莊修政,陰秀麗,黃艷琴,吳創(chuàng)之
(1中國(guó)科學(xué)院廣州能源研究所,廣東 廣州 510650;2中國(guó)科學(xué)院可再生能源重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510650;3廣東省新能源和可再生能源研究開發(fā)與應(yīng)用重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510650;4中國(guó)科學(xué)院大學(xué),北京 100049)
城市污泥水熱脫水處理的工業(yè)應(yīng)用與研究進(jìn)展
莊修政1,2,3,4,陰秀麗1,2,3,黃艷琴1,2,3,吳創(chuàng)之1,2,3
(1中國(guó)科學(xué)院廣州能源研究所,廣東 廣州 510650;2中國(guó)科學(xué)院可再生能源重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510650;3廣東省新能源和可再生能源研究開發(fā)與應(yīng)用重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510650;4中國(guó)科學(xué)院大學(xué),北京 100049)
城市污泥是人類生活活動(dòng)的副產(chǎn)品,對(duì)其脫水處理是污泥處置的關(guān)鍵。其中,水熱脫水技術(shù)由于其能有效提高污泥脫水效率與低能耗等優(yōu)勢(shì),成為污泥減量化與資源化處理的研究熱點(diǎn)。文章首先介紹了城市污泥的特點(diǎn)及其處理現(xiàn)狀,然后總結(jié)了近年來國(guó)內(nèi)外關(guān)于污泥水熱脫水工藝的發(fā)展歷程與工業(yè)應(yīng)用情況,并進(jìn)一步對(duì)比分析了污泥水熱脫水與其他脫水技術(shù)之間的能耗優(yōu)勢(shì)。此外,重點(diǎn)綜述了污泥水熱脫水的影響因素與機(jī)理,包括溫度、時(shí)間、pH等處理?xiàng)l件以及水熱過程中污泥水分形態(tài)與胞外聚合物(EPS)對(duì)污泥脫水性能的影響,并分析了目前機(jī)理研究上存在的矛盾與原因。最后對(duì)污泥水熱脫水的發(fā)展前景作出展望,指出通過優(yōu)化EPS分層提取從而深入分析污泥中各組分在水熱過程中的遷移與結(jié)構(gòu)變化是研究污泥水熱脫水機(jī)理的重要途徑。
城市污泥;廢物處理;水熱脫水;工業(yè)應(yīng)用;聚合物;脫水機(jī)理
隨著我國(guó)人口數(shù)量的增加以及城鎮(zhèn)化進(jìn)程的加快,經(jīng)由城鎮(zhèn)污水處理廠處理的污泥逐年增加,導(dǎo)致數(shù)量龐大的污泥廢棄物無處安放。在2013年,我國(guó)的城市污泥產(chǎn)量已達(dá)3075.4萬噸污泥(含水率80%),且每年以近290萬噸的速率增長(zhǎng)。此外,城市污泥(以下簡(jiǎn)稱污泥)由于有機(jī)物含量高、營(yíng)養(yǎng)元素豐富等特點(diǎn),被認(rèn)為是一種潛在的、可利用的能源化資源。
目前污泥的處理技術(shù)包括焚燒、填埋和農(nóng)業(yè)利用等,但不論何種處理方式,其對(duì)污泥含水率均有一定要求。城市污泥由于其顆粒膠狀結(jié)構(gòu)以及高度親水等特性使得污泥中的部分水分難以脫除,通常在機(jī)械脫水前需要進(jìn)行物理或化學(xué)等調(diào)理,其中水熱處理以其低能耗、有效提高污泥脫水性以及降低污泥生態(tài)危害性等優(yōu)勢(shì),成為研究污泥減量化與資源化的熱點(diǎn)。
污泥水熱脫水處理包括污泥水熱處理以及水熱污泥的機(jī)械脫水處理,其中污泥水熱處理指將污泥置于密閉的容器中加熱至一定溫度下進(jìn)行水解反應(yīng),在此過程中污泥微生物細(xì)胞中膠體結(jié)構(gòu)被破壞、有機(jī)物水解,降低污泥顆粒對(duì)水分子的束縛作用,根本上改變污泥中的水分分布,從而提高污泥的脫水性能[1]。污泥水熱脫水處理由于其優(yōu)勢(shì)被廣泛應(yīng)用于污水處理工業(yè)中,但相對(duì)于工藝的改進(jìn),關(guān)于污泥水熱脫水的機(jī)理仍較為匱乏,有的甚至?xí)嗷ッ?。因此,?duì)污泥的水熱脫水機(jī)理進(jìn)一步深入研究具有重要意義。
水熱脫水的研究與應(yīng)用最早可追溯于1850年對(duì)褐煤和泥煤水熱脫水處理的專利。從表1可以看出,由20世紀(jì)30年代末開始,先后出現(xiàn)Porteous、Zimpro和LPO等工藝?yán)盟疅峒夹g(shù)改善污泥的脫水性能,而從20世紀(jì)80年代中起,研究者們開始把污泥水熱處理的研究熱點(diǎn)從優(yōu)化水熱條件轉(zhuǎn)移到催化劑的研究上[1-3]。但無論何種工藝,都因?yàn)槠湓谶\(yùn)行過程中存在臭氣、高強(qiáng)度腐蝕與堵塞以及較高的設(shè)備成本等問題導(dǎo)致實(shí)際運(yùn)行失敗。因此,在20世紀(jì)90年代中期開發(fā)出一種新型熱水解技術(shù),即快速熱調(diào)節(jié)法(RTC)[4]。RTC工藝主要利用高溫高壓飽和蒸汽將污泥快速升溫到200℃以上,在極短的反應(yīng)時(shí)間內(nèi)(10~30s)破壞污泥微生物細(xì)胞,水解有機(jī)物與殺滅病原菌,從而提高污泥脫水性能以及縮短熱水解時(shí)間。此外,近年來出現(xiàn)的Cambi與Biotheys工藝則在RTC工藝的基礎(chǔ)上將污泥熱水解與中溫厭氧消化工藝聯(lián)合,保證了污泥熱水解能量自平衡的需求,降低污泥的處理費(fèi)用[5-6]。法國(guó)Veolia企業(yè)也于2010年公布Exelys工藝,主要由一套連續(xù)的水熱反應(yīng)裝置組成,更加緊湊節(jié)能,但具體的運(yùn)行參數(shù)還沒見報(bào)道[7]。
相對(duì)于國(guó)外的污泥水熱脫水技術(shù)而言,我國(guó)污泥水熱脫水技術(shù)與工業(yè)應(yīng)用發(fā)展較為緩慢。在2002年,北京市清河污水處理廠首次進(jìn)行污泥水熱脫水處理的試點(diǎn)運(yùn)行,隨后在2008年,2010年和2012年分別在廣東東莞、江蘇無錫以及內(nèi)蒙古呼爾浩特建立污泥水熱干化示范工程,是我國(guó)目前僅有的3項(xiàng)污泥水熱干化示范工程。其中,東莞污水處理廠是全國(guó)第一個(gè)污泥水熱干化技術(shù)的示范工程,其處理工藝具有代表性意義。圖1給出了該污水處理廠的污泥水熱干化工藝[9]。污泥首先通過泵進(jìn)入均質(zhì)罐中被調(diào)理成均勻濃度,然后送入漿化反應(yīng)器中以蒸汽加熱至近90℃保持40~60min進(jìn)行預(yù)處理。處理后污泥經(jīng)由螺旋泵送入水熱反應(yīng)罐中加熱至180℃反應(yīng)40~60min,所需加熱蒸汽由電鍋爐提供。污泥水熱處理后被輸送至閃蒸罐中,期間產(chǎn)生的熱蒸汽可通過管道進(jìn)入漿化罐中對(duì)污泥進(jìn)行預(yù)加熱從而回收能量。隨后,對(duì)降溫后的水熱污泥通過離心機(jī)進(jìn)行離心脫濾可得到含水率為37%~55%的污泥泥餅,減量率超過70%。
表1 水熱脫水工藝的發(fā)展進(jìn)程
圖1 污泥水熱處理的工藝流程[9]
不僅如此,污泥水熱脫水的工業(yè)化應(yīng)用在減耗方面也有突出優(yōu)勢(shì)。WANG等[10]設(shè)計(jì)出一套污泥水熱處理耦合機(jī)械壓濾系統(tǒng),將之與傳統(tǒng)熱干處理以及電脫水處理[11]相比可發(fā)現(xiàn)污泥水熱脫水的能耗低于上述兩種處理方法。如圖2所示,其中熱干燥能耗區(qū)間底部為理論最小值,即水的氣化潛熱2257kJ/kg;熱干燥能耗區(qū)間頂部為工業(yè)應(yīng)用最大值,4320kJ/kg[12]。ESCALA等[13]也將污泥在205℃下水熱處理并進(jìn)行機(jī)械脫水處理以及能耗計(jì)算,得出污泥水熱脫水處理要比直接機(jī)械脫水處理減少65%熱能損耗與69%電能損耗。GUAN等[14]則研究了污泥分別在中性、酸性、堿性和CaCl2催化劑條件下的水熱脫水能耗,發(fā)現(xiàn)CaCl2催化劑作用下污泥水熱脫水處理能耗僅為185.1kJ/kg,比中性水熱條件下的能耗低74%。同時(shí),由于污泥的水熱處理本身是一個(gè)放熱過程,若將污泥在水熱過程中所釋放的熱量以及反應(yīng)結(jié)束后的污泥余熱充分地回收利用,則能進(jìn)一步降低污泥水熱脫水過程中的能量輸入。
圖2 污泥干化處理技術(shù)的能耗對(duì)比[10-12]
從污泥的水熱技術(shù)發(fā)展可以看出,水熱處理能有效提高污泥的脫水性,尤其在污泥的減量化和減耗方面體現(xiàn)出較大優(yōu)勢(shì),具有良好的發(fā)展前景。但相對(duì)于工藝的改進(jìn),污泥水熱脫水的相關(guān)機(jī)理一直沒有定論或者出現(xiàn)較多的矛盾結(jié)論。為了進(jìn)一步優(yōu)化水熱處理工藝,對(duì)污泥水熱脫水的影響因素與機(jī)理進(jìn)行深入分析十分重要。
污泥水熱處理過程中,水熱溫度、反應(yīng)時(shí)間以及pH等反應(yīng)條件對(duì)污泥的脫水性能影響很大。對(duì)于水熱溫度而言,WANG等[15]在120~210℃條件下對(duì)污泥進(jìn)行水熱處理,發(fā)現(xiàn)在120~150℃下污泥含水率的降低趨勢(shì)不明顯,而當(dāng)水熱溫度高于150℃時(shí),污泥含水率的降低程度增大,說明150℃是污泥在水熱處理后脫水性能改善的一個(gè)臨界溫度點(diǎn)。BOUGRIER等[16]也在其研究中給出水熱處理改善污泥脫水性能的臨界溫度點(diǎn)為150℃,這與GUAN等[14]的研究結(jié)果相近。同時(shí),SAVEYN等[17]在150~240℃的區(qū)間下進(jìn)行污泥水熱處理,發(fā)現(xiàn)在195~240℃范圍內(nèi)污泥含水率降低的趨勢(shì)趨于平緩,說明水熱溫度對(duì)污泥脫水性能的改善也具有一個(gè)上限值。因此,在對(duì)污泥進(jìn)行水熱處理時(shí),在合適的溫度范圍(150~210℃)內(nèi),水熱污泥的脫水性能隨水熱溫度的增加而增加。
對(duì)于水解時(shí)間對(duì)污泥脫水性能的影響,WANG等[15]研究了在10~90min水解時(shí)間下污泥的水熱脫水效果,發(fā)現(xiàn)水熱污泥含水率在10~30min區(qū)間內(nèi)緩慢降低,而在30~60min區(qū)間內(nèi)降低程度明顯。當(dāng)水解時(shí)間超過60min后,污泥的深度脫水性能僅有微小的提高,說明依靠延長(zhǎng)水熱停留時(shí)間以改善污泥脫水性能的程度是有限的,這與其他研究者的結(jié)論相符[18]。因此,在對(duì)污泥進(jìn)行水熱處理時(shí),在合適的時(shí)間范圍(30~60min)內(nèi),水熱污泥的脫水性能隨水解時(shí)間的增加而增加。
此外,通過調(diào)節(jié)pH來進(jìn)行酸堿熱水解也由于其簡(jiǎn)單有效性而受到越來越多的關(guān)注。陳嘉愉等[19]指出,在堿性條件下適當(dāng)提高污泥pH可以使胞外聚合物從污泥絮體表面脫離,釋放束縛水從而提高污泥的脫水性;而邢弈等[20]則認(rèn)為在酸性條件下污泥脫水性能要優(yōu)于中性條件與堿性條件下處理的污泥,在酸性條件(pH為3)下處理的污泥含水率與毛細(xì)吸水值(CST)均為最低值(60.8%和25.4s),這與DEVLIN等[21]的結(jié)論相符。HE等[22]研究亦發(fā)現(xiàn)酸化處理可以使污泥中EPS發(fā)生水解,破壞污泥絮體結(jié)構(gòu),改變污泥中的水分分布以及減少污泥束縛水含量,從而提高污泥脫水性能。NEYENS等[23-24]則分別研究了酸堿熱水解對(duì)污泥脫水性的影響,發(fā)現(xiàn)酸熱水解對(duì)污泥脫水性的改善效果要優(yōu)于堿熱水解,其含水率能從78%降至30%,而堿熱水解僅能將污泥含水率降至54%。一般而言,在酸性pH為3~5條件下進(jìn)行污泥酸水解能有效提高其脫水性能。
大量研究發(fā)現(xiàn),污泥脫水的效率與程度由污泥中水分的分布特性決定。污泥中水分分布根據(jù)其與固體顆粒間的結(jié)合力大小可分為4種形態(tài),包括自由水、間隙水、表面吸附水和結(jié)合水[25],如圖3所示。其中自由水與間隙水是污泥水分的主要部分(占總水分的80%~90%),其受固體顆粒的影響較少,可通過沉降濃縮或機(jī)械力等方式進(jìn)行脫除。相反,表面吸附水與結(jié)合水則由于其分子間結(jié)合力等作用,較難以機(jī)械力等形式脫除。在污泥脫水干化過程中,一般只將水分簡(jiǎn)單分為自由水分與束縛水分,能被機(jī)械力脫除的水分稱為自由水分,反之則為束縛水分。HERWIJN[26]通過結(jié)合能的大小定義自由水分與束縛水分,認(rèn)為當(dāng)結(jié)合能小于1kJ/kg時(shí)的水分可歸類為污泥中的自由水分。
圖3 污泥中水分的存在形態(tài)
表2列舉了近年來關(guān)于污泥水熱脫水的研究成果,從中可發(fā)現(xiàn)直接對(duì)污泥進(jìn)行機(jī)械脫水一般只能將含水率降到70%~80%[1],但對(duì)污泥進(jìn)行水熱處理后能有效提高污泥脫水性,其機(jī)械脫水濾餅的含水率能降至20%~40%。荀銳等[29]發(fā)現(xiàn)在170℃下水解90min能將污泥的束縛水含量由3.6g/g干污泥降至0.59g/g干污泥,通過把污泥中大部分束縛水轉(zhuǎn)變?yōu)榭杀粰C(jī)械力去除的自由水從而提高污泥的脫水性能,這與王利平[33]和VERMA等[34]的結(jié)論相符。此外,CHU與LEE等[35]發(fā)現(xiàn)在污泥水含量大于5g/g干污泥時(shí)其結(jié)合能為零,而在污泥水含量少于1g/g干污泥時(shí)其結(jié)合能為800kJ/kg。CHEN等[36]也發(fā)現(xiàn)當(dāng)污泥含水率降至30%時(shí),其水分子結(jié)合能會(huì)急劇增加,這意味著在自由水不斷脫除的過程中,束縛水所占比例逐漸上升,其水分脫除所需的結(jié)合能也逐漸上升。當(dāng)脫水設(shè)備能夠提供的機(jī)械功低于克服水脫離污泥固體所需要的能量時(shí),難以進(jìn)一步降低含水率,表現(xiàn)為機(jī)械脫水存在著極限值。荀銳等[29]通過熱分析發(fā)現(xiàn)機(jī)械力能脫除的水分結(jié)合能極限為65kJ/kg。
表2 污泥水熱脫水的相關(guān)研究
胞外聚合物(EPS)是指污泥在形成過程中由微生物分泌于細(xì)胞外的一些高分子有機(jī)聚合物,主要由蛋白質(zhì)、多糖以及少量腐殖質(zhì)、核酸和磷脂質(zhì)組成,是污泥有機(jī)物的重要組成部分[37-38],占有機(jī)物組分的50%~90%。其中,蛋白質(zhì)與多糖又是EPS的主要成分,占EPS含量的70%~80%。EPS中的生化聚合物具有高度水合特性和帶電性,不僅使污泥束縛大量結(jié)合水,對(duì)污泥絮體的表面特性也具有重要作用,從而影響污泥的脫水特性[39]。一般而言,EPS主要通過兩方面影響污泥的脫水特性,其一是通過EPS組分中的羧基、碳酸基和硫酸基等酸性官能團(tuán)的離子化使得污泥表面電荷呈負(fù)電性,從而令污泥絮體間產(chǎn)生靜電斥力,使其難以聚合絮凝[40-41]。王紅武等[42]研究也發(fā)現(xiàn)污泥表面zeta電位值增大會(huì)導(dǎo)致其絮凝、沉降和脫水性變差,這主要是因?yàn)楦遺eta電位值表明污泥絮體表面的離子化多聚物較多,使得污泥與水分子間的極性作用力增強(qiáng)[43]。并且張?zhí)m河等[44]也發(fā)現(xiàn)污泥zeta電位值與污泥沉降性能(SVI值)呈正相關(guān)(R2=0.9597),說明污泥絮體表面負(fù)電荷越低,其靜電斥力越大,導(dǎo)致污泥沉降性能惡化。除此以外,羥基(—OH)還會(huì)與水分子中的氫鍵結(jié)合,使其難以脫水。其二是由于EPS表面官能團(tuán)的親水特性導(dǎo)致污泥脫水困難[39],親水性增強(qiáng)可導(dǎo)致污泥絮體內(nèi)結(jié)合水增多,與水分離的難度增大??傮w而言,污泥EPS的表面電荷和親水性與EPS中的蛋白質(zhì)/多糖的比例有關(guān)。在EPS中,蛋白質(zhì)和多糖分別攜帶正電荷和負(fù)電荷,蛋白質(zhì)中帶正電荷的氨基可中和部分多糖中帶負(fù)電荷的羥基等,降低污泥表面zeta電位[45]。同時(shí),蛋白質(zhì)由于其疏水性氨基酸、甘氨酸和丙氨酸等使得污泥表面呈疏水性;而多糖則由于其親水性基團(tuán)如羥基等使得污泥表面呈親水性[46]。因此,污泥EPS中蛋白質(zhì)與多糖的比值可用作評(píng)價(jià)污泥脫水性能好壞的標(biāo)準(zhǔn)。
圖4 EPS的分層結(jié)構(gòu)以及EPS與污泥脫水性能的關(guān)系 [45-46,48-59]
在結(jié)構(gòu)上,EPS呈現(xiàn)凝膠狀、高度水合的帶電生物膜基質(zhì),根據(jù)其不同的存在形態(tài)可分為可溶性EPS(S-EPS),松散結(jié)合EPS(LB-EPS)和緊密結(jié)合EPS(TB-EPS),最內(nèi)層則為細(xì)胞相(Pellet)[47],如圖4(a)所示。有研究表明污泥的脫水性能受EPS各層的影響都不相同,但關(guān)于EPS總量或者其中單一組分對(duì)污泥脫水性能的影響至今仍存在爭(zhēng)議,EPS與污泥脫水性能的關(guān)系如圖4(b)所示。BO等[48-49]認(rèn)為EPS總含量的增加會(huì)導(dǎo)致污泥脫水性能的提高,而SHENG等[50]卻得出相反的結(jié)論。這主要是因?yàn)槲勰嘀蠩PS濃度對(duì)脫水性的影響存在著一個(gè)特定值,當(dāng)高于或者低于這個(gè)值都會(huì)使污泥的沉降性能降低[51]。對(duì)于EPS中各層的EPS含量而言,有學(xué)者對(duì)單獨(dú)TB-EPS和LB-EPS層對(duì)污泥的絮凝影響進(jìn)行了研究對(duì)比。研究發(fā)現(xiàn)由于LB-EPS屬于松散結(jié)合型EPS,位于污泥的外層,其含量增多會(huì)導(dǎo)致污泥表面zeta電位增大從而引起靜電斥力增大,阻礙絮凝作用[52]。而TB-EPS位于內(nèi)層,具有結(jié)合緊密、流變性小、水分少、體積少等特點(diǎn),對(duì)污泥的絮凝性能影響較少。同時(shí),也有研究發(fā)現(xiàn)隨著LB-EPS/TB-EPS比值的增大,污泥zeta電位增大,脫水性能惡化,這主要是因?yàn)槲勰囝w粒結(jié)構(gòu)類似于顆粒膠體,LB-EPS層與TB-EPS層則如同膠體顆粒的雙電層結(jié)構(gòu),LB-EPS/TB-EPS的增大相當(dāng)于擴(kuò)散層的厚度增大從而導(dǎo)致zeta電位增大[42]。此外,SHAO等[53]研究發(fā)現(xiàn)污泥的脫水特性與S-EPS中的蛋白質(zhì)/多糖相關(guān),表現(xiàn)為污泥毛細(xì)吸水值(CST)與S-EPS層中的蛋白質(zhì)/多糖比例呈現(xiàn)正相關(guān)性(R2=0.668)。LI等[54]也認(rèn)為污泥脫水特性與上清液、S-EPS和LB-EPS中的蛋白質(zhì)/多糖有關(guān),但是也有研究表明污泥中的結(jié)合水主要束縛在LB-EPS中,且LB-EPS含量的增加會(huì)導(dǎo)致污泥黏度的增加,造成污泥脫水性能變差[52,55]。這主要是由于不同的EPS分層提取方法所造成的,目前的EPS分層提取方法包括加熱提取法、超聲提取法以及CER提取法等,不同的提取方法勢(shì)必會(huì)對(duì)細(xì)胞造成不同程度的破壞從而造成EPS提取誤差。LIAO等[60]認(rèn)為可利用DNA作為EPS分層提取過程中細(xì)胞裂解的評(píng)價(jià)依據(jù),若DNA含量在總EPS含量的2%~15%之間則證明在EPS提取過程中細(xì)胞的裂解程度不劇烈,EPS分層結(jié)果可靠。因此,對(duì)EPS分層提取方法的優(yōu)化以及其提取效果的評(píng)價(jià)將是研究污泥EPS影響的關(guān)鍵因素。
YU等[59]在100~200℃的范圍內(nèi)對(duì)污泥進(jìn)行水熱處理,發(fā)現(xiàn)其Zeta電位值呈現(xiàn)先下降后增大的趨勢(shì)。ZHU[32]等在較低溫度范圍(60~180℃)內(nèi)對(duì)城市污泥進(jìn)行水熱處理后再進(jìn)行機(jī)械脫水,發(fā)現(xiàn)污泥含水率能從72%降至27%;而ESCALA[13]和SAVEYN[61]等在更高溫度范圍(150~240℃)內(nèi)進(jìn)行水熱脫水實(shí)驗(yàn),得出類似結(jié)論。WANG等[10]通過在210℃條件下水解污泥90min,發(fā)現(xiàn)水熱污泥的表面負(fù)電荷由0.36meq/g降至0.04meq/g,顆粒間靜電斥力減弱使得污泥脫水能力增強(qiáng)。同時(shí),水熱污泥的疏水性也由75%上升至92%。由此表明水熱處理過程能對(duì)污泥中的胞外聚合物進(jìn)行水熱改性,提高污泥的疏水性并且降低其表面負(fù)電荷,從根本上破壞了污泥表面對(duì)水分子的親水性束縛,從而提高污泥的脫水性能。此外,由于在水熱過程中水分沒有發(fā)生相變,熱能被儲(chǔ)存在污泥顆粒和高溫濾液中,使得整個(gè)污泥深度脫水過程的能耗遠(yuǎn)遠(yuǎn)低于一般的熱干燥脫水。
污泥水熱脫水技術(shù)是污泥減量化與無害化處理利用中一項(xiàng)新興技術(shù)。目前對(duì)于污泥的脫水處理一般局限在機(jī)械脫水-熱干化或者藥劑調(diào)理-機(jī)械脫水上,但這兩種方法都因?yàn)槟芎母呋蚝罄m(xù)處理困難而存在缺陷;而水熱處理能對(duì)污泥進(jìn)行水熱改性,從根本上破壞污泥表面對(duì)水分子的束縛,改善污泥脫水性能,并且在水熱過程中水分沒有發(fā)生相變,大大降低了整個(gè)污泥深度脫水的能耗,為城市污泥的處理提供了一條可行前處理工藝。
目前污泥水熱脫水處理工藝在工業(yè)上得到不斷地改進(jìn),但關(guān)于其脫水機(jī)理的相關(guān)研究則仍比較匱乏且矛盾。因此針對(duì)污泥的水熱脫水處理研究,可以從以下幾個(gè)方面入手:①通過對(duì)不同種類的污泥進(jìn)行水熱處理對(duì)比研究,探討污泥中不同組分對(duì)其脫水性能的影響,以便更清晰地揭示污泥的水熱反應(yīng)機(jī)理;②對(duì)污泥EPS各層的提取方法進(jìn)行對(duì)比分析以便確定適宜的分析方法,并進(jìn)一步對(duì)污泥各層結(jié)構(gòu)以及組分對(duì)污泥脫水性能的影響進(jìn)行深入研究;③研究不同的催化劑或者絮凝劑在污泥水熱處理過程中的作用,以便提高水熱污泥的脫水性或者降低其過程能耗。
[1] JOMAA S,SHANABLEH A,KHALIL W,et al. Hydrothermal decomposition and oxidation of the organic component of municipal and industrial waste products[J]. Advances in Environmental Research,2003,7(3):647-653.
[2] ALSOP G M and CONWAY R A. Improved thermal sludge conditioning by treatment with acids and bases[J]. Journal Water Pollution Control Federation,1982,54(2):146-152.
[3] WOODARD S E,WUKASCH R F. A hydrolysis thickening filtration process for the treatment of waste activated-sludge[J]. Water Science and Technology,1994,30(3):29-38.
[4] NEYENS E,BAEYENS J. A review of thermal sludge pre-treatment processes to improve dewaterability[J]. Journal of Hazardous Materials,2003,98(1/2/3):51-67.
[5] CAMACHO P,EWERT W,KOPP J,et al. Combined experiences of thermal hydrolysis and anaerobic digestion latest thinking on thermal hydrolysis of secondary sludge only for optimum dewatering and digestion[J]. Proceedings of the Water Environment Federation,2008,15:1964-1978.
[6] KEPP U,MACHENBACH I,WEISZ N,et al. Enhanced stabilisation of sewage sludge through thermal hydrolysis——three years of experience with full scale plant[J]. Water Science & Technology,2000,42(9):89-96.
[7] 符成龍. 機(jī)械脫水污泥熱水解預(yù)處理及深度脫水的試驗(yàn)研究[D].杭州:浙江大學(xué),2013.FU C L. Experimental study on thermal hydrolysis pretreatment and dewatering of mechanically pewatered sewage sludg[D]. Hangzhou:Zhejiang University,2013.
[8] SONTHEIM H. Effects of sludge conditioning with lime on dewatering[J]. Journal Water Pollution Control Federation,1966,38(3):357.
[9] QIAO W,WANG W,WAN X,et al. Improve sludge dewatering performance by hydrothermal treatment[J]. Journal of Residuals Science & Technology,2010,7(1):7-11.
[10] WANG L P,ZHANG L,LI A M. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering:Influence of operating conditions and the process energetics[J]. Water Research,2014,65:85-97.
[11] MAHMOUD A,OLIVIER J,VAXELAIRE J,et al.Electro-dewatering of wastewater sludge:influence of the operating conditions and their interactions effects[J]. Water Research,2011,45(9):2795-2810.
[12] GAZBAR S,ABADIE J M,COLIN F. Combined action of electro-osmotic drainage and mechanical compression on sludge dewatering[J]. Water Science & Technology,1994,30(8):169-175.
[13] ESCALA M,ZUMB HL T,KOLLER C,et al. Hydrothermal carbonization as an energy-efficient alternative to established drying technologies for sewage sludge:a feasibility study on a laboratory scale[J]. Energy & Fuels,2013,27(3):454-460.
[14] GUAN B H,YU J,F(xiàn)U H L,et al. Improvement of activated sludge dewaterability by mild thermal treatment in CaCl2solution[J]. Water Research,2012,46(2):425-432.
[15] WANG L P,LI A M. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering:the dewatering performance and the characteristics of products[J]. Water Research,2015,68:291-303.
[16] BOUGRIER C,DELGEN S J P,CARR RE H. Effects of thermal treatments on five different waste activated sludge samples solubilisation,physical properties and anaerobic digestion[J].Chemical Engineering Journal,2008,139(2):236-244.
[17] SAVEYN H,CURVERS D,SCHOUTTETEN M,et al. Improved dewatering by hydrothermal conversion of sludge[J]. Journal of Residuals Science & Technology,2009,6(1):51-56.
[18] MA H,CHI Y,YAN J,et al. Experimental study on thermal hydrolysis and dewatering characteristics of mechanically dewatered sewage sludge[J]. Drying Technology,2011,29(14):1741-1747.
[19] 陳嘉愉,吳學(xué)偉. 污水污泥有機(jī)調(diào)質(zhì)濃縮和無機(jī)調(diào)質(zhì)脫水工藝研究[J]. 環(huán)境工程學(xué)報(bào),2009,3(3):529-532.CHEN J Y,WU X W. Research of wastewater sludge organic conditioning concentration and inorganic conditioning dewatering technology[J]. Chinese Journal of Environmental Engineering,2009,3(3):529-532.
[20] 邢奕,王志強(qiáng),洪晨,等. 不同pH值下胞外聚合物對(duì)污泥脫水性能及束縛水含量的影響[J]. 工程科學(xué)學(xué)報(bào),2015(10):1387-1395.XING Y,WANG Z Q,HONG C,et al. Influence of extracellular polymeric substances on sludge dewaterability and bound water content at various pH values[J]. Chinese Journal of Engineering,2015(10):1387-1395.
[21] DEVLIN D C,ESTEVES S R R,DINSDALE R M,et al. The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge[J]. Bioresource Technology,2011,102(5):4076-4082.
[22] HE W,YANG H,GU G. Acid treatment of waste activated sludge for better dewaterability[J]. Environmental Pollution & Control,2006,28(9):680-675.
[23] NEYENS E,BAEYENS J,CREEMERS C. Alkaline thermal sludge hydrolysis[J]. Journal of Hazardous Materials,2003,97(1/2/3):295-314.
[24] NEYENS E,BAEYENS J,WEEMAES M,et al. Hot acid hydrolysis as a potential treatment of thickened sewage sludge[J]. Journal of Hazardous Materials,2003,98(1/2/3):275-293.
[25] VAXELAIRE J,CEZAC P. Moisture distribution in activated sludges:a review[J]. Water Research,2004,38(9):2215-2230.
[26] HERWIJN A. Fundamental aspects of sludge characterization[R].Technische Universit Eitndhoven,1996,
[27] ZHU Y,HAN Z,LIU X Y,et al. Study on the effect and mechanism of hydrothermal pretreatment of dewatered sewage sludge cake for dewaterability[J]. Journal of the Air & Waste Management Association,2013,63(8):997-1002.
[28] 閆秀懿,喬瑋,李飄,等. 含油污泥的水熱法減量處理[J]. 化工環(huán)保,2014,34(4):340-343.YAN X Y,QIAO W,LI P,et al. Reduction of oily sludge by hydrothermal method[J]. Environmental Protection of Chemical Industry,2014,34(4):340-343.
[29] 荀銳,王偉,喬瑋,等. 水熱改性污泥的水分布特征與脫水性能研究[J]. 環(huán)境科學(xué),2009,30(3):851-856.XUN R,WANG W,QIAO W,et al. Water distribution and dewatering performance of the hydrothermal conditioned sludge[J].Environmental Science,2009,30(3):851-856.
[30] MAKELA M,BENAVENTE V,F(xiàn)ULLANA A. Hydrothermal carbonization of industrial mixed sludge from a pulp and paper mill[J].Bioresource Technology,2016,200:444-450.
[31] YOSHIKAWA K. Study on the hydrothermal drying technology of sewage sludge[J]. Science China Technological Sciences,2010,53(1):160-163.
[32] JIANG Z L,MENG D W,MU H Y,et al. Experimental study on hydrothermal drying for sewage sludge in large-scale commercial plant[J]. Journal of Environmental Science and Engineering,2011,(5):900-909.
[33] 王利平. 水熱處理耦合機(jī)械壓濾對(duì)剩余污泥的深度脫水性能研究[D]. 大連:大連理工大學(xué),2015.WANG L P. Hydrothermal treatment coupled with mechanical expression for excess sludge deep dewatering[D]. Dalian:Dalian University of Technology,2015.
[34] VERMA S,PRASAD B,MISHRA I M. Physicochemical and thermal characteristics of the sludge produced after thermochemical treatment of petrochemical wastewater[J]. Environmental Technology,2012,33(13/14/15):1789-1801.
[35] CHU C P,LEE D J,CHANG C Y. Energy demand in sludge dewatering[J]. Water Research,2005,39(9):1858-1868.
[36] CHEN G W,HUNG W T,CHANG I L,et al. Continuous classification of moisture content in waste activated sludges[J].Journal of Environmental Engineering,1997,123(3):253-258.
[37] FLEMMING H C,WINGENDER J. Relevance of microbial extracellular polymeric substances (EPSs)——Part I:Structural and ecological aspects[J]. Water Science & Technology A:Journal of the International Association on Water Pollution Research,2001,43(6):1-8.
[38] MCSWAIN B S,IRVINE R L,HAUSNER M,et al. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge[J]. Applied & Environmental Microbiology,2005,71(2):1051-1057.
[39] ZHANG J H,LIN Q M,ZHAO X R. The hydrochar characters of municipal sewage sludge under different hydrothermal temperatures and durations[J]. Journal of Integrative Agriculture,2014,13(3):471-482.
[40] SUTHERLAND I W. Exopolysaccharides in biofilms,flocs and related structures[J]. Water Science & Technology A:Journal of the International Association on Water Pollution Research,2001,43(6):77-86.
[41] YUAN J H,XU R K,ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology,2011,102(3):3488-3497.
[42] 王紅武,李曉巖,趙慶祥. 活性污泥的表面特性與其沉降脫水性能的關(guān)系[J]. 清華大學(xué)學(xué)報(bào)(自然科學(xué)版),2004,44(6):766-769.WANG H W,LI X Y,ZHAO Q X. Surface properties of activated sludge and their effects on settlleability and dewaterability[J]. Journal of Tsinghua University,2004,44(6):766-769.
[43] LIAO B Q,ALLEN D G,DROPPO I G,et al. Surface properties of sludge and their role in bioflocculation and settleability[J]. Water Research,2001,35(2):339-350.
[44] 張?zhí)m河,李軍,郭靜波,等. EPS對(duì)活性污泥絮凝沉降性能與表面性質(zhì)的影響[J]. 化工學(xué)報(bào),2012,63(6):1865-1871.ZHANG L H,LI J,GUO J B,et al. Effect of EPS on flocculation-sedimentation and surface properties of activated sludge[J]. CIESC Journal,2012,63(6):1865-1871.
[45] YANG Q,LUO K,LI X M,et al. Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes[J]. Bioresource Technology,2010,101(9):2924-2930.
[46] TIEHM A,NICKEL K,NEIS U. The use of ultrasound to accelerate the anaerobic digestion of sewage sludge[J]. Water Science &Technology,1997,36(11):121-128.
[47] TSAI B N,CHANG C H,LEE D J. Fractionation of soluble microbial products (SMP) and soluble extracellular polymeric substances(EPS) from wastewater sludge[J]. Environmental Technology,2008,29(10):1127-1138.
[48] BO J,WIL N B M,LANT P. Impacts of morphological,physical and chemical properties of sludge flocs on dewaterability of activated sludge[J]. Chemical Engineering Journal,2004,98(1/2):115-126.
[49] RASZKA A,CHORVATOVA M,WANNER J. The role and significance of extracellular polymers in activated sludge. Part Ⅰ:Literature review[J]. Acta Hydrochimica Et Hydrobiologica,2006,34(5):411–424.
[50] SHENG G P,YU H Q,LI X Y. Extracellular polymeric substances(EPS) of microbial aggregates in biological wastewater treatment systems:a review[J]. Biotechnology Advances,2010,28(6):882-894.
[51] BECCARI M,MAPPELLI P,TANDOI V. Relationship between bulking and physicochemical–biological properties of activated sludges[J]. Biotechnology & Bioengineering,2004,22(5):969-979.
[52] GUAN W,XIAO P,ZHOU X T,et al. Research advances on sludge extracellular polymeric substances (EPS)[J]. Chemical Engineer,2009(6):35-39.
[53] SHAO L,PEIPEI H E,GUANGHUI Y U,et al. Effect of proteins,polysaccharides,and particle sizes on sludge dewaterability[J].Journal of Environmental Sciences,2009,21(1):83-88.
[54] LI X,YANG S. Influence of extracellular polymeric substances(EPS)on the flocculation,sedimentation and dewaterability of activated sludge[J]. Water Research,2007,41(5):1022-1030.
[55] WANG F,JI M,LU S. Influence of ultrasonic disintegration on the dewaterability of waste activated sludge[J]. Environmental Progress,2006,25(3):257-260.
[56] ERIKSSON L,ALM B. Study of flocculation mechanisms by observing effects of a complexing agent on activated sludge properties[J]. Waterence & Technology,1991,24(7):21-28.
[57] HOUGHTON J I,STEPHENSON T. Effect of influent organic content on digested sludge extracellular polymer content and dewaterability[J]. Water Research,2002,36(14):3620-3628.
[58] YUAN H,ZHU N,SONG F. Dewaterability characteristics of sludge conditioned with surfactants pretreatment by electrolysis[J].Bioresource Technology,2011,102(3):2308-2315.
[59] YU J,GUO M H,XU X H,et al. The role of temperature and CaCl2in activated sludge dewatering under hydrothermal treatment[J].Water Research,2014,50:10-17.
[60] LIAO B Q,ALLEN D G,DROPPO I G,et al. Surface properties of sludge and their role in bioflocculation and settleability[J]. Water Research,2001,35(2):339-350.
[61] SAVEYN H,CURVERS D,SCHOUTTETEN M,et al. Improved dewatering by hydrothermal conversion of sludge[J]. Journal of Residuals Science & Technology,2009,6(1):51-56.
Research on hydrothermal treatment of sewage sludge and its industrial applications
ZHUANG Xiuzheng1,2,3,4,YIN Xiuli1,2,3,HUANG Yanqin1,2,3,WU Chuangzhi1,2,3
(1Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,Guangzhou 510650,Guangdong,China;2CAS Key Laboratory of Renewable Energy,Guangzhou 510650,Guangdong,China;3Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development,Guangzhou 510650,Guangdong,China;4University of Chinese Academy of Sciences,Beijing 100049,China)
Sewage sludge is the by-product of human activities and its dewatering treatment is essential for sludge disposal. Among these dewatering technologies,hydrothermal dewatering has been the research focus of sludge reduction and utilization because of its advantages of improving dewatering and low-energy consumption. This paper introduced the characteristics of sewage sludge and its disposal status,then comprehensively summarized the development process of sludge hydrothermal dewatering and its industrial application. Besides,the advantage of energy consumption for hydrothermal dewatering was compared with other dewatering technologies. After that,the latest studies relate to the effects of hydrothermal conditions,moisture distribution and extracellular polymers substance(EPS)on the dewaterability of sludge were analyzed in detail. Finally,the future developing perspectives of sludge hydrothermal dewatering treatment were also put forward,and studying the transformation of sludge components and structureviamodified EPS extraction was considered as important ways to understand the mechanism of hydrothermal dewatering.
sewage sludge;waste treatment;hydrothermal dewatering;industrial application;polymers;dewatering mechanism
X7
A
1000–6613(2017)11–4224–08
10.16085/j.issn.1000-6613.2017-0359
2017-03-07;修改稿日期2017-03-23。
國(guó)家自然科學(xué)基金(51661145022,51676195)及廣東省自然科學(xué)基金重大基礎(chǔ)研究培育項(xiàng)目(2017B030308002)。
莊修政(1992—),男,碩士研究生,主要研究方向?yàn)樯镔|(zhì)燃料的制備與轉(zhuǎn)化。聯(lián)系人陰秀麗,研究員,博士生導(dǎo)師。E-mail:xlyin@ms.giec.ac.cn。