陸明星,潘丹丹,徐 靜,劉 楊,王桂榮,杜予州*
(1. 揚州大學園藝與植物保護學院&揚州大學應用昆蟲研究所,江蘇揚州 225009;2. 中國農業(yè)科學院植物病蟲害生物學國家重點實驗室,北京 100193)
昆蟲水通道蛋白的研究進展
陸明星1,潘丹丹1,徐 靜1,劉 楊2,王桂榮2,杜予州1*
(1. 揚州大學園藝與植物保護學院&揚州大學應用昆蟲研究所,江蘇揚州 225009;2. 中國農業(yè)科學院植物病蟲害生物學國家重點實驗室,北京 100193)
昆蟲水通道蛋白(Aquaporins, AQPs)是一種膜蛋白,它們是昆蟲維持體內水分平衡的必要蛋白,有關它們的研究不斷深入。因此,本文對昆蟲水通道蛋白的最新研究成果進行了概述,旨在引起人們對該類蛋白的興趣,以便系統(tǒng)了解和研究該類蛋白。目前研究表明:昆蟲典型的AQPs是由250-300個氨基酸殘基組成,其分子量在23-35 kDa,包含6個疏水性橫跨膜區(qū)域、兩個NPA結構單元(asparagine-proline-alanine)等。系統(tǒng)發(fā)育分析發(fā)現(xiàn):已知昆蟲AQPs可分為5大類,分別為DRIP、BIB、PRIP、RPIPs和LHIPs。昆蟲AQPs除了運送水分子外,還可以運輸其他的一些小分子溶質,如尿素、甘油、海藻糖等。它們還具有組織特異性表達特性,可能在昆蟲的多個生理活動中起到重要的作用,因此它們的功能仍需進一步研究證實。此外,昆蟲AQPs的深入研究還將會給害蟲綜合治理提供新的思路。
昆蟲;水通道蛋白;功能;水分;分類
水是所有生物體中最重要的組成成分,活細胞含有80%以上的水分,其維持著細胞內外一切生化反應,保護細胞內大分子以及膜的結構,在生物體體液平衡方面起著重要的作用。從細胞和組織中吸收或釋放水是一個最基本的生理過程(Klowden, 2002; O'Donnell, 2008)。干燥對于昆蟲以及地球上其它生物體來說是一個生理學難題。昆蟲為了維持其體內的水分平衡,常常會形成一系列結構和功能上的適應,例如大多數(shù)昆蟲通過形成堅硬的外骨骼來保護體表防止水分的散失就是這些結構中的一種。在昆蟲維持體內水分平衡的各種結構中,水通道蛋白就是其中的一種重要結構。它的存在使得細胞內水的運輸相對水分子通過簡單擴散的方式緩慢穿過細胞膜的磷脂雙分子層而言變得更加容易,因此它在昆蟲體內水分平衡中起著不可替代的作用(徐文彥等, 2015)。
早在1987年,Agre就偶然發(fā)現(xiàn)了一種水通道蛋白,其分子量為28 kDa,因此將其命名為“形成通道的28 kDa膜整合蛋白”,簡稱CHIP28,并且發(fā)現(xiàn)它大量存在于紅細胞和腎臟細胞的膜上(Agreetal., 1987; Denkeretal., 1988)。Preston 等1992年利用非洲爪蟾(Xenopuslaevis)卵母細胞證實了這種膜蛋白確實具有轉運水分的功能,隨后將這種膜蛋白命名為水通道蛋白(aquaporins, AQPs)(Prestonetal., 1992; Agreetal., 1993)。Agre 等人也因發(fā)現(xiàn)了水通道蛋白及其功能,獲得了2003年諾貝爾化學獎(Agreetal., 2004)。水通道蛋白與離子通道、甘油通道、多功能通道蛋白同屬于重要的內在蛋白(major intrinsic protein,簡稱MIP)家族。目前,已經發(fā)現(xiàn)13種哺乳動物的水通道蛋白(AQP0-AQP12),統(tǒng)稱“aquaporins”,AQPs(Fushimietal., 1993; Morishitaetal., 2005; Itohetal., 2005)。水通道蛋白除了能高效轉運水分子外,還能轉運其他的一些小分子物質,其中包括甘油和尿素等具有重要生理學功能的中性溶質。它們可能還參與某些激素的調節(jié)過程,如參與動物體中抗利尿激素、糖皮質激素、胰島素等激素調節(jié)(Kingetal., 1996; Christensenetal., 2000; Kishidaetal., 2000; Benoitetal., 2014);一些研究表明:在植物上發(fā)現(xiàn)各種脅迫(低溫、干旱、鹽等)都會對植物水通道蛋白的mRNA豐度產生影響(Gasparetal., 2003; Liuetal., 2003; Jangetal., 2004)。
LeCaherec等人在大青葉蟬(Cicadellaviridis)體內發(fā)現(xiàn)了昆蟲的第一個水通道蛋白基因(LeCaherecetal., 1996a, b)。但是,隨后的十幾年來,在昆蟲體內僅記錄有42個水通道蛋白基因全長,而鱗翅目僅在家蠶Bombyxmori體內發(fā)現(xiàn)3個、梨小心食蟲Grapholitamolesta中發(fā)現(xiàn)2個、斜紋夜蛾Spodopteralitura體內發(fā)現(xiàn) 1個、茶尺蠖Ectropisobliqua體內發(fā)現(xiàn)1個(表1)(LeCaherecetal., 1996a, b; Echevarriaetal., 2001; Yanochko & Yool, 2002; Duchesneetal., 2003; Kaufmannetal., 2005; Kikawadaetal., 2008; Shakesbyetal., 2009; Balletal., 2009; Kataokaetal., 2009a, b; Drakeetal., 2010; Gotoetal., 2011; Mathewetal., 2011; Philipetal., 2011; Herraizetal., 2011; Azumaetal., 2012; Ishidaetal., 2012; Wallaceetal., 2012; Nagaeetal., 2013; Fabricketal., 2014; Drakeetal., 2015; Liuetal., 2016;劉海遠等, 2013; 鐘鳴, 2014; 李良德等, 2016)。目前我們已在水稻二化螟Chilosuppressalis體內克隆并發(fā)現(xiàn)3種水通道蛋白基因全長(未發(fā)表資料)??傊?,昆蟲的AQPs是由250-300個氨基酸殘基組成,其分子量在23-35 kDa(Campbelletal., 2008)。典型的昆蟲水通道蛋白都擁有6個疏水性橫跨膜區(qū)域,大部分昆蟲水通道蛋白都包含兩個NPA結構單元(Asn-Pro-Ala)(圖1)。對于數(shù)量龐大的昆蟲來說,有關它們的水通道蛋白研究還遠遠不夠。
Campbell和Goto等人通過比較12種昆蟲的基因組和已得到的昆蟲AQPs基因全長序列將昆蟲體內的AQP大體分為3類,分別是DRIP,BIB和PRIP(Campbelletal., 2008; Gotoetal., 2011)。昆蟲AQPs的第一大類包括從黑腹果蠅Drosophilamelanogaster體內獲得的DRIP基因(Dowetal., 1995)。因此將該類AQP基因稱為DRIPs家族。該類家族是水滲透型的AQP,擁有六個跨膜區(qū)域,氨基和羧基末端都在細胞內以及和其他類AQP一樣的兩個NPA基序;和哺乳動物的AQP4最為相似。第二大類因為在黑腹果蠅大腦內發(fā)現(xiàn)的BIB基因,而稱為BIB家族。除了具有兩個NPA基序外,BIB家族還具有延伸的羧基段(約350-450個氨基酸),該類不運輸水,與哺乳動物晶狀體中發(fā)現(xiàn)的AQP0最為接近,而AQP0已經被證實具有離子通道的功能(Drakeetal., 2002)。昆蟲PRIPs家族與DRIPs的關系要比BIBs更近。PRIPs家族是以窗螢Pyrocoeliarufa內源性蛋白命名(Leeetal., 2001)。有研究表明:該類家族成員既能運輸水也能運輸甘油(Kikawadaetal., 2008; Herraizetal., 2011)。目前,有關PRIPs家族的AQPs的結構和功能還有待進一步研究。這三大類昆蟲水通道蛋白在結構和功能上有一定的相似性,但都具有其獨特的結構和功能。最近,F(xiàn)abrick等人利用Genbank中西部牧草盲蝽Lygushesperus的水通道蛋白和57種其他無脊椎動物的水通道蛋白序列進行系統(tǒng)發(fā)育分析表明,昆蟲至少包括 5種不同類型的水通道蛋白,除上面提到的3大類外,還有以長紅錐蝽Rhodniusprolixus的水通道蛋白為代表的RPIPs和以西部牧草盲蝽的水通道蛋白為代表的LHIPs(Fabricketal., 2014)。Fabric等人(2014)的這種劃分僅僅是通過現(xiàn)有種類的水通道蛋白所構建的系統(tǒng)發(fā)育樹劃分的,因此這種分類還有待商榷。隨著研究的不斷深入,將會鑒定出更多的昆蟲水通道蛋白,新鑒定出來的昆蟲水通道蛋白有可能不屬于上面的任何一類,因此應該考慮多方面的因素,比如進化關系以及結構功能等,不斷更新和完善它們的分類系統(tǒng)。
圖1 金針癭蚊Eurosta solidaginis水通道蛋白拓撲預測圖(引自Philip et al., 2011)Fig.1 Topology prediction of aquaporin of Eurosta solidaginis(Philip et al., 2011)I-VI 表示6個跨膜區(qū)域;A-E表示連接6個跨膜區(qū)域的5個頸環(huán)結構;紅色方框表示2個保守的NPA。The six transmembrane regions (I-VI)were connected by five loops (A-E). Red squares stood for conserved NPA motif.
自Preston等人利用非洲爪蟾卵母細胞表達系統(tǒng)驗證紅細胞中的AQPs功能以來,后續(xù)各個生物體包括昆蟲的AQPs都利用這個表達系統(tǒng)探究其功能(Prestonetal., 1992)。目前,已經通過非洲爪蟾卵母細胞表達系統(tǒng)驗證功能的昆蟲AQPs有28種,其中26種有運送水分子的功能??梢姡珹QPs的主要功能之一是維持昆蟲體內的水分平衡。所有的AQPs結構都是由6個跨膜的α螺旋組成的四聚體構成。每一個單聚體都可形成一個水通道,包含2個呈倒置的重復結構,在每一個重復有2個保守的天冬氨酸—脯氨酸—丙氨酸(NPA)基序(圖2)。這二個NPA基序是整個水通道的核心部分,它們形成了指引水分子轉運的狹窄的空間,從而排除其他物質和離子的通過(Abramson and Vartanian, 2013)。在NPA附近還有一個非常保守的芳香族氨基酸/精氨酸限制位點(ar/R),它是主要限制和選擇水分子進入細胞的結構(Chenetal., 2006)。專一性轉運水的昆蟲AQPs主要就是利用上面的2個保守結構負責細胞水分的轉運。同時,許多AQPs都存在對汞化物敏感的位點。
圖2 水通道蛋白(AQP)的結構模型(引自Abramson and Vartanian, 2013)Fig.2 Structural model of aquaporin (AQP)(Abramson and Vartanian, 2013 )AQP包含兩個保守的NPA標志特征,紅色的環(huán)表示水分子。Aquaporins contain two conserved NPA signature motif, red circles represent water molecules.
除了運送水分子外,昆蟲AQPs還可以運輸其他的一些小分子溶質,但是不同的AQPs其轉運類型也不一致。例如,在黑腹果蠅體內有一種AQP可以運送單價陽離子;而在家蠶和梨小心食蟲體內的一種AQP不但可以轉運水還可以轉運甘油和尿素;在埃及伊蚊Aedesaegypti體內有一種AQP甚至還可以轉運甘油、赤蘚糖醇、海藻糖等物質。與專一轉水型AQPs相比,這些昆蟲AQPs在氨基酸序列和蛋白結構上發(fā)生了一定程度的變化,例如,家蠶轉甘油性AQP的一個保守的“NPA”變成了“NPS”;有些AQPs還可以增大2個“NPA”結構之間的直徑,從而使其能夠轉運甘油、尿素等(Jensenetal., 2001;Kingetal., 2004;Kataokaetal., 2009a)。
現(xiàn)有的研究表明,每種昆蟲都擁有多條AQPs,并且不同種類的昆蟲其體內存在的AQPs數(shù)目也不一樣,例如岡比亞按蚊Anopholesgambiae體內至少有7種AQPs(Liuetal., 2011),果蠅屬Drosophila體內可能包含有7種AQPs;從意大利蜜蜂Apismellifera、麗蠅蛹金小蜂Nasovitripennis和赤擬谷盜Triboleumcastaneum基因組推測有6種AQPs,埃及伊蚊和致倦庫蚊Culexpipiens有5種,豌豆蚜Aphispisum有4種,家蠶有3種(Campbelletal., 2008)。目前,已經通過試驗克隆出家蠶體內的3種AQPs基因(Kataokaetal., 2009a; Azumaetal., 2012),而在煙粉虱Bemisiatabaci中已經克隆了8種AQPs基因(Ekertetal., 2016)。此外,同一種昆蟲的不同AQPs在功能上也有差別,如在埃及伊蚊中有一種AQP(基因登錄號:XP_001650168)不可以轉運水分子,而其他3種AQPs均可以轉運水分子(表一)。昆蟲水通道蛋白在數(shù)目和功能上的差異,可能是其所處環(huán)境長期進化的結果。因此,昆蟲體內的每一種AQP的功能都與其生態(tài)適應有著密切的聯(lián)系。Kikawada等人發(fā)現(xiàn)嗜睡搖蚊Polypedilumvanderplanki之所以能夠在缺水的環(huán)境中生存,其體內的兩種水通道蛋白發(fā)揮著重要的作用(Kikawadaetal., 2008)。金針癭蚊在菊科植物中越冬,其越冬幼蟲可以忍受-50℃的低溫是因為其體內AQPs在起作用(Philipetal., 2008)。最近發(fā)現(xiàn)生活在南極地區(qū)的南極搖蚊Belgicaantarctica體內也有多種AQPs的存在,這些AQPs在南極搖蚊適應南極低溫干燥環(huán)境中起到重要的作用(Gotoetal., 2011; Gotoetal., 2015)。昆蟲的AQPs還具有組織表達特異性,不同的昆蟲有著不同的組織分布這與其體內的AQPs參與相應的生理功能密切相關。昆蟲的馬氏管是昆蟲排泄和吸收水分的重要器官,因此在許多昆蟲的馬氏管中AQPs都有很高的表達量,例如長紅錐蝽、埃及伊蚊、黑腹果蠅等。對于一些吸血性和取食植物汁液的昆蟲來說,它們由于取食大量的液體食物,維持體內的水分和滲透壓對于它們正常的生長發(fā)育有著重要的意義。因此,這類昆蟲在其濾室和后腸中都有很高的AQPs表達量,如豌豆蚜、煙粉虱等(Shakesbyetal., 2009; Ekertetal., 2016)。而德國小蠊的AQP在卵巢中表達量高,金針癭蚊的AQP在大腦中表達量最高(表1)(Philipetal., 2011; Herraizetal., 2011)。在埃及伊蚊和長紅獵蝽體內還發(fā)現(xiàn),水通道蛋白受到血清素的調節(jié)(Leeetal., 2003; Martinietal., 2004)。在蚜蟲體內發(fā)現(xiàn)AQP還可以調節(jié)水分和多元醇來控制其體內共生菌生長環(huán)境的滲透壓(Wallaceetal., 2012)。同時,有些研究還表明:昆蟲的AQPs還與生殖、滯育等有著密切的聯(lián)系(Benoitetal., 2014; Liuetal., 2017)。但是,有關昆蟲的AQPs研究起步較晚,研究也不夠深入,因此需要加強對昆蟲AQPs的研究,特別是其未知功能的研究。
表1 目前已知昆蟲的水通道蛋白(AQPs)
續(xù)上表
昆蟲種名Insectspecies基因號Genenumber已知組織分布Knowntissuedistribution已知轉運類型Reportedtransport參考文獻References梨小心食蟲GrapholitamolestaAB469883水、甘油和尿素Kataokaetal.,2009b岡比亞按蚊AnophelesgambiaeAB523397成蟲體內廣泛存在,在腸道、馬氏管和卵巢中表達高水Liuetal.,2010南極搖蚊BelgicaantarcticaAB602340,AB602341幼蟲體內廣泛存在,在唾液腺和馬氏管中表達高水Gotoetal.,2011金針癭蚊EurostasolidaginisFJ489680幼蟲體內廣泛存在,大腦中表達最高水Philipetal.,2011德國小蠊BlattellagermanicaFR744897成蟲體內廣泛存在,卵巢中表達高水和尿素Herraizetal.,2011煙粉虱BemisiatabaciEU127479 1成蟲體內廣泛存在,在成蟲的濾室和后腸中表達高水Mathewetal.,2011家蠶BombyxmoriAB458833主要在幼蟲后腸表達水Azumaetal.,2012伏蠅PhormiareginaAB713909在成蟲觸角中表達水Ishidaetal.,2012豌豆蚜AcyrthosiphonpisumACYPI009194若蟲體內廣泛存在,在脂肪體和含菌細胞中表達高水和直鏈醇Wallaceetal.,2012斜紋夜蛾SpodopteralituraKC999953,KC999954幼蟲體內廣泛存在,血淋巴中表達高未驗證功能劉海遠等,2013麗金龜AnomalacupreaAB741517水Nagaeetal.,2013西部牧草盲蝽LygushesperusKF048092KF048101成蟲體內廣泛存在水Fabricketal.,2014家蠅MuscaDomesticKJ599672幼蟲體內廣泛存在,在涎腺中表達高未驗證功能鐘鳴,2014埃及按蚊AedesaegyptiAAF64037成蟲體內廣泛存在,在馬氏管中表達高水Drakeetal.,2010,2015埃及按蚊AedesaegyptiXP_001656932成蟲體內廣泛存在,在馬氏管中表達高水Drakeetal.,2010,2015埃及按蚊AedesaegyptiXP_001650168成蟲體內廣泛存在,在馬氏管中表達高甘油、尿素、赤蘚糖醇、核糖醇、甘露醇、海藻糖Drakeetal.,2010,2015埃及按蚊AedesaegyptiXP_001650169成蟲體內廣泛存在,在馬氏管中表達高水Drakeetal.,2010,2015
續(xù)上表
昆蟲種名Insectspecies基因號Genenumber已知組織分布Knowntissuedistribution已知轉運類型Reportedtransport參考文獻References煙粉虱BemisiatabaciEU127479KT963825KT963826KT963827KT963828KT963831KT963829KT963830KT963832廣泛存在于成蟲的各個組織中水,甘油水水水,甘油水水Ekertetal.,2016茶尺蠖EctropisobliquaKT819587幼蟲體內廣泛存在,在中腸中表達高未驗證功能李良德等,2016岡比亞按蚊AnophelesgambiaeAGAP010325成蟲體內廣泛存在,在腸道和馬氏管中表達高水,甘油和尿素Liuetal.,2016
水是生命之源,而所有活細胞維持胞內水分平衡,必須要依賴水通道蛋白所形成的通道。因此,在所有的生命體中至少擁有一種水通道蛋白(AQP),并且許多生物體擁有多種AQPs。其中,以哺乳動物的13種AQPs研究最為深入,目前已經發(fā)現(xiàn)這13種AQPs功能各異,在哺乳動物的許多生理活動中起到重要的作用。作為全球繁衍最為成功的昆蟲,遍布在地球的各個角落,它們無疑會遇到各種各樣的不利環(huán)境。其中,水和溫度是昆蟲得以生存的最重要的因素。昆蟲的AQPs可以幫助其進行水分調節(jié)和適應不良環(huán)境。研究表明每種昆蟲體內擁有多種AQPs,并且有的AQP還存在多種轉錄型。昆蟲是如何合理地協(xié)調這些AQPs呢?是否昆蟲的AQPs還參與了其他的生理活動?在長期進化過程中,不同類型的昆蟲AQPs功能上有何差異?目前,雖然已經報道了幾種哺乳動物AQPs結構,但是有關昆蟲的AQPs蛋白結構未見報道。那么,昆蟲的AQPs的蛋白結構和哺乳動物AQPs的蛋白結構有哪些差別呢?因此昆蟲的AQPs還有很多問題亟待解決。目前有關昆蟲的AQPs研究還很少,尤其我國僅見數(shù)篇報道,這可能是由于AQPs屬于膜蛋白,研究難度大有關。但是,昆蟲AQPs的系統(tǒng)研究無疑將會給整個AQPs的研究帶來全新的視角,同時,也給害蟲治理帶來嶄新的契機。
References)
Abramson J, Vartanian AS. Watch water flow[J].Science, 2013, 340(6138): 1294-1295.
Agre P, Preston GM, Smith BL,etal. Aquaporin CHIP—the archetypal molecular water channel[J].AmericanJournalofPhysiology-HeartandCirculatoryPhysiology, 1993, 265(4Pt2): F463-F476.
Agre P, Saboori AM, Asimos A,etal. Purification and partial characterization of the Mr 30,000 integral membrane-protein associated with the erythrocyte Rh(d)antigen[J].TheJournalofBiologicalChemistry, 1987, 262(36): 17497-17503.
Agre P. Aquaporin water channels[J].BioscienceReports, 2004, 24(3): 127-163.
Azuma M, Nagae T, Maruyama M,etal. Two water-specific aquaporins at the apical and basal plasma membranes of insect epithelia: Molecular basis for water recycling through the cryptonephric rectal complex of lepidopteran larvae[J].JournalofInsectPhysiology, 2012, 58(4): 523-533.
Benga G. Water channel proteins (later called aquaporins)and relatives: Past, present, and future[J].IubmbLife, 2009, 61(2):112-133.
Benoit JB, Hansen IA, Attardo GM,etal. Aquaporins are critical for provision of water during lactation and intrauterine progeny hydration to maintain tsetse fly reproductive success[J].PLoSNeglectedTropicalDiseases, 2014, 8(4): e2517.
Campbell EM, Ball A, Hoppler S,etal. Invertebrate aquaporins: A review[J].JournalofComparativePhysiologyB-BiochemicalSystemicandEnvironmentalPhysiology, 2008, 178(8): 935-955.
Chen H, Wu Y, Voth GA. Origins of proton transport behavior from selectivity domain mutations of the Aquaporin-1 channel[J].BiophysicalJournal, 2006, 90(10): L73-L75.
Christensen BM, Zelenina M, Aperia A,etal. Localization and regulation of PKA-phosphorylated AQP2 in response to V(2)-receptor agonist/antagonist treatment[J].AmericanJournalofPhysiology-renalPhysiology, 2000, 278(1): F29-42.
Denker BM, Smith BL, Kuhajda FP,etal. Identification, purification, and partial characterization of a novel Mr 28, 000 integral membrane protein from erythrocytes and renal tubules[J].JournalofBiologicalChemistry, 1988, 263(30):15634-15642.
Dow JAT, Kelly DC, Davies SA,etal. A novel member of the major intrinsic protein family inDrosophila―are aquaporins involved in insect Malpighian (renal)tubule fluid secretion[J].TheJournalofPhysiology, 1995, 489: 110-111.
Drake KD, Schuette D, Chepelinsky AB,etal. pH-Dependent channel activity of heterologously-expressed main intrinsic protein (MIP)from rat lens[J].FEBSLetters, 2002, 512(1-3): 199-204.
Drake LL, Rodriguez SD, Hansen IA. Functional characterization of aquaporins and aquaglyceroporins of the yellow fever mosquito,Aedesaegypti[J].ScientificReports, 2015, 5: 7795.
Drake LL, Boudko DY, Marinotti O,etal. The aquaporin gene family of the yellow fever mosquito,Aedesaegypti[J].PLoSONE, 2010, 5(12): e15578.
Duchesne L, Hubert JF, Verbavatz JM,etal. Mosquito (Aedesaegypti)aquaporin, present in tracheolar cells, transports water, not glycerol, and forms orthogonal arrays inXenopusoocytemembranes[J].EuropeanJournalofBiochemistry, 2003, 270(3): 422-429.
Echevarria M, Ramirez-Lorca R, Hernandez CS,etal. Identification of a new water channel (Rp-MIP)in the Malpighian tubules of the insectRhodniusprolixus[J].EuropeanJournalofBiochemistry, 2001, 442(1): 27-34.
Ekert EV, Fran?ois Chauvigné F, Finn RN,etal. Molecular and functional characterization ofBemisiatabaciaquaporins reveals the water channel diversity of hemipteran insects[J].InsectBiochemistryandMolecularBiology, 2016, 77: 39-51.
Fabrick JA, Pei JX, Hull JJ,etal. Molecular and functional characterization of multiple aquaporin water channel proteins from the western tarnished plant bug,Lygushesperus[J].InsectBiochemistryandMolecularBiology, 2014, 45: 125-140.
Fushimi K, Uchida S, Hara Y,etal. Cloning and expression of apical membrane water channel of rat kidney collecting tubule[J].Nature, 1993, 361(6412): 549-552.
Gaspar M, Bousser A, Sissoff I,etal. Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea[J].PlantScience, 2003, 165(1):21-31.
Goto SG, Philip BN, Teets NM,etal. Functional characterization of an aquaporin in the Antarctic midgeBelgicaAntarctica[J].JournalofInsectPhysiology, 2011, 57(8): 1106-1114.
Goto SG, Lee, JR. RE,etal. Aquaporins in the antarctic midge, an extremophile that relies on dehydration for cold survival[J].TheBiologicalBulletin, 2015, 229(1): 47-57.
Herraiz A, Chauvigné, CerdJ,etal. Identification and functional characterization of an ovarian aquaporin from the cockroachBlattellagermanicaL. (Dictyoptera, Blattellidae)[J].TheJournalofExperimentalBiology,2011, 214(Pt21): 3895-3903.
Ishida Y, Nagae T, Azuma MA. Water-specific aquaporin is expressed in the olfactory organs of the Blowfly,Phormiaregina[J].JournalofChemicalEcology, 2012, 38(7): 1057-1061.
Ishiguro S, Li YP, Nakano K,etal. Seasonal changes in glycerol content and cold hardiness in two ecotypes of the rice stem borer,Chilosuppressalis, exposed to the environment in the Shonai district, Japan[J].JournalofInsectPhysiology, 2007, 53(4): 392-397.
Itoh T, Rai T, Kuwahara M, Ko SB,etal. Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells[J].BiochemicalandBiophysicalResearchCommunications, 2005, 330(3):832-838.
Jang JY, Kim DG, Kim YO,etal. An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses inArabidopsisthaliana[J].PlantMolecularBiologyReporter, 2004, 54(5): 713-725.
Jensen MO, Tajkhorshid E, Schulten K. The mechanism of glycerol conduction in aquaglyceroporins[J].Structure, 2001, 9(11): 1083-1093.
Kataoka N, Miyake S, Azuma M. Aquaporin and aquaglyceroporin in silkworms, differently expressed in the hindgut and midgut ofBombyxmori[J].InsectMolecularBiology, 2009, 18(3): 303-314.
Kataoka N, Miyake S, Azuma M. Molecular characterization of aquaporin and aquaglyceroporin in the alimentary canal ofGrapholitamolesta(the oriental fruit moth)—comparison withBombyxmoriaquaporins[J].JournalofInsectBiotechnologyandSericology, 2009, 78(2): 81-90.
Kaufmann N, Mathai JC, Hill WG,etal. Developmental expression and biophysical characterization of aDrosophilamelanogasteraquaporin[J].AmericanJournalofPhysiology-CellPhysiology, 2005, 289(2): C397-C407.
Kikawada T, Saito A, Kanamori Y,etal. Dehydration-inducible changes in expression of two aquaporins in the sleeping Chironomid,Polypedilumvanderplanki[J].BiochimicaetBiophysicaActa, 2008, 1778(2): 514-520.
King LS, Nielsen S, Agre P. Aquaporin-1 water channel protein in lung: ontogeny, steroid-induced expression, and distribution in rat[J].JournalofClinicalInvestigation, 1996, 97(10): 2183-2191.
King LS, Kozono D, Agre P. From structure to disease: the evolving tale of aquaporin biology[J].NatureReviewsMolecularCellBiology, 2004, 5(9): 687-698.
Kishida K, Kuyiyama H, Funahashi T,etal. Aquaporin adipose, a putative glycerol channel in adipocytes[J].JournalofBiologicalChemistry, 2000, 275(27): 20896-20902.
Klowden MJ. Physiological systems in insects[M]. San Diego: San Diego Academic Press. 2002,231-251.
LeCahérec F, Bron P, Verbavatz JM,etal. Incorporation of proteins into (Xenopus)oocytes by proteoliposome microinjection: functional characterization of a novel aquaporin[J].JournalofCellScience, 1996, 109(Pt6): 1285-1295.
LeCahérec F, Deschamps S, Delamarche C,etal. Molecular cloning and characterization of an insect aquaporin—functional comparison with aquaporin 1[J].EuropeanJournalofBiochemistry, 1996, 241(3): 707-715.
Lee DW, Pietrantonio PV. In vitro expression and pharmacology of the 5-HT7-like receptor present in the mosquitoAedesaegyptitracheolar cells and hindgut-associated nerves[J].InsectMolecularBiology, 2003, 12(6): 561-569.
Lee KS, Kim SR, Lee SM,etal. Molecular cloning and expression of a cDNA encoding the aquaporin homologue from the firefly,Pyrocoeliarufa[J].KoreanJournalofEntomology, 2001, 31(4): 269-279.
Li LD, Wang DF, Liu FJ,etal. cDNA cloning, preparation of polyclonal antibody and subcellular localization of aquaporin 1 (AQP1)inEctropisobliqua(Lepidoptera: Geoqmetridae)[J].ActaEntomologySinica, 2016, 59(4): 382-391. [李良德, 王定鋒, 劉豐靜, 等. 茶尺蠖水通道蛋白EoAQP1的cDNA克隆、多克隆抗體制備及亞細胞定位[J]. 昆蟲學報, 2016, 59(4): 382-391]
Liu HY, Shu BH, Jiang CL,etal. Molecular cloning, characterization and expression analysis of aquaporin 1 (AQP1)gene inSpodopteralitura(Lepidoptera: Noctuidae)[J].ActaEntomologySinica, 2013, 56(4): 339-349. [劉海遠, 舒本水, 姜春來, 等. 斜紋夜蛾水通道蛋白1(AQP1)基因的克隆、分子特性和表達分析[J]. 昆蟲學報, 2013, 56(4): 339-349]
Liu K, Tsujimoto H, Cha S,etal. Aquaporin water channel AgAQP1 in the malaria vector mosquito Anopheles gambiae during blood feeding and humidity adaptation[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 2011, 108(15): 6062-6066.
Liu K, Tsujimoto H, Huang YZ,etal. Aquaglyceroporin function in the malaria mosquitoAnophelesgambiae[J].BiologyoftheCell, 2016, 108: 294-305.
Liu LH, Ludewig U, Gassert B,etal. Urea transport by nitrogen-regulated tonoplast intrinsic proteins inArabidopsis[J].PlantPhysiology, 2003, 133(3): 1220-1228.
Liu Y, Denlinger DL, Piermarini PM. The diapause program impacts renal excretion and molecular expression of aquaporins in the northern house mosquito,Culexpipiens[J].JournalofInsectPhysiology, 2017, 98: 141-148.
Martini SV, Goldenberg RC, Fortes FSA,etal.RhodniusprolixusMalpighian tubule’s aquaporin expression is modulated by 5-hydroxytryptamine[J].ArchiveInsectBiochemistryPhysiology, 2004, 57(3): 133-141.
Mathew LG, Campbell EM, Yool AJB,etal. Identification and characterization of functional aquaporin water channel protein from alimentary tract of whitefly,Bemisiatabaci[J].InsectBiochemistryandMolecularBiology, 2011, 41(3): 178-190.
Morishita Y, Matsuzaki T, Hara-chikuma M,etal. Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule[J].MolecularandCellularBiology, 2005, 25(17): 7770-7779.
Nagae T, Miyake S, Kosaki S,etal. Identification and characterisation of a functional aquaporin water channel (AnomalacupreaDRIP)in a coleopteran insect[J].TheJournalofExperimentalBiology, 2013, 216: 2564-2572.
O’Donnell M. Insect excretory mechanisms[J].AdvancesinInsectPhysiology, 2008, 35: 1-122.
Philip BN, Kiss AJ, Lee RE. The protective role of aquaporins in the freeze-tolerant insectEurostasolidaginis: functional characterization and tissue abundance of EsAQP1[J].TheJournalofExperimentalBiology, 2011, 214(Pt5): 848-857.
Philip BN, Yi SX, Elnitsky MA,etal. Aquaporins play a role in desiccation and freeze tolerance in larvae of the goldenrod gall fly,Eurostasolidaginis[J].TheJournalofExperimentalBiology, 2008, 211(Pt7): 1114-1119.
Preston GM, Carroll TP, Guggino WB,etal. Appearance of water channels inXenopusoocytes expressing red-cell CHIP28 protein[J].Science, 1992, 256(5055): 385-387.
Tang JX, Zhang C, Bai L,etal. Cloning and sequence analysis of cDNA encoding aquaporin (AQP)gene fromAnophelessinensis[J].ChineseJournalofSchistosomiasisControl, 2012, 24(6): 663-667. [唐建霞, 張超, 白亮, 等. 中華按蚊水通道蛋白(AsAQP)cDNA克隆與序列分析[J]. 中國血吸蟲病防治雜志, 2012, 24(6): 663-667]
Shakesby AJ, Wallace IS, Isaacs HV,etal. Water-specific aquaporin involved in aphid osmoregulation[J].InsectBiochemistryandMolecularBiology, 2009, 39(1): 1-10.
Xu WY, Tan Y, Shang HW,etal. Advances in understanding of the mechanisms of water regulation of insects[J].BulletinofScienceandTechnology, 2015, 31(11): 89-96. [徐文彥,譚椰, 商晗武, 等. 昆蟲體水分調控機制的研究進展[J]. 科技通報, 2015, 31(11): 89-96]
Yanochko GM, Yool AJ. Regulated cationic channel function inXenopusoocytes expressingDrosophilabig brain[J].InternationalJournalofNeuroscience, 2002, 22(7): 2530-2540.
Yi SX, Joshua BB, Michael AE,etal. Function and immunolocalization of aquaporins in the Antarctic midgeBelgicaAntarctica[J].JournalofInsectPhysiology, 2011, 57(8): 1106-1114.
Zhong M. Identification and functional analysis of the aquaporin inMuscaDomestic[D]. Changshai: Doctoral dissertation of Central South University. 2014. [鐘鳴. 家蠅水通道蛋白克隆、鑒定及其功能的研究[D]. 長沙: 中南大學博士論文. 2014]
Researchprogressininsectaquaporins
LU Ming-Xing1, PAN Dan-Dan1,XU Jing1, LIU Yang2, WANG Gui-Rong2, DU Yu-Zhou1*
(1. College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; 2. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193)
Insect aquaporins are integral membrane proteins. It’s necessary to maintain the balance of water by aquaporins in insect, and more and more studies on the insect aquaporins were found, Therefore, in this article, the newest research progresses were summarized systematically, in order to draw scientist’s interesting. This review will be also helpful to researchers, who intend to know and study the aquaporins. Current researches demonstrated insect typical aquaporins consisted of 250-300 amino acids, with a molecular weight of 23-35 kDa, and they included six hydrophobic membrane-spanning helices, two conserved asparagine-proline-alanine (NPA)amino acid triplet motif etc. Phylogenetic analyses exhibited all known insect aquaporins were segregated into five subfamilies, including DRIP, BIB, PRIP, RPIPs and LHIPs. In addition to water, insect aquaporins could transport low-molecular weight solutes, such as urea, glycerol, trehalose and so on. Insect aquaporins also possessed tissue-specific characteristics, and they played very important roles in many physiological functions of insect. Therefore, the further functions should be demonstrated. Moreover, the deep study of insect aquaporins will also give new sight of the integrated pest management.
Insect; aquaporins; function; water; classification
陸明星,潘丹丹,徐靜,等.昆蟲水通道蛋白的研究進展[J].環(huán)境昆蟲學報,2017,39(5):983-991.
Q968
A
1674-0858(2017)05-0983-09
國家自然科學基金項目(31371937,31401733);植物病蟲害生物學國家重點實驗室開放基金(SKLOF201406); 國家重大基礎研究規(guī)劃(“973”計劃)項目(2012CB114100)
陸明星, 男, 1984年生, 江蘇鹽城人, 副教授,博士, 研究方向為昆蟲分子生態(tài)及系統(tǒng)進化, E-mail: lumx@yzu.edu.cn
*通訊作者Corresponding author, E-mail: yzdu@yzu.edu.cn
Received: 2016-12-16;接受日期Accepted: 2017-07-02