• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    金屬氧化物與現(xiàn)代微電子學(xué)
    ——過(guò)渡金屬前體化合物及轉(zhuǎn)化為材料的化學(xué)過(guò)程

    2017-11-13 12:22:19TabithaCookAdamLamb薛子陵
    關(guān)鍵詞:電介質(zhì)前體介電常數(shù)

    Tabitha M.Cook Adam C.Lamb 薛子陵

    金屬氧化物與現(xiàn)代微電子學(xué)
    ——過(guò)渡金屬前體化合物及轉(zhuǎn)化為材料的化學(xué)過(guò)程

    Tabitha M.Cook Adam C.Lamb 薛子陵*

    (田納西大學(xué)化學(xué)系,諾克斯維爾市,田納西州 37996,美國(guó))

    金屬氧化物薄膜如HfO2(被稱為高k電介質(zhì))是現(xiàn)代微電子器件的關(guān)鍵組件,廣泛用于計(jì)算機(jī)(平板電腦,筆記本電腦和臺(tái)式機(jī))、智能電話、智能電視、汽車(chē)和醫(yī)療設(shè)備中。具有大介電常數(shù)(k)的金屬氧化物已經(jīng)取代了介電常數(shù)小的SiO2(k=3.9),從而使得微電子元件進(jìn)一步小型化。過(guò)渡金屬化合物在化學(xué)氣相沉積(CVD)和原子層沉積(ALD)中被廣泛用作前體,通過(guò)與O2、H2O或O3的反應(yīng)生成金屬氧化物薄膜。微電子金屬氧化物膜是納米材料最廣泛應(yīng)用的一個(gè)領(lǐng)域。本文概觀該領(lǐng)域的最新進(jìn)展,包括我們對(duì)d0過(guò)渡金屬配合物與O2反應(yīng)的研究。

    金屬氧化物;柵極電介質(zhì)材料;薄膜;微電子學(xué);化學(xué)氣相沉積;原子層沉積

    0 Introduction

    Microelectronic devices are a major part of society today.There has been a continuous drive to make computers,tablets,smartphones and other such devices smaller,faster and more efficient.Over the past few decades,there has been steady progress in this area following Moore′s law,which states that thenumber of transistors to fit onto integrated circuits doubles approximately every two years[1-2].By increasing the number of transistors on the circuits,microelectronic deviceshave become more competent,smaller with a longer battery life.To this end,new designs for the components of microelectronic devices as well as the materials used to make them need to be developed.

    Among many designs of the field-effect transistor(FET),one is the complementary metal oxide semiconductor (CMOS)utilizing both p-and n-type metaloxide silicon field-transistors (MOSFET)[3-4].Until recently,MOSFETs in these devices had a planar,2D design (Fig.1).These transistors typically have four main parts:source,gate,drain and substrate.An insulating layer,or gate oxide layer,separates the metal gate from the source and drain.This layer is made of dielectric materials,which is polarized when placed in an electric field[3-5].

    Fig.1 Schematic of a planar transistor in a microelectronic device

    To improve the design and decrease current leakage,multigated transistors have been developed in the past few years.One example of such a multigated transistor is a finFET shown in Fig.2[6].FinFETs have a silicon substrate containing a “fin” (a pillar above the substrate).They perform better with less current leakage and higher power output than planar transistors[3,7].Since these structures are more vertical,the surface area increases and more transistors can fit on a chip.Many companies such as Intel,TMSC(Taiwan SemiconductorManufacturing Company),SamsungandIBM haveadopted themultigated transistors such as the tri-gate[3,7-8]. The tri-gate transistor is a finFET where the metal gate layer covers multiple fins.In 2011,Intel announced the 22 nm Ivy Bridge microprocessor,which was the first to use the tri-gate transistor[7-8].Currently,tri-gate and finFET transistors have been used in 14 nm processors by Intel, in their Broadwell-Y processor[9],and Samsung,in their Exynos 7 Octa processor[10].Several companies[11-13],including Samsung[11],Intel[12],TSMC[13],have announced that a 10 nm processor has been fabricated.It has been reported that IBM,working with scientists at SUNY (State Universities of New York)Polytechnic Institute′s Colleges of Nanoscale Science and Engineering,have produced the industry′s first 7 nm node test chips with functional transistors,and TSMC has made progress in 7 nm finFET technology[14-15].IBM announced in June 2017 that it had made the first 5 nm chip in the world through collaboration with Samsung and GlobalFoundries[16].The breakthrough was achieved in part due to the use of both a new gateall-around transistor (GAAFET)with stacks of silicon nanosheets and extreme ultraviolet lithography[17].It should be noted that the cited sources here are either news or reports of the companies in this rapidly changing field.

    Fig.2 Schematic of a finFET transistor used in a multigate device

    Along with the design,new precursor compounds are needed in order to continually improve these transistors.An important constituent in these transistors is the gate oxide layer.Transition metal complexes have been used to fabricate this layer.Ligands in these complexes help tailor characteristics such as shape,reactivity and electronic tunability.Until recently,SiO2was used as the primary gate oxide film.SiO2,however,has a small dielectric constant (k)of 3.9,and is thus not a very good insulating material.As the film gets thinner in the recent transistors,current leakage becomes larger and more significant,generating heat and wasting energy.In addition,the transistors tend to degrade under the heat.Because of the high current leakage,there is a limit to the thickness of the SiO2layer before it becomes too thin and inefficient as an insulating layer[1-2,5,18-23].Due to the decreasing efficiency of SiO2in the new generations of devices,search for new gate oxides started over 25 years ago in order to keep pace with Moore′s law.Gate oxides with high k values are a key to allowing a large number of transistors on each integrated circuit.Table 1 lists common metal oxides and their dielectric constants[19].

    In addition to a large k value,the oxide layer needs to meet a few other qualifications before being used in microelectronic devices.One key aspect for a good insulating layer is that the gate oxide has a good interface with the Si substrate beneath it with little to no leaching.Since SiO2contains Si itself,it interfaces well with the Si substrate.Many potentially good oxides,such as Ta2O5,have relatively unstable contacts with Si.Studies of various gate oxides showed that high purity HfO2is one of the few with good thermal stability and interface with the Si substrate.HfO2has shown better electrical performance and film quality as well[24].The introduction of HfO2(k=25)as a gate dielectric material in 2007 by Intel and IBM has allowed the continued shrinking of transistor sizes by making these gate oxide layers thinner and more efficient,as demonstrated in Fig.3[25].

    Table 1 List of metal oxides and their dielectric constants[19]

    Fig.3 Decrease of transistor size over time;Introduction of high-k metal gate (oxides)in 2007 was considered a milestone event[25]

    Reactions of inorganic complexes with oxygen sources such as O2,H2O or O3have been employed to produce metal oxide thin films through methods such as chemical vapor deposition (CVD)and atomic layer deposition (ALD)[26-33].Both processes are well suited for manufacturing gate oxides due to their ability to give uniform and high purity films.An important factor in the manufacturing of thin films is the type of precursors used.Though CVD and ALD have been successfully used to fabricate thin gate oxides,the pathways that the precursors undergo in these processes are not well understood.Understanding the design of these complexes and their reactions in CVD/ALD may enable the design of better precursors and processes to prepare higher quality transistors in microelectronic devices.In this article,we give an overview of CVD and ALD processes,precursors for the formation of metal oxides through CVD and ALD,and our studies of the pathways in the reactions of O2with d0metal amide complexes.It should be pointed out that this paper is not a comprehensive review of CVD and ALD in making microelectronic metal oxides.Such reviews have been published[34-38].Rather,this overview provides a survey for the general readers in inorganic chemistry.

    1 Chemical vapor deposition and atomic layer deposition processes

    1.1 Chemical vapor deposition

    CVD is the process by which thin films are deposited onto a substrate through chemical reactions[29,39-40].The CVD process has been applied to produce coatings,fibers and powders.Coating is the largest application of CVD[30].These coatings have been used in microelectronic,optoelectronic,mechanical and chemical industries for many years.A few examples of coated materials are metal oxides (e.g.,SiO2),metal nitrides (e.g.,TiN),metal carbides (e.g.,W2C)and elemental metals (e.g.,Al)[29-30,39].Reviews such as those written by Powell and Blocher give an extensive coverage on the history of CVD[31].The first practical use of CVD was making metal depositions to strengthen metal filaments in incandescent light bulbs in the 1880′s[30-31].The first reports of Si deposition by hydrogen reduction of SiCl4were in 1909 and 1927[32-33].This material was used widely in many electrical applications after World War II[29,39]. CVD began to grow in the 1960s as technology progressed,and these materials were beginning to be prepared on an industrial scale[30].Variations of the CVD process have been developed to give different kinds of films depending on the applications.

    The CVD process starts when volatile precursors are carried by a diluent gas such as H2to a reaction chamber containing a heated substrate[39,41].Gas phase(Fig.4)or surface reactions follow,producing solid products as thin films on the substrate surface.It should be pointed out that gas phase reactions are often avoided because they may lead to non-uniform films[41].However,there are CVD processes of certain films which,e.g.,require gas phase reactions to produce rate-determining intermediates.These reactive intermediates then react with other precursors on the substrate surface[42].In the CVD based on surface reactions,the precursors react on the substrate surface,forming the product films.Once the product deposits onto the surface as a film,the by-products desorb from the substrate and are carried away from the reaction chamber via the carrier gas.CVD is a continuous process as more precursor is introduced into the reaction chamber[5,39,43-44].

    Fig.4 Simplified schematic of the CVD process involving gas-phase reactions,In many other CVD processes,precursors react directly on the substrate surface

    Film growth depends on several factors including the temperature,pressure and precursors used in the CVD process.At lower temperatures,the rate of film growth is dependent on the reactions of the precursors in the gas phase and on the substrate surface.The growth rate at low temperatures increases exponential-ly when temperature increases.At moderate temperatures,growth rate becomes nearly independent of temperature and becomes more dependent on the mass transport of the precursor to the substrate.At higher temperatures,there is a decrease in film growth due to desorption of precursor molecules from the substrate matrix itself.Gas-phase side reactions also occur,decreasing the amount of precursors deposited onto the substrate[29-30,39].

    There are several types of CVD processes,including atmospheric-pressure CVD (APCVD),lowpressureCVD (LPCVD),plasma-enhancedCVD(PECVD)and liquid injection CVD (LI-CVD).The lower pressures in LPCVD aid in the reduction of unwanted side reactions.In PECVD,plasma is used to heat the precursors,making them into free radicals,but the substrate itself is kept at a lower,sometimes ambient temperature.Thus,PECVD allows substrates(such as Al)with a lower melting point to be used in the process[29-30,39].When the precursors are organometallic,the CVD processes are termed metalorganic chemical vapor deposition (MOCVD).Many organometallic precursors are solids,and getting them to the vapor phase is often challenging.In such cases,the precursors may be dissolved in a solvent,injected into an inlet to be volatilized,and carried to the CVD chamber.This process is called liquid injection CVD(LI-CVD).Precursors that are not suitable for other CVD processes may be used to fabricate thin films via LI-CVD[35,39].

    In CVD processes,precursors play a very important role and must have certain characteristics.One of the main requirements for a precursor is appropriate volatility for efficient mass transport to the substrate.Gaseous precursors already fulfill this requirement,but many others are liquids or solids.Bulky ligands have been used to control the volatility and stability of the precursors in air.The precursor must also be thermally stable during transport and have a sufficient temperature window between evaporation and decomposition.The precursor needs to be of high purity and have a clean decomposition on the substrate without incorporating impurities in the film or occurrence of side reactions.Good characteristics for precursors are a long shelf life,nontoxic,easy to prepare,inexpensive and stable in air.With these properties,the precursors may be acquired in bulk and stored more easily without decomposition in ambient conditions (i.e.,in air at room temperature)for commercial use.The type of precursors used in CVD depends on the applications of the thin film[30,35,45].

    1.2 Atomic layer deposition

    Another process to fabricate thin films is ALD via surface exchange reactions[39,46].The first published example,demonstratingtheALD principle (then called “molecular layering”)using surface reactions to coat a substrate,was made by Kol′tsov and Aleskovskii when they coated silica gel with TiO2in the 1960s[47].ALD process was developed further in the 1970s by Suntola et al.to produce ZnS thin films in electroluminescent flat-panel displays[48-49].By the 1980s,this process was used on an industrial scale.One of the primary uses of ALD is to fabricate thin films in microelectronics.As the microelectronics advanced,the interest in ALD increased.The HfO2gate oxide used by Intel? in 2007 was fabricated by ALD[23].

    Fig.5 Deposition of ZrO2on a substrate using pulses of ZrCl4 (Step 1)and H2O (Step 3),each followed by inert gas purging (Steps 2 and 4)

    ALD occurs in a stepwise process (Fig.5).A pre-cursor is pulsed into the reaction chamber and reacts with the surface OH groups of the substrate forming a monolayer and a by-product.By-products and unreacted precursor are purged from the reaction chamber using an inert gas.A second precursor or co-reagent such as H2O is pulsed into the reaction chamber and reacts with the first monolayer forming a second layer.The chamber then undergoes another purge cycle.Subsequent pulse and purge cycles produce each layer until the desired thickness is achieved[37,39,46,50].

    Film growth in an ALD process is self-limiting,i.e.,the amount of material deposited during each cycle is constant.Through this process,the thickness,uniformity and conformity are easily controlled.Besides precise control of the film thickness,ALD has the advantage of having little to no gas-phase reactions as the precursors and co-reagents react directly with surface groups.This aspect allows for more highly reactive precursors to be used for this process[39,46].

    ALD process has some disadvantages and limitations.In any process,there may be deviations from the ideal behavior.The film growth is usually less than one monolayer because of steric hindrances in many precursors or limited reactive sites.At higher deposition temperatures,precursors can thermally decompose before being deposited on the substrate.Another major disadvantage is that it has a low effective deposition rate.To be efficient in industry,a process needs to be quick and clean.One method to increase the deposition rate is to shorten the time of each cycle,including,e.g.,the purge or cleaning time such as the ascendant space ALD process.In such cases,there may not be a full coverage of the precursors onto the substrate surface[51].

    Precursors are key components in ALD as they are in CVD.The precursors used in ALD have many of the same requirements as precursors used in CVD.The precursors need to be volatile and of high purity.Additionally,they must react quickly and completely with surface groups of the substrate as well as with the co-reagent.The precursors and co-reagents also must be thermally stable so that they will not decompose before or after reacting with the substrate.ALD is usually carried out at 200~300 ℃,which is lower than the thermal decomposition temperature for most precursors.Since there are reactivity requirements between precursors and co-reagents,there are fewer precursors for ALD than for CVD[35-37,44-45,50].

    2 Precursors for CVD and ALD processes

    Major types of transition metal compounds as precursors in CVD/ALD of metal oxides are discussed here.

    2.1 Metal halides and nitrates

    Metal halides,such as ZrCl4and TaCl5,were one of the first classes of inorganic precursors in CVD/ALD processes[34,37,45,50].When reacting with H2O,an acid (HX,X=halide)is released as a by-product along with the respective metal oxide,MOn.Metal halides may not be desirable because they have high sublimation temperatures and are corrosive,producing the acid.Also,residual chloride often remains as an impurity in the MOnfilm.It should be noted that metal halides are fairly inexpensive,abundant and easily purified.

    Metal nitrates,e.g.,Zr(NO3)4and Hf(NO3)4,have also been used as precursors for the deposition of its respective metal oxide.They are prepared by the reaction of,e.g.,MCl4,with N2O5and purified by sublimation.These inorganic compounds contain no carbon,halogen or hydrogen atoms,thus potentially limiting impurities in the films[52].

    To overcome the challenges in using these inorganic compounds,the introduction of organic ligands may give better precursors.This is discussed below.

    2.2 Metal alkoxides and amides

    Metal alkoxides M(OR)nand amides M(NR2)n(R=alkyl)have also been used in CVD/ALD to fabricate metal oxide films.These halogen-free precursors have been engineered to be better candidates for CVD or ALD processes because the respective halogenated acid is not produced.

    When replacing a halide ligand by an alkoxide or amide ligand,the precursor usually becomes more volatile.However,a drawback is the decomposition temperature may be too low,and this could lead to several side reactions resulting in an impure film[34-35,37-38,45,53-55].Cho et al.have deposited HfO2films from Hf(OtBu)4and ozone using ALD (Scheme 1)[56].Hf(NMe2)4is a common precursor for both CVD/ALD processes using O2(Scheme 2)or H2O as the oxygen source[38].It is easily prepared through the reaction of HfCl4with LiNMe2and purified by sublimation.Metal amides react readily with water by the release of amines or with O2by insertion into the M-N bonds[53].Derivatives of metal amides such as Hf(NMeEt)4have been employed in CVD/ALD processes and are commercially available.Gordon et al.have found that the maximum ALD deposition temperature for Hf(NMeEt)4with H2O was 400 ℃.Under these conditions,the amount of carbon and nitrogen was less than 1%and 0.25%,respectively.Another class of amides as precursors are M(NMeNMe2)4(M=Zr,Hf).Hoffman et al.have studied the reactions of M(NMeNMe2)4with O2in which zirconium and hafnium oxide filmswere deposited using low-pressure CVD[54].They have also prepared a hafnium oxide film from the reaction of a bidentate bisamide hafnium complex Hf[tBuNCH2CH2NtBu]2and O2[54].

    Scheme 1 Reaction of a hafnium alkoxide with O3[56]

    Scheme 2 Reaction of a hafnium amide with O2[38]

    Another approach in designing suitable precursors is incorporating oxygen atoms into the starting material.McElwee-White et al.have designed a partially flurorinated oxo-alkoxide tungsten complex[WO(OC(CH3)(CF3)2][57].This volatile complex was used to grow WOxnanorods without an oxygen source.

    2.3 Metal amidinates and guanidinates

    Conjugated amidinates [RNC(R)NR]-and guanidinates [RNC (NR2)NR]-(R=alkyl)have three bonding modes (Fig.6).A is the most common and the ligand binds to the metal center in a bidentate fashion(Fig.6A).In B,the ligand acts a bridge between two metal atoms.In C,the ligand is monodentate and only a few examples are reported in the literature[58].Amidinates and guanidinates are used as chelating ligands(Fig.6A)to saturate the metal center.This results in more stable monomeric complexes[59].Modification of the alkyl groups on the ligands allows the tuning of their steric requirements[58].However,bulkier R groups often reduce their volatility in comparison to,e.g.,amide ligands (NR2)which may help control the thickness of a metal oxide film.Both volatile metal amides M(NR2)nand less volatile metal amidinates and guanidinates have been used extensively in producing inorganic metal films[34-35]. Devi et al.have studied an amide guanidinate hafnium complex in Scheme 3 with O2[60].They have grown HfO2films (2 and 20 nm thick)on a siliconsubstrateusingLI-CVD (Scheme3)[60].

    Fig.6 Common coordination modes of amidinate and guanidinate ligands

    Scheme 3 Reactions of hafnium complexes with O2[60]

    Several tantalum amidinate imdo complexes have been synthesized by Winter[61]et al. They have demonstrated the volatility of these tantalum complexes by sublimation and the thermal stability of the complexes by the decomposition temperatures.These compounds were shown to be good candidates for CVD/ALD processes,but they were not subjected to the reactions with an oxygen source.

    Tinant et al.have made an amide amidinate chloro hafnium precursor.They have reacted it with isopropyl alcohol and shown that the reaction is selective towards the amide ligand (Scheme 4)[62].The authors have demonstrated that this volatile Hf complex could react selectively towards-OH species,making it an applicable precursor for HfO2films.

    Scheme 4 Reaction of an amide amidinate chloro hafnium complex withiPrOH[62]

    3 Reactions of d0Groups 4 and 5 complexes with O2

    The activation of O2by metal complexes has been actively studied.The focus has been on the reactions of O2with mid-to late transition metal complexes containing valence d electrons (dn).Thus,these reactions often involve metal oxidation.Many precursors, such as Hf(NR2)4(R=alkyl)and the amide guanidinate hafnium in Scheme 3,are d0complexes.They are thus expected to follow different pathways in their reactions with O2since the metals are already at their highest oxidation state.We are primarily interested in the reactions of d0transition metal complexes with O2[63-72]because their pathways to the formation of MOnare not well understood.Since O2is a radical in nature,several pathways may be possible.Our group has focused on the reactions of O2with d0Groups 4 and 5 amides and Group 4 amidinate and guanidinate complexes[63-72].

    Wefirststudied thereactionsofGroup 4 homoleptic amides M(NMe2)4(M=Zr,Hf)with O2,yielding oxo aminoxides M3(NMe2)6(μ-NMe2)3(μ3-O)(μ3-ONMe2)and byproduct Me2NNMe2(Scheme 5)[64].The results suggest there are two important steps in the reactions of M(NMe2)4with diradical ∶O2(a)O insertion into M-N bonds,forming aminoxy ligands; (b)Cleavage of the O-N bond in the O-NMe2ligands to yield the oxo ligands in the products.These are rare chances to observe formations of the ligands and the elementary steps in the formation of metal oxides from the reactions of d0metal amides with O2.

    Scheme 5 Reactions of Group 4 amides with O2[64]

    Reactions of M(NR2)5(M=Nb,Ta;R=Me,Et)with O2have also been studied and the isolated products are shown in Scheme 6[65-66].DFT studies of the reactions between Ta(NMe2)5and O2indicate that one key step is the insertion of O2into an M-N bond to give the peroxide complex (Me2N)4Ta(η2-O-O-NMe2)[66].The peroxide ligand then either oxidizes an amide to an imine ligand (Me-N=CH2)through the abstraction of a hydride or inserts its atom into another Ta-NMe2bond,forming (Me2N)3Ta(η2-ONMe2)2.Insertion of Me-N=CH into a Ta-NMe2bond yields the unusual-N(Me)CH2NMe2ligand in the products.

    Scheme 6 Reactions of Group 5 amides with O2[65-66]

    These homoleptic amides are very reactive.Their reactions occur at room temperature or a lower temperature,which may pose a problem in the CVD/ALD processes because several side reactions may occur.To reduce the reactivity,bidentate,N-containing ligands have been introduced to help control reaction conditions.We have studied the reactions of O2with two different types of Zr bidentate complexes:Zr amide amidinates[70]and Zr amide guanidinates[72].

    Reaction of the amide amidinate Zr(NMe2)2[MeC(NiPr)2]2(1)with O2affords three Zr species:peroxo trimer{(μ-η2∶η2-O2)Zr[MeC (NiPr)2]2}3(2),oxo dimer{(μ-O)Zr[MeC(NiPr)2]2}2(3),and an insoluble polymer{(μ-O)Zr[MeC(NiPr)2]2}n(4)(Scheme 7)[71].Peroxo trimer 2 was characterized by single-crystal X-ray diffraction.Peroxo dimer{(μ-η2∶η2-O2)Zr[MeC (NiPr)2]2}2was observed in the gas phase by mass spectroscopy.To our knowledge,this was the first observed peroxo species from the reaction of O2with a d0complex without a redox active ligand.It should be noted that a peroxo species has not been observed in any other reactions of d0metal amides with O2[64-70,72].The peroxo complex 2 is very reactive.In the presence of starting material 1,2 quickly reacts with 1,forming the oxo products 3 and 4.

    Scheme 7 Reaction of Zr(NMe2)2[MeC(NiPr)2]2 (1)with O2and crystal structure of the Zr peroxo trimer 2[71]

    4 Perspectives

    As transistors continue to shrink in size in microelectronic devices,the metal gate oxide layer in the transistors also needs to reduce in size.SiO2alone is no longer adequate for today′s devices.To meet this challenge,new precursors have been prepared for the fabrication of metal oxide thin films by CVD or ALD.Tuning the characteristics of the complexes by using different metal centers and various ligands leads to a diverse pool of precursors.

    One important challenge is determining the pathways of the reactions between the metal complexes and O2.Our recent work has contributed to the understanding of the pathways.

    The size of the transistors is projected to keep shrinking over the next decade (Fig.6)[25].Si-based microelectronic devices may not be adequate in the near future.As shown in Fig.6,we may soon enter into the post-Si era.The Materials Research Society has published a bulletin containing several articles on new,post-Si materials,including Ge and Group III-V semiconductors such as GaAs[73].Many of these materials contain more than one metal or metalloid (e.g.,GeSnOx)that are expected to improve the performance of the transistors.Integration of these materials onto the transistors is challenging.Binding to the substrate,usually made of Si,without leaching or degrading of the materials over time is a key issue and an active area of current research.

    Another direction to develop transistors is incorporating organic semiconductors on plastic substrates or metal oxides to make them flexible[74-76].These new organic-inorganic hybrid materials are made through solution-based film growth processes.By incorporating the inorganic component,the transistors maintain a high k value while the organic component makes the material more flexible.Unlike CVD or ALD,this process does not require high temperatures or expensive vacuum deposition technologies.

    Fig.7 Development and future projection of the transistor size[25]

    Graphene,as well as graphene-based derivatives,have been considered for use in dielectric materials because of their interesting electronic properties[25,77-82].Graphene is a flexible polymer of sp2-hybridized carbon atoms arranged in a flat lattice and can be deposited onto surfaces via CVD,making each monolayer 1 atom thick or 0.34 nm[81].Using this material along with a metal oxide film as the gate layer would decrease the size of transistors.Graphene has been shown to enhance the dielectric constant when used as an interlayer between polymer layers to form a flexible dielectric film[79].Graphene oxide and reduced graphene oxide have been used as dielectric materials in graphene oxide-based FET[80].

    At present,designing new transistors is complex and costly.Depending on the transistor′s application,one fabrication process may be better than another.Research is being conducted to explore the properties of new organic and/or inorganic materials as the gate oxides.These advances are projected over the next decade[25].

    [1]Rockett A.The Materials Science of Semiconductors.New York:Springer,2008.

    [2]Robertson J.Rep.Prog.Phys.,2006,69:327-396

    [3]Jan C.H.ECS Trans.,2012,44(1):451-470

    [4]Ytterdal T,Cheng Y,F(xiàn)jeldly T A.Device Modeling for Analog and RF CMOS Circuit Design.Chichester:Wiley,2003:1-45

    [5]Sah C H.Fundamentals of Solid-State Electronics.Singapore:World Scientific Publishing Co.,1991:521-694

    [6]Hisamoto D,Lee W C,Kedzierski J,et al.IEEE Trans.Electron Devices,2000,47(12):2320-2325

    [7]https://www.intel.se/content/dam/www/public/us/en/documents/presentation/revolutionary-22nm-transistor-technologypresentation.pdf

    [8]https://newsroom.intel.com/news-releases/intel-reinventstransistors-using-new-3-d-structure/

    [9]http://www.intel.com/content/www/us/en/silicon-innovations/advancing-moores-law-in-2014-presentation.html

    [10]https://news.samsung.com/global/samsung-announces-massproduction-of-2nd-generation-14-nanometer-finfet-logic-process-technology

    [11]http://www.samsung.com/semiconductor/about-us/news/25881/samsung-starts-industry-first-mass-production-of-soc-with-10-nan-finfet-technology

    [12]http://spectrum.ieee.org/semiconductors/devices/intel-findsmoores-laws-next-step-at-10-nanometers

    [13]http://wccftech.com/tsmc-promises-10nm-production-2016-7 nm-2017/

    [14]https://www.flickr.com/photos/ibm_research_zurich/18876220 214/in/album-72157655342048792/

    [15]http://www.tsmc.com/download/ir/annualReports/2016/english/e_2_2.html

    [16]https://www-03.ibm.com/press/us/en/pressrelease/52531.wss

    [17]https://arstechnica.com/gadgets/b2017/06/ibm-5nm-chip/?comments=1

    [18]Smith R C,Ma T,Hoilien N,et al.Adv.Mater.Opt.Electron.,2000,10(3/4/5):105-114

    [19]Wallace R,Wilk G D.Crit.Rev.Solid State Mater.Sci.,2003,28(4):231-285

    [20]Wilk G D,Wallace R M,Anthony J M.J.Appl.Phys.,2001,89(10):5243-5275

    [21]Arghavani R,Miner G,Agustin M.Semicond.Int.,2007,30(12):32-34,36,38

    [22]Jones A C,Aspinall H C,Chalker P R,et al.J.Mater.Chem.,2004,14(21):3101-3112

    [23]Walawalkar M G,Kottantharayil A,Rao R.Synth.React.Inorg.Met.-Org.Nano-Met.Chem.,2009,39(6):331-340

    [24]Wallace T,Wilk G.MRS Bull.,2002,27(3):192-197

    [25]https://nanohub.org/resources/20880

    [26]Thin Film Processes Ⅱ.Vossen J L,Kern W,Ed.,San Diego:Academic Press,1991.

    [27]Campbell S A.Science and Engineering of Microelectronic Fabrication.2nd Ed.Oxford:Oxford University Press,2001.[28]Panda D,Tseng T Y.Thin Solid Films,2013,531:1-20

    [29]Hitchman M L,Jensen K F.Chemical Vapour Deposition:Principles and Applications.London:Academic Press,1993:1-90

    [30]Pierson H O.Handbook of Chemical Vapor Deposition:Principles,Technology,and Applications.Park Ridge,New Jersey:Noyes Publications,1992.

    [31]Powell C F,Oxley J H,Blocher J M et al.Vapor Deposition.New York:The Electrochemical Society,1966.

    [32]Pring J N,F(xiàn)ielding W.J.Chem.Soc.,1909,95:1497-1506

    [33]Holbling R.Z.Angew.Chem.,1927,40:655-659

    [34]Jones A C,Aspinall H C,Chalker P R.Chemical Vapour Deposition:Precursors,Processes and Applications.Jones A C,Hitchman M C.Ed.,Cambridge,UK:Royal Society of Chemistry,2009:357-412

    [35]Devi A.Coord.Chem.Rev.,2013,257:3332-3384

    [36]Emslie D J H,Chadha P,Price J S.Coord.Chem.Rev.,2013,257(23/24):3282-3296

    [37]Leskela M,Ritala M.Thin Solid Films,2002,409(1):138-146

    [38]Choi J H,Mao Y,Chang J P.Mater.Sci.Eng.R,2011,72(6):97-136

    [39]Jones A C,Hitchman M C.Chemical Vapour Deposition:Precursors,Processes and Applications.Jones A C,Hitchman M C.Ed.,Cambridge,UK:Royal Society of Chemistry,2009:1-36

    [40]http://www.pob.manchester.ac.uk/research.html

    [41]Handbook of Nanophase and Nanostructured Materials.Boston:Springer,2003:102-144

    [42]Chae Y K,Shimogaki Y,Komiyama H.Electrochem.Soc.,1998,145(12):4226-4233

    [43]Allendorf M D,Besmann T M,Kee R J,et al.Chemical Vapour Deposition:Precursors,Processes and Applications.Jones A C,Hitchman M C.Ed.,Cambridge,UK:Royal Society of Chemistry,2009:93-157

    [44]Thompson A G.Mater.Lett.,1997,30:255-263

    [45]Malik M A,O′Brien P.Chemical Vapour Deposition:Precursors,Processes and Applications.Jones A C,Hitchman M C.Ed.,Cambridge,UK:Royal Society of Chemistry,2009:207-271

    [46]Ritala M,Niinis? J.Chemical Vapour Deposition:Precursors,Processes and Applications.Jones A C,Hitchman M C.Ed.,Cambridge,UK:Royal Society of Chemistry,2009:158-205

    [47]Kol′tsov S I,Aleskovskii V B.Russ.J.Phys.Chem.,1968,42:630-632

    [48]Suntola T,Hyvrinen J.Annu.Rev.Mater.Sci.,1985,15:177-195

    [49]Parsons G N,Elam J W,George S M,et al.J.Vac.Sci.Technol.A,2013,31(5):050818(11 pages)

    [50]Tauber R N,Dumbri A C,Caffrey R E.J.Electrochem.Soc.,1971,118(5):747-754

    [51]Poodt P,Lankhorst A,Roozeboom F,et al.Adv.Mater.,2010,22(32):3564-3567

    [52]Smith R C,Ma T,Hoilien N,et al.Adv.Mater.Opt.Electron.,2000,10(3/4/5):105-114

    [53]Hausmann D M,Kim E,Becker J,et al.Chem.Mater.,2002,14(10):4350-4358

    [54]Lehn J S M,Javed S,Hoffman D M.Chem.Vap.Deposition,2006,12(5):280-284

    [55]Hausmann D M,de Rouffignac P,Smith A,et al.Thin Solid Films,2003,443(1/2):1-4

    [56]Chang H S,Baek S K,Park H,et al.Electrochem.Solid-State Lett.,2004,7(6):F42-F44

    [57]Bonsu R O,Kim H,O′Donohue C,et al.Dalton Trans.,2014,43(24):9226-9233

    [58]Edelmann F T.Adv.Organomet.Chem.,2013,61:55-374

    [59]Xu K,Milanov A P,Winter M,et al.Eur.J.Inorg.Chem.,2010(11):1679-1688

    [60]Thomas R,Rije E,Ehrhart P,et al.J.Electrochem.Soc.,2007,154(3):G77-G84

    [61]Wiedmann M K,Heeg M J,Winter C H.Inorg.Chem.,2009,48(12):5382-5391

    [62]Eleter M,Hubert-Pfalzgraf L G,Daniele S,et al.Polyhedron,2010,29(12):2522-2526

    [63]Chen S J,Zhang X H,Lin Z,et al.Sci.China Chem.,2009,52(11):1723-1733

    [64]Wang R,Zhang X H,Chen S J,et al.J.Am.Chem.Soc.,2005,127(14):5204-5211

    [65]Chen S J,Zhang J,Yu X,et al.Inorg.Chem.,2010,49(9):4017-4022

    [66]Chen S H,Zhang X H,Yu X,et al.J.Am.Chem.Soc.,2007,129(46):14408-14421

    [67]Woods J B,Beach D B,Nygren C L,et al.Chem.Vap.Deposition,2005,11(6/7):289-291

    [68]Chen T N,Zhang X H,Wang C S,et al.Organometallics,2005,24(6):1214-1224

    [69]Chen T N,Wu Z Z,Li L T.J.Am.Chem.Soc.,1998,120(51):13519-13520

    [70]Morton L A,Miao M,Callaway T M,et al.Chem.Commun.,2013,49(83):9555-9557

    [71]Lamb A C,Lu Z,Xue Z L.Chem.Commun.,2014,50(72):10517-10520

    [72]Sharma B,Callaway T M,Lamb A C,et al.Inorg.Chem.,2013,52(19):11409-11421

    [73]Liu C W,?stling M,Hannon J B.MRS Bull.,2014,39(8):658-726

    [74]Ha Y G,Everaerts K,Hersam M C,et al.Acc.Chem.Res.,2014,47(4):1019-1028

    [75]Ting G G,Acton O,Ma H,et al.Langmuir,2009,25(4):2140-2147

    [76]Ha Y G,Emery J D,Bedzyk M J,et al.J.Am.Chem.Soc.,2011,133(26):10239-10250

    [77]Geim A K.Science,2009,324(5934):1530-1534

    [78]Castro Neto A H,Guinea F,Peres N M R,et al.Rev.Mod.Phys.,2009,81(1):109-162

    [79]Kim J Y,Lee J,Lee W H,et al.ACS Nano,2014,8(1):269-274

    [80]Eda G,Nathan A,W?bkenberg P,et al.Appl.Phys.Lett.,2013,102(13):133108(4 pages)

    [81]Avouris P,F(xiàn)armer D B,Lin Y M,et al.US Patent,8344358.2013-01-01.

    [82]http://www.screen.co.jp/eng/spe/mt-images/5_ASML.pdf

    Metal Oxides and Modern Microelectronics:Roles of Transition Metal Compounds and their Conversion to the Materials

    Tabitha M.Cook Adam C.Lamb XUE Zi-Ling*
    (Department of Chemistry,The University of Tennessee,Knoxville,Tennessee 37996,USA)

    Thin films of metal oxides such as HfO2[known as high k dielectrics (or metal gate)]are a key component of modern microelectronic devices in computers (tablet,laptop and desktop),smartphones,smart TVs,automobiles and medical devices.The metal oxides,with large dielectric constants (k),have replaced SiO2that has a small k of 3.9,thus making it possible to further miniaturize microelectronic components.Transition metal complexes have been widely used as precursors to produce thin films through their reactions with O2,H2O or O3in chemical vapor deposition (CVD)and atomic layer deposition (ALD)processes.The microelectronic metal oxide films are one of the most widely used nano materials.Recent progresses,including our studies of the reactions of d0transition metal complexes with O2,are overviewed.

    metal oxides;gate dielectrics;thin films;microelectronics;CVD;ALD

    O614

    A

    1001-4861(2017)11-1947-12

    10.11862/CJIC.2017.249

    2017-07-26。收修改稿日期:2017-09-22。

    美國(guó)國(guó)家科學(xué)基金會(huì)(No.CHE-1633870)資助項(xiàng)目。

    *通信聯(lián)系人。E-mail:xue@utk.edu

    猜你喜歡
    電介質(zhì)前體介電常數(shù)
    N-末端腦鈉肽前體與糖尿病及糖尿病相關(guān)并發(fā)癥呈負(fù)相關(guān)
    淺談氣體擊穿理論
    無(wú)鉛Y5U103高介電常數(shù)瓷料研究
    電子制作(2017年20期)2017-04-26 06:57:40
    N-端腦鈉肽前體測(cè)定在高血壓疾病中的應(yīng)用研究
    低介電常數(shù)聚酰亞胺基多孔復(fù)合材料的研究進(jìn)展
    低介電常數(shù)聚酰亞胺薄膜研究進(jìn)展
    平板電容器介質(zhì)中的矢量場(chǎng)*
    電介質(zhì)中極化電荷密度的計(jì)算
    傾斜角對(duì)蜂窩結(jié)構(gòu)等效介電常數(shù)影響分析
    茶葉香氣前體物研究進(jìn)展
    茶葉通訊(2014年2期)2014-02-27 07:55:40
    亚州av有码| 婷婷六月久久综合丁香| a级毛片免费高清观看在线播放| 18禁在线无遮挡免费观看视频| 午夜激情福利司机影院| 国产午夜精品一二区理论片| 国产精品一区二区在线观看99 | 日日干狠狠操夜夜爽| 99热全是精品| 亚洲人成网站高清观看| 欧美最新免费一区二区三区| 久久久久精品久久久久真实原创| 日韩av在线大香蕉| 亚洲图色成人| 国产亚洲精品av在线| 国产又色又爽无遮挡免| av在线亚洲专区| 亚洲三级黄色毛片| 高清视频免费观看一区二区 | 国产精品女同一区二区软件| 18禁在线播放成人免费| 亚洲婷婷狠狠爱综合网| 美女cb高潮喷水在线观看| 最近2019中文字幕mv第一页| 丝瓜视频免费看黄片| 91精品一卡2卡3卡4卡| 你懂的网址亚洲精品在线观看| 91久久精品电影网| 久久99热这里只有精品18| 久久久精品94久久精品| 国语对白做爰xxxⅹ性视频网站| 国产亚洲av嫩草精品影院| 国产人妻一区二区三区在| 女人被狂操c到高潮| 男人狂女人下面高潮的视频| 亚洲精品国产av蜜桃| 成人美女网站在线观看视频| av在线亚洲专区| 亚洲最大成人中文| 在线a可以看的网站| 看免费成人av毛片| 久久久久国产网址| 插逼视频在线观看| 中文资源天堂在线| 国产白丝娇喘喷水9色精品| av.在线天堂| 中文欧美无线码| 最近最新中文字幕免费大全7| 日本猛色少妇xxxxx猛交久久| 一夜夜www| 午夜老司机福利剧场| 国产亚洲一区二区精品| 波多野结衣巨乳人妻| 22中文网久久字幕| 最近最新中文字幕免费大全7| or卡值多少钱| 精品一区二区三区视频在线| 国产黄色视频一区二区在线观看| 97超碰精品成人国产| 亚洲av中文av极速乱| 国产亚洲午夜精品一区二区久久 | 国产在视频线在精品| 欧美激情久久久久久爽电影| 精品一区二区免费观看| 亚洲欧美清纯卡通| 可以在线观看毛片的网站| 三级国产精品欧美在线观看| 一级毛片电影观看| 99久国产av精品| 伊人久久精品亚洲午夜| 色综合亚洲欧美另类图片| 性插视频无遮挡在线免费观看| 中文字幕亚洲精品专区| h日本视频在线播放| 亚洲美女视频黄频| 日本一二三区视频观看| 日韩一区二区视频免费看| 一区二区三区高清视频在线| a级毛片免费高清观看在线播放| 免费黄色在线免费观看| 成人一区二区视频在线观看| 国产一级毛片七仙女欲春2| 99久久中文字幕三级久久日本| 精品久久久精品久久久| 精品一区二区三卡| 午夜福利在线在线| 性插视频无遮挡在线免费观看| 别揉我奶头 嗯啊视频| 看十八女毛片水多多多| av又黄又爽大尺度在线免费看| 亚洲最大成人手机在线| 国产又色又爽无遮挡免| 久久精品夜夜夜夜夜久久蜜豆| 欧美激情在线99| 九九爱精品视频在线观看| 国产男女超爽视频在线观看| 99久久中文字幕三级久久日本| 久久久久九九精品影院| 小蜜桃在线观看免费完整版高清| 日本色播在线视频| 国产在视频线精品| 日韩电影二区| 日韩欧美精品v在线| 日日干狠狠操夜夜爽| 九九爱精品视频在线观看| 成人亚洲欧美一区二区av| 七月丁香在线播放| 国内精品宾馆在线| 小蜜桃在线观看免费完整版高清| 国产 一区精品| 日日摸夜夜添夜夜爱| 九九爱精品视频在线观看| 精品国产露脸久久av麻豆 | 国产精品蜜桃在线观看| 精品不卡国产一区二区三区| 男女边吃奶边做爰视频| 极品教师在线视频| av.在线天堂| 色哟哟·www| 久久99热6这里只有精品| 伊人久久精品亚洲午夜| 亚洲怡红院男人天堂| 毛片一级片免费看久久久久| 成人美女网站在线观看视频| 国产精品国产三级专区第一集| 男女国产视频网站| 亚洲国产精品国产精品| 天天躁夜夜躁狠狠久久av| 搡老乐熟女国产| 成人二区视频| 大陆偷拍与自拍| 国产精品一区二区三区四区久久| 国产亚洲一区二区精品| av福利片在线观看| 一级毛片电影观看| 尤物成人国产欧美一区二区三区| 中文字幕av成人在线电影| 免费大片18禁| 丝瓜视频免费看黄片| 国产午夜福利久久久久久| 有码 亚洲区| 成年人午夜在线观看视频 | 国产成人一区二区在线| 欧美+日韩+精品| 欧美区成人在线视频| 国产有黄有色有爽视频| 国产三级在线视频| 97超视频在线观看视频| 黑人高潮一二区| 舔av片在线| 男人和女人高潮做爰伦理| 亚洲图色成人| 少妇熟女aⅴ在线视频| 男女边摸边吃奶| 天堂√8在线中文| 国产在视频线精品| 亚洲图色成人| 九草在线视频观看| 亚洲精品日韩av片在线观看| 国产av不卡久久| 禁无遮挡网站| 久久久久久久久久久丰满| 少妇高潮的动态图| av在线观看视频网站免费| 久久久久久伊人网av| 精品午夜福利在线看| or卡值多少钱| 亚洲欧美清纯卡通| 青春草国产在线视频| 中文字幕久久专区| 国产精品久久久久久久电影| 少妇丰满av| 国产综合精华液| 久久精品国产亚洲网站| 一级毛片aaaaaa免费看小| 永久网站在线| 美女黄网站色视频| 一区二区三区乱码不卡18| 别揉我奶头 嗯啊视频| 岛国毛片在线播放| 大话2 男鬼变身卡| 日韩制服骚丝袜av| 国产精品熟女久久久久浪| 18+在线观看网站| eeuss影院久久| 两个人视频免费观看高清| 日本黄色片子视频| 99久久精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 国产又色又爽无遮挡免| 全区人妻精品视频| 亚洲乱码一区二区免费版| 又粗又硬又长又爽又黄的视频| 亚洲婷婷狠狠爱综合网| 特大巨黑吊av在线直播| 免费看不卡的av| 亚洲精品日韩在线中文字幕| 国产精品日韩av在线免费观看| 成人av在线播放网站| 一级爰片在线观看| 高清午夜精品一区二区三区| 国产伦精品一区二区三区视频9| 69人妻影院| 中文字幕亚洲精品专区| 成人高潮视频无遮挡免费网站| 国产精品久久久久久精品电影| 国产精品一区www在线观看| 搞女人的毛片| 国产一区二区亚洲精品在线观看| 伊人久久国产一区二区| 黄片无遮挡物在线观看| 亚洲av免费高清在线观看| 伦精品一区二区三区| 99热网站在线观看| 午夜福利成人在线免费观看| 国产永久视频网站| 午夜免费激情av| 中文资源天堂在线| xxx大片免费视频| 2021少妇久久久久久久久久久| 特大巨黑吊av在线直播| 99re6热这里在线精品视频| 91aial.com中文字幕在线观看| 舔av片在线| 女人被狂操c到高潮| 人妻制服诱惑在线中文字幕| 亚洲欧美精品专区久久| 美女xxoo啪啪120秒动态图| 日韩一区二区三区影片| 国产午夜精品论理片| 日韩av不卡免费在线播放| 国产亚洲最大av| 三级国产精品片| 国产精品99久久久久久久久| 人人妻人人澡欧美一区二区| 国产亚洲最大av| 啦啦啦啦在线视频资源| 亚洲最大成人中文| 国产黄a三级三级三级人| 熟妇人妻不卡中文字幕| 深夜a级毛片| 亚洲av免费高清在线观看| 亚洲最大成人中文| a级毛片免费高清观看在线播放| 色尼玛亚洲综合影院| 亚洲av国产av综合av卡| 午夜精品在线福利| 亚洲成人av在线免费| 最近视频中文字幕2019在线8| 极品少妇高潮喷水抽搐| 又大又黄又爽视频免费| 成人鲁丝片一二三区免费| 亚洲电影在线观看av| 一个人免费在线观看电影| 成人美女网站在线观看视频| 国产伦精品一区二区三区视频9| 韩国av在线不卡| 欧美三级亚洲精品| 亚洲国产最新在线播放| 黄色一级大片看看| or卡值多少钱| 国产色婷婷99| 亚洲av.av天堂| 嘟嘟电影网在线观看| 22中文网久久字幕| 亚洲国产色片| 免费观看在线日韩| av国产久精品久网站免费入址| 97超碰精品成人国产| 国产成年人精品一区二区| 成人性生交大片免费视频hd| 国产精品.久久久| 一级二级三级毛片免费看| 成人美女网站在线观看视频| 美女国产视频在线观看| 中文字幕亚洲精品专区| 亚洲国产精品sss在线观看| av女优亚洲男人天堂| 久久久久久久久久久免费av| 最近中文字幕高清免费大全6| 久久久精品免费免费高清| 国产精品久久久久久精品电影| 亚洲成人一二三区av| 成人毛片a级毛片在线播放| 毛片一级片免费看久久久久| 欧美激情国产日韩精品一区| 激情 狠狠 欧美| 国产成人精品一,二区| 男人舔女人下体高潮全视频| 99热6这里只有精品| 欧美日韩一区二区视频在线观看视频在线 | 精品熟女少妇av免费看| av国产久精品久网站免费入址| 欧美高清成人免费视频www| 亚洲精品色激情综合| 蜜桃久久精品国产亚洲av| 22中文网久久字幕| 我要看日韩黄色一级片| 亚洲国产精品成人久久小说| 极品少妇高潮喷水抽搐| 亚洲国产日韩欧美精品在线观看| 国产黄频视频在线观看| 国产成年人精品一区二区| 日韩亚洲欧美综合| 伊人久久国产一区二区| 日本熟妇午夜| 国产成年人精品一区二区| 能在线免费观看的黄片| 91精品一卡2卡3卡4卡| 免费观看a级毛片全部| 能在线免费看毛片的网站| 一级爰片在线观看| 亚洲精品乱码久久久久久按摩| 天美传媒精品一区二区| 蜜桃久久精品国产亚洲av| 一级毛片黄色毛片免费观看视频| 91久久精品国产一区二区三区| 直男gayav资源| 日韩人妻高清精品专区| 亚洲精品一区蜜桃| 国产熟女欧美一区二区| 精品久久国产蜜桃| 中文字幕制服av| 天堂中文最新版在线下载 | freevideosex欧美| 简卡轻食公司| 日韩一本色道免费dvd| 国内精品宾馆在线| 亚洲av日韩在线播放| 欧美日韩国产mv在线观看视频 | 日韩电影二区| 精品久久国产蜜桃| 少妇的逼水好多| 有码 亚洲区| 中文字幕久久专区| 一级a做视频免费观看| 亚洲在线自拍视频| 亚洲国产欧美在线一区| 一级爰片在线观看| 爱豆传媒免费全集在线观看| 又爽又黄a免费视频| 草草在线视频免费看| 国产v大片淫在线免费观看| 汤姆久久久久久久影院中文字幕 | 精品国产露脸久久av麻豆 | 国内精品一区二区在线观看| 啦啦啦中文免费视频观看日本| 尾随美女入室| 午夜亚洲福利在线播放| 久久久久久久久久成人| 亚洲av一区综合| 国产成人一区二区在线| 日本av手机在线免费观看| 人妻一区二区av| 国产高清国产精品国产三级 | 亚洲国产精品国产精品| 久久久久久久久大av| 久久久久久久久久久丰满| 搡女人真爽免费视频火全软件| 久热久热在线精品观看| 精华霜和精华液先用哪个| 超碰97精品在线观看| av播播在线观看一区| 99热6这里只有精品| 日韩av不卡免费在线播放| 精品人妻熟女av久视频| 神马国产精品三级电影在线观看| 久久99热6这里只有精品| 日产精品乱码卡一卡2卡三| 午夜激情福利司机影院| 国产极品天堂在线| 超碰97精品在线观看| 日韩欧美精品v在线| 免费看av在线观看网站| 91aial.com中文字幕在线观看| 国产69精品久久久久777片| 亚洲精品视频女| 免费在线观看成人毛片| 蜜臀久久99精品久久宅男| 久久人人爽人人片av| 中文字幕av成人在线电影| 亚洲人与动物交配视频| 人人妻人人澡欧美一区二区| 啦啦啦啦在线视频资源| 深夜a级毛片| 久热久热在线精品观看| 亚洲av成人精品一二三区| 亚洲av电影不卡..在线观看| 久久久久精品久久久久真实原创| 亚洲精品国产av蜜桃| 久久久久精品久久久久真实原创| 精品久久久久久久久久久久久| 亚洲综合色惰| 99热这里只有是精品50| 国产亚洲午夜精品一区二区久久 | 亚洲精品视频女| 日韩一区二区三区影片| 五月伊人婷婷丁香| 又爽又黄a免费视频| 美女黄网站色视频| 一级毛片aaaaaa免费看小| 亚洲欧洲日产国产| 日日摸夜夜添夜夜添av毛片| 搡老妇女老女人老熟妇| 人人妻人人澡人人爽人人夜夜 | 欧美人与善性xxx| 亚洲精品久久午夜乱码| 免费av不卡在线播放| 成人无遮挡网站| 熟女电影av网| 乱系列少妇在线播放| 久久精品人妻少妇| 婷婷色av中文字幕| 婷婷六月久久综合丁香| 99热这里只有是精品50| 成人特级av手机在线观看| 中文资源天堂在线| 少妇猛男粗大的猛烈进出视频 | 一级毛片 在线播放| 国产大屁股一区二区在线视频| 国产欧美另类精品又又久久亚洲欧美| 日韩视频在线欧美| 青春草亚洲视频在线观看| 特级一级黄色大片| 午夜福利在线观看吧| 在线天堂最新版资源| 中文乱码字字幕精品一区二区三区 | 国产高清有码在线观看视频| 国产黄片美女视频| 国产精品嫩草影院av在线观看| 国产女主播在线喷水免费视频网站 | 久久久久免费精品人妻一区二区| 国产高清有码在线观看视频| av天堂中文字幕网| 中文乱码字字幕精品一区二区三区 | 精品久久久久久久末码| 国内精品美女久久久久久| 日韩 亚洲 欧美在线| 国产黄频视频在线观看| 亚洲美女搞黄在线观看| 国产一区亚洲一区在线观看| 欧美变态另类bdsm刘玥| 一夜夜www| 老司机影院毛片| 老司机影院成人| 久久久午夜欧美精品| 又爽又黄无遮挡网站| 在线观看一区二区三区| 又黄又爽又刺激的免费视频.| 777米奇影视久久| kizo精华| 在线观看免费高清a一片| 国产老妇女一区| 中文乱码字字幕精品一区二区三区 | 亚洲国产最新在线播放| av网站免费在线观看视频 | 日本一二三区视频观看| 国产黄片美女视频| 亚洲国产色片| 只有这里有精品99| 直男gayav资源| 一级片'在线观看视频| 中文字幕av在线有码专区| 偷拍熟女少妇极品色| 国产黄片美女视频| 在线免费十八禁| 只有这里有精品99| 国产乱人偷精品视频| 777米奇影视久久| 亚洲国产日韩欧美精品在线观看| 一个人观看的视频www高清免费观看| 国产熟女欧美一区二区| 非洲黑人性xxxx精品又粗又长| 免费观看a级毛片全部| 精品人妻一区二区三区麻豆| 又粗又硬又长又爽又黄的视频| 在线播放无遮挡| 91久久精品国产一区二区成人| 国产av码专区亚洲av| 2021少妇久久久久久久久久久| 亚洲av中文av极速乱| 中文字幕制服av| 亚洲18禁久久av| 日日摸夜夜添夜夜添av毛片| av卡一久久| 精品一区二区三区人妻视频| 国产精品国产三级国产专区5o| 最新中文字幕久久久久| 精品一区二区三卡| 少妇裸体淫交视频免费看高清| av福利片在线观看| 欧美xxxx性猛交bbbb| 国产精品女同一区二区软件| 网址你懂的国产日韩在线| 国产精品嫩草影院av在线观看| 亚洲真实伦在线观看| 高清毛片免费看| 精品午夜福利在线看| 尾随美女入室| 国产在视频线精品| 国产三级在线视频| 观看免费一级毛片| 青春草亚洲视频在线观看| 成人亚洲精品一区在线观看 | 男女边吃奶边做爰视频| 九草在线视频观看| 男人爽女人下面视频在线观看| 日本与韩国留学比较| 丝瓜视频免费看黄片| 精品久久久久久久久av| 国产成人freesex在线| 一本久久精品| 人人妻人人澡欧美一区二区| 亚洲精品一区蜜桃| 噜噜噜噜噜久久久久久91| 国产黄片美女视频| 欧美xxxx性猛交bbbb| 在线观看一区二区三区| 亚洲丝袜综合中文字幕| 日本av手机在线免费观看| 日本免费在线观看一区| 麻豆av噜噜一区二区三区| 日韩制服骚丝袜av| kizo精华| 午夜免费激情av| 2021天堂中文幕一二区在线观| 尤物成人国产欧美一区二区三区| 国产精品爽爽va在线观看网站| h日本视频在线播放| 亚洲成人久久爱视频| eeuss影院久久| 日韩电影二区| 少妇猛男粗大的猛烈进出视频 | 一级毛片电影观看| 波野结衣二区三区在线| 在线免费观看不下载黄p国产| 国产伦精品一区二区三区视频9| a级一级毛片免费在线观看| 日韩av在线大香蕉| 成人毛片a级毛片在线播放| 亚洲av不卡在线观看| 777米奇影视久久| 看免费成人av毛片| 精品人妻熟女av久视频| 搡女人真爽免费视频火全软件| 久久久精品免费免费高清| 午夜福利视频精品| 亚洲av国产av综合av卡| 亚洲天堂国产精品一区在线| 嫩草影院精品99| 国产精品久久久久久久电影| 麻豆精品久久久久久蜜桃| 国产精品一及| 亚洲,欧美,日韩| 高清欧美精品videossex| 91aial.com中文字幕在线观看| 久久久久久久亚洲中文字幕| 成人漫画全彩无遮挡| 你懂的网址亚洲精品在线观看| 干丝袜人妻中文字幕| 精品午夜福利在线看| 成人高潮视频无遮挡免费网站| 国产精品久久久久久精品电影小说 | 99re6热这里在线精品视频| 99久国产av精品国产电影| 亚洲精品日韩av片在线观看| 午夜精品一区二区三区免费看| av在线播放精品| 亚洲av日韩在线播放| 中文字幕制服av| 久久久久久久午夜电影| 波野结衣二区三区在线| a级毛色黄片| 亚洲国产欧美在线一区| 岛国毛片在线播放| 国产中年淑女户外野战色| 国产精品一及| 国产一区二区三区综合在线观看 | 午夜福利视频1000在线观看| 黄片无遮挡物在线观看| 欧美97在线视频| 91精品伊人久久大香线蕉| 亚洲激情五月婷婷啪啪| 乱码一卡2卡4卡精品| 天美传媒精品一区二区| 国产精品综合久久久久久久免费| 久久精品国产亚洲av天美| 国产视频首页在线观看| 99视频精品全部免费 在线| 婷婷色av中文字幕| 麻豆国产97在线/欧美| 国产男女超爽视频在线观看| 天堂俺去俺来也www色官网 | 99热这里只有精品一区| 久久久久久久午夜电影| 人体艺术视频欧美日本| 成人二区视频| 久久久久久国产a免费观看| 亚洲经典国产精华液单| 人妻系列 视频| 国产成年人精品一区二区| 精品酒店卫生间| 青春草国产在线视频| 国产亚洲91精品色在线| 亚洲av二区三区四区| 国产精品一二三区在线看| 中文精品一卡2卡3卡4更新| 黄色一级大片看看| 国产乱来视频区| 2018国产大陆天天弄谢| h日本视频在线播放| 麻豆av噜噜一区二区三区| 日韩av免费高清视频| .国产精品久久| 啦啦啦啦在线视频资源|