王海波,劉鳳之,韓 曉,謝計蒙,王孝娣,王寶亮
?
葡萄需冷量和需熱量估算模型及設(shè)施促早栽培品種篩選
王海波,劉鳳之※,韓 曉,謝計蒙,王孝娣,王寶亮
(中國農(nóng)業(yè)科學(xué)院果樹研究所/農(nóng)業(yè)部園藝作物種質(zhì)資源利用重點實驗室,興城 125100)
為進一步明確不同模型對葡萄需冷量和需熱量的估算效果,并篩選出適宜設(shè)施促早栽培的葡萄品種,首先利用≤7.2 ℃模型、0~7.2 ℃模型和猶他模型等需冷量估算模型與生長度小時模型和有效積溫模型等需熱量估算模型分別估算22個供試葡萄品種的需冷、需熱量;然后比較不同模型估算結(jié)果的年際間變異系數(shù),篩選出最適需冷、需熱量估算模型;最后將不同品種的需冷量和需熱量聚類分析,篩選出適于設(shè)施促早栽培的品種。結(jié)果表明:對于供試葡萄品種需冷量的估算,以猶他模型效果最好;對于需熱量的估算,采用有效積溫模型更為適宜、簡單實用。供試葡萄品種中高需冷量品種明顯多于低需冷量品種,低需熱量品種明顯多于高需熱量品種。其中無核早紅、87-1、莎巴珍珠、香妃和紅香妃等5個品種的需冷、需熱量均低,花期早、更有利于產(chǎn)期調(diào)節(jié),適宜設(shè)施促早栽培。
果實;栽培;模型;需冷量;需熱量;生長度小時;有效積溫
在設(shè)施葡萄促早栽培中,產(chǎn)期受需冷量和需熱量共同調(diào)節(jié)[1],包含著葡萄萌芽展葉對溫度不同要求的2個重要時期—休眠期和催芽期。葡萄進入深休眠后,只有休眠解除即滿足品種的需冷量(如使用破眠劑則有效低溫累積滿足品種需冷量的2/3即可)才能開始升溫,否則過早升溫會引起不萌芽,或萌芽延遲且不整齊,而且新梢生長不一致,花序退化,漿果產(chǎn)量和品質(zhì)下降等問題[2-3]。需冷量滿足后,一定的熱量累積(需熱量)是葡萄萌芽展葉必不可少的[4]。因此,需冷量和需熱量估算的正確與否對于設(shè)施葡萄產(chǎn)期調(diào)節(jié)而言至關(guān)重要。對于葡萄需冷量和需熱量的度量一直倍受人們關(guān)注,目前的需冷量和需熱量估算模型主要是物候?qū)W模型而不是生理學(xué)模型,沒有以生理進程為基礎(chǔ),所以它們確定休眠解除日期和萌芽日期的準(zhǔn)確性受限于特定的環(huán)境條件,以估算出的需冷量值和需熱量值年際間變異系數(shù)最小的估算模型為該環(huán)境條件下的最佳估算模型[5]?!?.2 ℃模型[3-7]、0~7.2 ℃模型[8-12]和猶他模型[13-18]等是目前果樹生產(chǎn)中應(yīng)用最為廣泛的需冷量估算模型,生長小時度模型和有效積溫模型[19-24]是應(yīng)用最為廣泛的需熱量估算模型。關(guān)于生長度小時模型和有效積溫模型對需熱量的計算,在葡萄[20]、櫻桃[22]、杏[23]、巴旦杏[24]、梨[25]、枸杞[26]、桃[27]上都有應(yīng)用,但大多研究只分別估算不同品種的需冷量和需熱量,各個模型之間缺乏系統(tǒng)的比對分析。Gu曾經(jīng)比較過生長度小時模型和生長度天模型對葡萄需熱量的擬合效果,認為生長度小時模型相對更加準(zhǔn)確[28]。王西成曾經(jīng)用生長度小時模型和有效積溫模型對14個設(shè)施葡萄品種進行需熱量計算,但目的是求其需熱量的大小及分析需冷量和需熱量的關(guān)系,未涉及到相關(guān)模型的比較。針對葡萄而言,≤7.2 ℃模型、0~7.2 ℃模型及猶他模型3種需冷量估算模型,生長小時度模型和有效積溫模型2種需熱量估算模型,具體哪種模型是估算葡萄需冷和需熱量的最適模型還尚未明確,嚴重影響了設(shè)施葡萄休眠解除時間和萌芽時間的正確確定,進而影響設(shè)施葡萄的產(chǎn)期調(diào)節(jié)。本試驗利用≤7.2 ℃模型、0~7.2 ℃模型及猶他模型3種需冷量估算模型與生長小時度模型和有效積溫模型2種需熱量估算模型,分別對22個供試設(shè)施葡萄品種的需冷量和需熱量進行估算,分析比較各模型估算結(jié)果的年際間變異系數(shù),篩選出設(shè)施葡萄需冷量和需熱量的最佳估算模型,為設(shè)施葡萄生產(chǎn)中需冷量測定儀的研發(fā)和促早栽培適宜品種的選擇提供理論依據(jù),促進設(shè)施葡萄生產(chǎn)的健康可持續(xù)發(fā)展。
試驗以貝達嫁接的4年生無核早紅、紅旗特早玫瑰、無核白雞心、紫珍香、紅標(biāo)無核、紅香妃、87-1、紅雙味、布朗無核、莎巴珍珠、京亞、香妃、巨峰、乍娜、巨玫瑰、矢富羅莎、藤稔、夏黑和火星無核等22個葡萄品種為試材,于2009年11月-2012年2月在中國農(nóng)業(yè)科學(xué)院果樹研究所葡萄核心技術(shù)試驗示范園的高效節(jié)能型日光溫室(遼寧興城,120.51°E,40.45°N)內(nèi)進行。試材行株距1 m×0.5 m,單層水平龍干形配合直立葉幕。休眠解除期管理采用中國農(nóng)業(yè)科學(xué)院果樹研究所研發(fā)的促進休眠解除的技術(shù)措施-三段式溫度管理人工集中預(yù)冷帶葉休眠技術(shù)[29]。肥水管理采取水肥一體化,分為萌芽前、花前5~7 d、幼果發(fā)育期、轉(zhuǎn)色初期、成熟前15 d、果實采收后等關(guān)鍵時期進行肥水管理,肥料成分以氮磷鉀鈣鎂等為主,用量為75 kg/667 m2;水分管理采用膜下滴灌。其他管理同常規(guī)。不同葡萄品種的對應(yīng)編號見表1。
表1 不同葡萄品種的對應(yīng)編號
1.2.1 生理休眠解除日期的確定
根據(jù)試驗結(jié)合生產(chǎn)實踐,中國農(nóng)業(yè)科學(xué)院果樹研究所制定出生理休眠解除日期的確定標(biāo)準(zhǔn),于2009年-2012年每年的11月20日至次年的2月5日每3 d采樣1次,每次每品種采集20芽,在日光溫室中單芽扦插沙基培養(yǎng)。1)培養(yǎng)條件:沙基濕度以用手握緊剛開始滴水為宜(含水率70~80%);氣溫晝間20~25 ℃左右,夜間5 ℃以上;空氣濕度80%以上;自然光照。利用浙大電氣ZDR-20溫濕度記錄儀記錄日光溫室內(nèi)空氣的溫濕度。2)生理休眠解除標(biāo)準(zhǔn):培養(yǎng)30 d左右,有效熱量累積[有效熱量累積=∑(小時平均氣溫-生物學(xué)零度),其中生物學(xué)零度為10 ℃]達3 600 h·℃(小時·℃)后,若萌芽率為50%~60%,則本次采樣培養(yǎng)之日即為生理休眠解除之日;若萌芽率為60%~70%,則本次和上次采樣培養(yǎng)的中間日即為生理休眠解除之日;若萌芽率>70%,則上次采樣培養(yǎng)之日即為生理休眠解除之日。
1.2.2 需冷量的估算
葡萄解除生理休眠所需的有效低溫時數(shù)或單位數(shù)稱為葡萄的需冷量,即有效低溫累積起始之日始至生理休眠解除之日止時間段內(nèi)的有效低溫累積,常用≤7.2 ℃模型、0~7.2 ℃模型和猶他模型3種需冷量估算模型進行估算[3-18]。其中≤7.2 ℃模型和0~7.2 ℃模型均以秋季日均溫穩(wěn)定通過7.2 ℃的日期作為有效低溫累積的起始日期,分別以≤7.2 ℃和0~7.2 ℃低溫累積1小時記為1 h,單位h;而猶他模型以秋季負累積低溫單位絕對值達到最大值時的日期為有效低溫累積的起點,2.5~9.1 ℃溫度累積1小時記為1 C·U、1.5~2.4 ℃及9.2~12.4 ℃溫度累積1小時記為0.5 C·U、≤1.4 ℃或12.5~15.9 ℃溫度累積1小時記為0 C·U、16~18 ℃溫度累積1小時記為?0.5 C·U、18.1~21 ℃溫度累積1小時記為-1 C·U、21.1~23 ℃溫度累積1小時記為?2 C·U。
1.2.3 需熱量的估算
葡萄從生理休眠結(jié)束至50%芽展葉所需的有效熱量累積稱為葡萄的需熱量,常用生長度小時模型和有效積溫模型2種需熱量估算模型進行估算[19-24]。其中有效積溫模型對需熱量的估算用有效積溫進行,即需熱量(有效積溫)=∑(日平均氣溫?生物學(xué)零度),單位為d·℃,葡萄的生物學(xué)零度為10 ℃,計算簡單方便。而生長度小時模型對需熱量的估算用生長度小時GDH(growing degree hours·℃)表示,單位為GDH·℃,當(dāng)溫度≤4.5 ℃時,累積1 h需熱量為0 GDH·℃;當(dāng)溫度為4.5~25.0 ℃時,累積1 h需熱量為GDH·℃=?4.5;當(dāng)溫度≥25 ℃時,累積1 h需熱量為20.5 GDH·℃。
1.2.4 需冷量和需熱量估算模型的評價標(biāo)準(zhǔn)
以估算出的需冷量值和需熱量值年際間變異系數(shù)最小的估算模型為該環(huán)境條件下的最佳估算模型[5]。變異系數(shù)是衡量資料中各觀測值變異程度的1個統(tǒng)計量。當(dāng)進行2個或多個資料變異程度的比較時,如果度量單位不同,需采用標(biāo)準(zhǔn)差與平均數(shù)的比值即變異系數(shù)(CV)來比較,可以消除度量單位不同對兩個或多個資料變異程度比較的影響[30-32]。
為了比較≤7.2 ℃模型、0~7.2 ℃模型和猶他模型3種需冷量估算模型對需冷量估算的準(zhǔn)確程度,引入不同葡萄品種需冷量的年際間變異系數(shù)進行比較分析。對于本試驗而言,0~7.2 ℃模型和7.2 ℃模型的度量單位一致,均為h;但猶他模型的度量單位與0~7.2 ℃模型和7.2 ℃模型的度量單位不同,為冷溫單位(C·U),所以3種需冷量估算模型之間無法直接比較,必須引入變異系數(shù)。由表2可知,用≤7.2 ℃模型估算不同葡萄品種的需冷量,其年際間變異系數(shù)總體最大;用0~7.2 ℃模型估算不同葡萄品種的需冷量,除了87-1、夏黑和京亞3個品種外,其余品種的年際間變異系數(shù)均大于用猶他模型估算不同葡萄品種需冷量的年際間變異系數(shù);用猶他模型估算不同葡萄品種的需冷量,其年際間變異系數(shù)最小;因此,用猶他模型估算不同葡萄品種的需冷量,結(jié)果更加準(zhǔn)確。
表2 不同葡萄品種的需冷量及年際間變異系數(shù)
為了更好的比較分析不同葡萄品種需冷量的分布情況,采用聚類分析(最長距離法)將22個葡萄品種的需冷量進行分類,其需冷量數(shù)據(jù)為利用猶他模型估算得出。由圖1可知,當(dāng)22個葡萄品種分成兩類時,各類間距離最長,特點突出。第一類為紅旗特早玫瑰、火星無核、紫珍香、巨峰、優(yōu)無核、矢富羅莎、無核白雞心、乍娜、布朗無核、藤稔、奧迪亞無核、巨玫瑰、紅標(biāo)無核、紅雙味、京亞和夏黑等16個品種,其需冷量均值介于963~1 046 C·U之間,屬于高需冷量品種;第二類為無核早紅、87-1、莎巴珍珠、香妃、紅香妃和京秀等6個品種,其需冷量均值介于791~894 C·U之間,屬于低需冷量品種。綜上,常見葡萄品種中高需冷量品種明顯多于低需冷量品種。
從表3可以看出,無論用有效積溫模型還是用生長度小時模型估算出的不同葡萄品種需熱量的年際間變異系數(shù)均很小,2種需熱量估算模型之間差異不明顯,說明兩種模型對不同葡萄品種需熱量估算的準(zhǔn)確度相近。但考慮到計算的簡便與否和是否便于掌握,葡萄品種需熱量的估算以采用有效積溫模型為宜。
同樣,為了更好的比較分析不同葡萄品種需熱量的分布情況,采用聚類分析(最長距離法)將22個葡萄品種的需熱量進行分類,其需熱量數(shù)據(jù)為利用有效積溫模型估算得出。由圖2可知,當(dāng)22個葡萄品種分成2類時,各類間距離最長,特點突出。第一類為紅旗特早玫瑰、無核白雞心、無核早紅、紅標(biāo)無核、87-1、乍娜、莎巴珍珠、香妃、紅香妃、奧迪亞無核、紅雙味、巨峰、優(yōu)無核、京亞、京秀、巨玫瑰、藤稔、布朗無核、夏黑和矢富羅莎等20個品種,其需熱量均值介于200~267 d·℃之間,屬于低需熱量品種;第二類為火星無核和紫珍香等2個品種,其需熱量均值介于435~477 d·℃之間,屬于高需熱量品種,顯著高于上述低需熱量品種。綜上,常見葡萄品種中低需熱量品種明顯多于高需熱量品種。
圖1 不同葡萄品種需冷量(猶他模型)的聚類分析
表3 不同葡萄品種的需熱量及年際間變異系數(shù)
圖2 不同葡萄品種需熱量(有效積溫模型)的聚類分析
Citadin等[4]和Spiegel-Roy等[25]研究發(fā)現(xiàn)果樹的需冷量和需熱量共同影響其開花期,進而影響整個果樹產(chǎn)期。因此,設(shè)施葡萄促早栽培的產(chǎn)期由品種的需冷量和需熱量共同調(diào)節(jié),其需冷量和需熱量越低,其花期越早,產(chǎn)期調(diào)節(jié)能力越強,越適宜促早栽培。從表2和3可以看出,無核早紅、87-1、莎巴珍珠、香妃和紅香妃等5個葡萄品種不僅需冷量低,而且需熱量低,因此其花期早,利于產(chǎn)期調(diào)節(jié),適宜設(shè)施促早栽培。
在不同需冷量估算模型中,≤7.2 ℃模型計算最為簡單,凡是≤7.2 ℃的溫度都可作為需冷量積累。對于表1中個別品種(如紅旗特早玫瑰和紫珍香)第1年的需冷量與后2年相比變化較大,說明紅旗特早玫瑰和紫珍香這兩個品種不適用≤7.2 ℃模型擬合,從另一方面,也反映出≤7.2 ℃測定需冷量的不穩(wěn)定性。0~7.2 ℃模型考慮到了0 ℃以下的溫度對葡萄休眠沒有幫助,因此,只考慮0~7.2 ℃內(nèi)的溫度積累值,這比7.2 ℃模型更加精確了些。而且,0~7.2 ℃模型是最早提出、應(yīng)用最廣的模型[33],現(xiàn)在雖然有些模型均優(yōu)于0~7.2 ℃模型[34-36],但其在需冷量分析中仍被廣泛使用,例如 Baldocchi等[37]只用這種模型去分析加利福尼亞地區(qū)落葉果樹的需冷量,而該模型在中國更是被廣泛應(yīng)用[11,38-40]。這主要是由于其計算簡便快捷,所以更加利于推廣應(yīng)用。但是Darbyshire等[12]發(fā)現(xiàn),在進行需冷量分析尤其是育種時,采用0~7.2 ℃模型是不合適的。落葉果樹的需冷量屬于生態(tài)生理指標(biāo),在氣候與生態(tài)型稍有不同的地區(qū)會造成差異;0~7.2 ℃模型雖然被廣泛采用,但在休眠期間,不同年份晝夜溫差越大時,由于高、中、低溫間的抵消作用,計算結(jié)果就會出現(xiàn)差異。而猶他模型對需冷量的積累劃分更加細致,每個溫度階段都有相應(yīng)的需冷量積累單位,對低溫轉(zhuǎn)換的范圍分得較細,還考慮到了高溫對需冷量的負向作用,因此,計算結(jié)果更加準(zhǔn)確,也更符合自然規(guī)律。本研究表明,用猶他模型估算不同葡萄品種的需冷量,其年際間變異系數(shù)最小,因此,用猶他模型估算不同葡萄品種的需冷量結(jié)果更為準(zhǔn)確。這與王力榮等[11]在桃樹上和Ruiz David等[23]在杏樹上得出的結(jié)論一致。美中不足的是猶他模型計算較為繁瑣,不易于推廣應(yīng)用。
生長度小時模型雖然計算形式與猶他模型有些類似,但是最終的計算結(jié)果并沒有像猶他模型在計算需冷量時那樣表現(xiàn)出很大的優(yōu)勢。本研究表明,無論用生長度小時模型還是用有效積溫模型估算出的不同葡萄品種需熱量的年際間變異系數(shù)均很小,2種需熱量估算模型之間差異不大,但生長度小時模型計算繁雜,因此,就本試驗而言,從簡便快捷的角度來考慮,有效積溫模型更適宜葡萄品種需熱量的估算。
3種需冷量模型和2種需熱量模型雖然對每個品種需冷量和需熱量的積累值估算有所差異,可是無論采用哪種模型,各個品種的需冷量和需熱量大小順序都相對一致,因此,如果單純的比較各個品種的需冷量和需熱量大小,那么用任何一種模型都可以。但是如果指導(dǎo)實際設(shè)施生產(chǎn),那么對于需冷量的計算,還是應(yīng)該選擇計算相對準(zhǔn)確的猶他模型,這樣才能更加準(zhǔn)確的掌握升溫時間和選擇品種,把握設(shè)施葡萄的產(chǎn)期,生產(chǎn)出更優(yōu)質(zhì)的果品。如基于猶他模型的計算法則研發(fā)出需冷量測定儀,則可有效解決猶他模型計算繁雜不易于推廣應(yīng)用的問題。對于需熱量的估算,由前面討論可知,應(yīng)選有效積溫模型更為適宜。
對于常見設(shè)施葡萄品種需冷量的估算,選用猶他模型效果最好;對于需熱量的估算,選用有效積溫模型更為適宜。同時本研究發(fā)現(xiàn),常見設(shè)施葡萄品種中高需冷量品種明顯多于低需冷量品種,而低需熱量品種明顯多于高需熱量品種。還發(fā)現(xiàn),無核早紅、87-1、莎巴珍珠、香妃和紅香妃等5個葡萄品種不僅需冷量低,而且需熱量低,因此其花期早,更加利于產(chǎn)期調(diào)節(jié),適宜設(shè)施促早栽培。
[1] 謝計蒙. 設(shè)施葡萄促早栽培適宜品種的評價與篩選[D]. 北京:中國農(nóng)業(yè)科學(xué)院,2012.
Xie Jimeng. Evaluating and Screening of the Appropriate Grape Cultivars to Promote Early Maturing in Greenhouse[D]. Beijing: ChineseAcademyofAgriculturalSciences, 2012. (in Chinese with English abstract)
[2] Erez A, Couvillon G A. Characterization of the influence of moderate temperatures on rest completion in peach[J]. Journal of the American Society for Horticultural Science. 1987, 112(4): 677-680.
[3] Erez A. Bud dormancy; phenomenon, problems and solutions in the tropics and subtropics[M]. Temperate fruit crops in warm climates. Springer Netherlands, 2000: 17-48.
[4] Citadin I, Raseira M C B, Herter F G, et al. Heat requirement for blooming and leafing in peach[J]. Revista Brasileira De Fruticultura , 2001, 36(2): 305-307.
[5] 王海波. 桃芽自然休眠誘導(dǎo)與短時間高溫破眠機制研究[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué),2006.
Wang Haibo. Study on the Mechanisms of Endodormancy Inductionand Short-term Heating Releasing Dormancy in Peach (-) Bud[D]. Wulumuqi: Xinjiang Agruicultural University, 2006. (in Chinese with English abstract)
[6] Sparks D. Chilling and heating model for pecan budbreak[J]. Journal of the American Society for Horticultural Science, 1993, 118(1): 29-35.
[7] Sunley R J, Atkinson C J, Jones H G. Chill unit models and recent changes in the occurrence of winter chill and spring frost in the United Kingdom[J]. The Journal of Horticultural Science and Biotechnology, 2006, 81(6): 949-958.
[8] Fan S, Bielenberg D G, Zhebentyayeva T N, et al. Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach ()[J]. New Phytologist, 2010, 185(4): 917-930.
[9] Valentini N, Me G, Spanna F, et al. Chilling and heat requirement in apricot and peach varieties[J]. XXVI Internatio-nal Horticultural Congress: Key Processes in the Growth and Cropping of Deciduous Fruit and Nut Trees 636. 2002: 199-203.
[10] Sunley R J, Atkinson C J, Jones H G. Chill unit models and recent changes in the occurrence of winter chill and spring frost in the United Kingdom[J]. The Journal of Horticultural Science and Biotec-hnology, 2006, 81(6): 949-958.
[11] 王力榮,朱更瑞,方偉超,等. 桃品種需冷量評價模式的探討[J]. 園藝學(xué)報,2003,30(4):379-383.
Wang Lirong, Zhu Gengrui, Fang Weichao, et al. Estimating Models of the Chilling Requirement for Peach[J]. Acta Horticulturae Sinica, 2003, 30(4): 379-383. (in Chinese with English abstract)
[12] Darbyshire R, Webb L, Goodwin I, et al. Impact of future warming on winter chilling in Australia[J]. International journal of biometeorology, 2013, 57(3): 355-366.
[13] Cesaraccio C, Spano D, Snyder R L, et al. Chilling and forcing model to predict bud-burst of crop and forest species[J]. Agricultural and Forest Meteorology, 2004, 126(1): 1-13.
[14] Luedeling E, Brown P H. A global analysis of the comparability of winter chill models for fruit and nut trees[J]. International Journal of Biometeorology, 2011, 55(3): 411-421.
[15] Anderson J L, Richardson E A, Kesner C D. Validation of chill unit and flower bud phenology models for ‘Montmo rency’ sour cherry[J]. Acta Horticulturae , 1986, 184: 71-78.
[16] Luedeling E, Zhang M, McGranahan G, et al. Validation of winter chill models using historic records of walnut phenology[J]. Agricultural and Forest Meteorology, 2009, 149(11): 1854-1864.
[17] Lue deling E, Zhang M, Luedeling V, et al. Sensitivity of winter chill models for fruit and nut trees to climatic changes expected in California's Central Valley[J]. Agriculture, Ecosystems & Environment, 2009, 133(1): 23-31.
[18] 高東升,束懷瑞,李憲利. 幾種適宜設(shè)施栽培果樹需冷量的研究[J]. 園藝學(xué)報,2001,28(4):283-289. Gao Dongsheng, Shu Huairui, Li Xianli. A study on bud chilling requirements of fruit trees in greenhouse[J]. Acta Horticulturae Sinica, 2001, 28(4): 283-289. (in Chinese with English abstract)
[19] 王海波,王孝娣,王寶亮,等. 設(shè)施葡萄常用品種的需冷量,需熱量及2者關(guān)系研究[J]. 果樹學(xué)報,2011,28(1):37-41.
Wang Haibo, Wang Xiaodi, Wang Baoliang, et al. Chilling and heat requirements and relationship between them for major grape cultivars under protected culture[J]. Journal of Fruit Science, 2011, 28(1): 37-41. (in Chinese with English abstract)
[20] 王西成,錢亞明,趙密珍,等. 設(shè)施葡萄萌芽調(diào)控中需冷量和需熱量及其相互關(guān)系[J]. 植物生理學(xué)報,2014,50(3):309-314.
Wang Xicheng, Qian Yaming, Zhao Mizhen, et al. Chilling and heat requirements and their relationship in budburst regulation ofL. for protected cultivation[J]. Journal of Plant Physiology, 2014, 50(3): 309-314. (in Chinese with English abstract)
[21] Maulión E, Valentini G H, Kovalevski L, et al. Comparison of methods for estimation of chilling and heat requirements of nectarine and peach genotypes for flowering[J]. Scientia Horticulturae, 2014, 177(3): 112-117.
[22] Alburquerque N, Garc′?a-Montiel F, Carrillo A, et al. Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements[J]. Environmental and Experimental Botany, 2008, 64(2): 162-170.
[23] Ruiz David, Campoy J, Egea J. Chilling and heat requirements of apricot cultivars for flowering[J]. Environmental and Experimental Botany, 2007, 61(3): 254-263.
[24] Egea J, Ortega E, Martínez-Gómez P, et al. Chilling and heat requirements of almond cultivars for flowering[J]. Environmental and Experimental Botany, 2003, 50(3): 79-85.
[25] Spiegel-Roy P. Alston F. Chilling and post-dormant heat requirement as selection criteria for late-flowering pears[J]. HortScience, 1979, 54 (2): 115-120.
[26] 戴國禮,張波,秦墾,等. 不同枸杞品種(系)需冷量及需熱量的初步研究[J]. 西南農(nóng)業(yè)學(xué)報,2016,29(8):1962-1966.
Dai Guoli, Zhang Bo, Qin Ken, et al. Preliminary study on chilling requirement and heat requirements of major wolfberry cultivars[J]. Southwest China Journal of Agricultural Sciences 2016, 29(8): 1962-1966. (in Chinese with English abstract)
[27] Day K, Lopez G, Dejong T. Using growing degree hours accumulated thirty days after bloom to predict peach and nectarine harvest date[J]. Acta Horticulturae, 2008, 163-167.
[28] Gu S. Growing degree hours: A simple, accurate, and precise protocol to approximate growing heat summation for grapevines[J]. International Journal of Biometeorology, 2016, 60(8): 1-12.
[29] 劉鳳之,王海波主編. 設(shè)施葡萄促早栽培實用技術(shù)手冊[M]. 北京:中國農(nóng)業(yè)出版社,2010:101-102.
[30] 趙俊卉,亢新剛,張慧東,等. 長白山主要針葉樹種胸徑和樹高變異系數(shù)與競爭因子的關(guān)系[J]. 應(yīng)用生態(tài)學(xué)報,2009,20(8):1832-1837. Zhao Junhui, Kang Xingang, Zhang Huidong, et al. Relationships between coefficient of variation of diameter and height and competition index of main coniferous trees in Changbai Mountains[J]. The Journal of Applied Ecology 2009, 20(8): 1832. (in Chinese with English abstract)
[31] Faber D S, Korn H. Applicability of the coefficient of variation method for analyzing synaptic plasticity[J]. Biophysical Journal, 1991, 60(5): 1288-1294.
[32] Reed G F, Lynn F, Meade B D. Use of coefficient of variation in assessing variability of quantitative assays[J]. Clinical & Diagnostic Laboratory Immunology, 2002, 9(6): 1235.
[33] Darbyshire R, Webb L, Goodwin I, et al. Winter chilling trends for deciduous fruit trees in Australia[J]. Agricultural & Forest Meteorology, 2011, 151(8): 1074-1085.
[34] Pérez F J, Ormeno N, Reynaert B, et al. Use of the dynamic model for the assessment of winter chilling in a temperate and a subtropical climatic zone of Chile[J]. Chilean journal of agricultural research, 2008, 68(2): 198-206.
[35] Alburquerque N, García-Montiel F, Carrillo A, et al. Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements[J]. Environmental and Experimental Botany, 2008, 64(2): 162-170.
[36] Luedeling E, Zhang M H, Mcgranahan G, et al. Validation of winter chill models using historic records of walnut phonology[J]. Agricultural & Forest Meteorology, 2009, 149(11): 1854-1864.
[37] Baldocchi D, Wong S. Accumulated winter chill is decreasing in the fruit growing regions of California[J]. Climatic Change, 2008, 87(1): 153-166.
[38] 章鎮(zhèn),高志紅,盛炳成,等. 葡萄不同品種需冷量研究初報[J]. 中國果樹,2002,3:15-17.
Zhang Zhen, Gao Zhihong, Sheng Bingcheng, et al. Preliminary report about chilling requirement study of grape[J]. China Fruits, 2002, 3: 15-17. (in Chinese with English abstract)
[39] 王力榮,朱更瑞,左覃元. 中國桃品種需冷量的研究[J]. 園藝學(xué)報,1997(2):194-196.
Wang Lirong, Zhu Gengrui, Zuo Tanyuan. Studies on the Chilling Requirement of Peach Varieties[J]. Acta Horticulturae Sinica, 1997(2): 194-196. (in Chinese with English abstract)
[40] 崔萍,曹尚銀,姜建福. 棗、石榴、無花果需冷量測定試驗初報[J]. 經(jīng)濟林研究,2009,27(1):91-93.
Cui Ping, Cao Shangyin, Jiang Jianfu. Preliminary report about chilling requirement determination of Jujube, Pomegranate and Fig[J]. Nonwood Forest Research, 2009, 27(1): 91-93. (in Chinese with English abstract)
Grape chilling requirement estimated models and heat requirement estimated models and selection of early cultivars in greenhouse
Wang Haibo, Liu Fengzhi※, Han Xiao, Xie Jimeng, Wang Xiaodi, Wang Baoliang
(/,,125100,)
In order to verify the estimated result of different chilling requirement estimation models and heat requirement estimation models, and screen the early maturing cultivars which are suitable for planting in protected cultivation, 3 different estimation models (≤7.2 ℃ model, the 0-7.2 ℃ model and the Utah model) for estimating chilling requirements and 2 different estimation models (the growing degree hour model and the effective accumulated temperature model) for estimating heat requirements were used and compared with 22 grape cultivars for 3 years. The experimental materials include Hongqitezaomeigui, Zizhenxiang, Wuhezaohong, Hongbiaowuhe, 87-1, Cardinal, Centenial Seedless, Pearl of Csaba, Otilia, Xiangfei, Hongxiangfei, Hongshuangwei, Kyoho, Superior Seedless, Jingya, Jumeigui, Fujiminori, Bronx Seedless, Mars Seedless, Summer Black, Jingxiu and Yatomi Rosa, which were grafted on Bata. They are planted in the grape center technology demonstration areas of Fruit Research Institute of Chinese Academy of Agricultural Sciences (Xingcheng, Liaoning Province, 120.51°E, 40.45°N). Their planting distance and row spacing are 0.5 and 1 m, respectively, double-plant plantation, horizontal dragon shape with vertical leaf canopy. Among the 3 chilling requirement models, the annual variation coefficient of chilling requirement for each grape variety was the smallest in the Utah model, followed by the 0-7.2 ℃ model, and the ≤7.2 ℃ model was the largest. The annual variation coefficient of heat requirement for each grape variety was both small in the growing degree hour model and the effective accumulated temperature model. Considering the ease of calculation, we suggested to use the effective accumulated temperature model. All in all, for the chilling requirement calculation of different grape cultivars in greenhouse, the results from the Utah model are the best. For the heat requirement calculation of different grape cultivars in greenhouse, the effective accumulated temperature model was suggested to be adopted for calculation. Based on the calculation of the Utah model and the effective accumulated temperature model, we found that the high chilling requirement varieties were more than those with low chilling requirement in the common grape varieties, and the low heat requirement varieties were more than those with high heat requirement. The chilling and heat requirements were both low in Wuhezaohong, 87-1, Pearl of Csaba, Xiangfei and Hongxiangfei. They were early flowering and more conducive to the regulation for fruit maturity, so they were suitable for protected cultivation.
fruits; cultivation; models; chilling requirement; heat requirement; growing degree hours; effective accumulated temperature
10.11975/j.issn.1002-6819.2017.17.025
S663.1
A
1002-6819(2017)-17-0187-07
2017-04-08
2017-08-29
中國農(nóng)業(yè)科學(xué)院創(chuàng)新工程(CAAS-ASTIP-2015-RIP-04);國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(nycytx-30-zp);國家自然科學(xué)基金(41101573)。
,王海波,副研究員,山東濰坊人,主要從事果樹栽培與生理和果園機械化研究。興城 中國農(nóng)業(yè)科學(xué)院果樹研究所/農(nóng)業(yè)部園藝作物種質(zhì)資源利用重點實驗室,125100。Email:haibo8316@163.com
,劉鳳之,研究員,山東聊城人,主要從事果樹栽培與生理和果園機械化研究。興城 中國農(nóng)業(yè)科學(xué)院果樹研究所/農(nóng)業(yè)部園藝作物種質(zhì)資源利用重點實驗室,125100。Email:liufengzhi6699@126.com