久久国产精品男人的天堂亚洲| 极品人妻少妇av视频| 国产无遮挡羞羞视频在线观看| 夜夜爽天天搞| 亚洲av成人一区二区三| 国产成人精品在线电影| 亚洲av片天天在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 成人国产一区最新在线观看| 别揉我奶头~嗯~啊~动态视频| 建设人人有责人人尽责人人享有的| 国产福利在线免费观看视频| 色老头精品视频在线观看| 久久人妻福利社区极品人妻图片| 亚洲午夜理论影院| 色94色欧美一区二区| 看免费av毛片| 19禁男女啪啪无遮挡网站| 天堂8中文在线网| kizo精华| 成人影院久久| 日韩欧美三级三区| 天堂8中文在线网| 宅男免费午夜| 久久人妻av系列| 考比视频在线观看| 国产片内射在线| 一区二区日韩欧美中文字幕| 男女高潮啪啪啪动态图| 国产av一区二区精品久久| 大片电影免费在线观看免费| 国产精品香港三级国产av潘金莲| 国产激情久久老熟女| 国产xxxxx性猛交| 中文字幕色久视频| 99re在线观看精品视频| 国产精品久久电影中文字幕 | 天堂动漫精品| 日日夜夜操网爽| 日本黄色日本黄色录像| 免费在线观看日本一区| 国产伦理片在线播放av一区| 精品第一国产精品| 亚洲男人天堂网一区| 最新美女视频免费是黄的| 欧美黑人精品巨大| 亚洲欧洲精品一区二区精品久久久| 80岁老熟妇乱子伦牲交| 欧美大码av| 国产av一区二区精品久久| 法律面前人人平等表现在哪些方面| 搡老岳熟女国产| 日韩大片免费观看网站| 丁香欧美五月| 国产精品久久电影中文字幕 | 99在线人妻在线中文字幕 | 三上悠亚av全集在线观看| 最黄视频免费看| 久久久久久久大尺度免费视频| 欧美人与性动交α欧美精品济南到| 999精品在线视频| 日本av免费视频播放| 精品国产亚洲在线| 亚洲天堂av无毛| 国产无遮挡羞羞视频在线观看| 欧美精品一区二区免费开放| 午夜两性在线视频| 一区在线观看完整版| 飞空精品影院首页| 午夜老司机福利片| 97在线人人人人妻| 大码成人一级视频| 国产av一区二区精品久久| 男女高潮啪啪啪动态图| 午夜福利,免费看| 两个人看的免费小视频| 成年人免费黄色播放视频| 日日爽夜夜爽网站| 啦啦啦 在线观看视频| 黄色毛片三级朝国网站| 美女高潮到喷水免费观看| 99国产精品99久久久久| 99精国产麻豆久久婷婷| 超碰成人久久| 久久免费观看电影| 亚洲熟女毛片儿| 日本av免费视频播放| 国产成人欧美| 视频区图区小说| av天堂在线播放| 两人在一起打扑克的视频| 亚洲少妇的诱惑av| 久久久久视频综合| 久久久精品免费免费高清| 法律面前人人平等表现在哪些方面| 人妻 亚洲 视频| 成人18禁在线播放| 国产伦理片在线播放av一区| 一级毛片精品| 欧美日韩亚洲综合一区二区三区_| 午夜91福利影院| 久久人妻福利社区极品人妻图片| a级毛片黄视频| 中亚洲国语对白在线视频| 一边摸一边做爽爽视频免费| 国产熟女午夜一区二区三区| 亚洲伊人色综图| 夜夜夜夜夜久久久久| 久久久国产欧美日韩av| 午夜激情久久久久久久| a级片在线免费高清观看视频| 黄片播放在线免费| 午夜福利免费观看在线| 99国产精品一区二区三区| 亚洲黑人精品在线| 精品国产超薄肉色丝袜足j| 久9热在线精品视频| 好男人电影高清在线观看| 国产成人免费观看mmmm| h视频一区二区三区| 国产精品一区二区在线不卡| 大香蕉久久网| 亚洲自偷自拍图片 自拍| 亚洲黑人精品在线| 久久久久久免费高清国产稀缺| 波多野结衣一区麻豆| 老熟妇仑乱视频hdxx| 日本vs欧美在线观看视频| 搡老岳熟女国产| 色尼玛亚洲综合影院| 人妻一区二区av| 日日爽夜夜爽网站| 免费观看av网站的网址| 久热爱精品视频在线9| 欧美亚洲 丝袜 人妻 在线| 每晚都被弄得嗷嗷叫到高潮| 国产区一区二久久| 男女无遮挡免费网站观看| 欧美大码av| 在线天堂中文资源库| 亚洲成人手机| cao死你这个sao货| 欧美日韩黄片免| 久久久精品国产亚洲av高清涩受| 亚洲国产毛片av蜜桃av| 色尼玛亚洲综合影院| 亚洲久久久国产精品| 国产成人精品久久二区二区免费| 男女之事视频高清在线观看| 亚洲av国产av综合av卡| 欧美日韩黄片免| 国产麻豆69| 欧美av亚洲av综合av国产av| svipshipincom国产片| 男女床上黄色一级片免费看| 午夜91福利影院| 亚洲av欧美aⅴ国产| 热re99久久精品国产66热6| bbb黄色大片| 色在线成人网| 成人影院久久| 午夜福利免费观看在线| 国产精品久久久久久精品电影小说| 在线观看免费日韩欧美大片| 国产在线一区二区三区精| 日韩中文字幕视频在线看片| 国产不卡av网站在线观看| 日日爽夜夜爽网站| 久久精品国产亚洲av高清一级| 亚洲色图av天堂| 久久性视频一级片| av线在线观看网站| 一级片'在线观看视频| 亚洲精品一二三| 午夜福利视频精品| 欧美精品一区二区大全| 精品国产亚洲在线| 国产成人免费观看mmmm| 亚洲视频免费观看视频| 国产成人精品久久二区二区免费| 欧美精品一区二区大全| 女人被躁到高潮嗷嗷叫费观| 91麻豆av在线| 91精品三级在线观看| 女人爽到高潮嗷嗷叫在线视频| 久久免费观看电影| 亚洲全国av大片| 亚洲综合色网址| 无遮挡黄片免费观看| 免费av中文字幕在线| 十八禁网站免费在线| 亚洲午夜理论影院| 一级,二级,三级黄色视频| 黄色 视频免费看| 首页视频小说图片口味搜索| 欧美午夜高清在线| 亚洲av片天天在线观看| 中亚洲国语对白在线视频| 三上悠亚av全集在线观看| 欧美一级毛片孕妇| 十八禁网站免费在线| 无限看片的www在线观看| 18在线观看网站| 丝瓜视频免费看黄片| 午夜久久久在线观看| 一进一出好大好爽视频| 午夜日韩欧美国产| 久久亚洲真实| 18禁观看日本| 亚洲欧洲日产国产| 国产精品.久久久| 国产精品久久久久久精品电影小说| 亚洲熟女精品中文字幕| 免费少妇av软件| 国产一区二区 视频在线| 国产男女超爽视频在线观看| 侵犯人妻中文字幕一二三四区| 无人区码免费观看不卡 | 日日夜夜操网爽| 满18在线观看网站| 成人av一区二区三区在线看| 精品久久蜜臀av无| 99精品欧美一区二区三区四区| 一本综合久久免费| 成人手机av| 免费看a级黄色片| 搡老乐熟女国产| 99精国产麻豆久久婷婷| 亚洲成人免费电影在线观看| 日韩大片免费观看网站| 亚洲成av片中文字幕在线观看| 高清欧美精品videossex| 中文欧美无线码| 三上悠亚av全集在线观看| 欧美另类亚洲清纯唯美| 老汉色av国产亚洲站长工具| 五月天丁香电影| 最黄视频免费看| av欧美777| 99国产精品99久久久久| 午夜福利在线观看吧| 亚洲伊人色综图| 国产精品一区二区在线不卡| 精品国产乱码久久久久久男人| 国产视频一区二区在线看| 日本vs欧美在线观看视频| 久久中文看片网| 一本大道久久a久久精品| 制服诱惑二区| 搡老岳熟女国产| 国产99久久九九免费精品| 男女免费视频国产| 欧美日韩亚洲高清精品| 欧美日韩亚洲国产一区二区在线观看 | 日韩欧美一区视频在线观看| 丝袜美足系列| 桃红色精品国产亚洲av| 亚洲成人免费av在线播放| 国产成人av激情在线播放| 最近最新中文字幕大全免费视频| 纯流量卡能插随身wifi吗| svipshipincom国产片| 黑丝袜美女国产一区| 激情视频va一区二区三区| 精品欧美一区二区三区在线| 岛国毛片在线播放| 少妇 在线观看| 女人精品久久久久毛片| 亚洲av美国av| 久久久久网色| 久久这里只有精品19| 在线永久观看黄色视频| 亚洲av片天天在线观看| 国产精品偷伦视频观看了| 日本欧美视频一区| 少妇猛男粗大的猛烈进出视频| 这个男人来自地球电影免费观看| 久久久国产欧美日韩av| av国产精品久久久久影院| 母亲3免费完整高清在线观看| 18禁观看日本| 欧美大码av| 亚洲av第一区精品v没综合| 久久久久久久国产电影| 亚洲国产中文字幕在线视频| 成人亚洲精品一区在线观看| 亚洲成人免费电影在线观看| 91麻豆av在线| 国产成人精品在线电影| 精品一区二区三区视频在线观看免费 | 国产精品免费一区二区三区在线 | 国产精品久久久久久精品古装| 亚洲精品国产一区二区精华液| 亚洲人成77777在线视频| 日韩中文字幕欧美一区二区| 亚洲综合色网址| 亚洲人成77777在线视频| 亚洲精品国产区一区二| 成人三级做爰电影| 午夜福利在线免费观看网站| 天堂俺去俺来也www色官网| av网站在线播放免费| 老司机影院毛片| 老汉色∧v一级毛片| 男女高潮啪啪啪动态图| 国产伦人伦偷精品视频| 狠狠精品人妻久久久久久综合| 男女高潮啪啪啪动态图| 男女之事视频高清在线观看| 久久人人97超碰香蕉20202|