蔣業(yè)林,張 靜,侯冠軍,程云生,李 翔,季索菲,張?zhí)?/p>
?
工廠化養(yǎng)殖稚幼中華鱉的環(huán)保型溫室構(gòu)建與性能試驗(yàn)
蔣業(yè)林1,2,張 靜1,2,侯冠軍1,2,程云生1,2,李 翔2,3,季索菲1,張?zhí)?
(1. 安徽省農(nóng)業(yè)科學(xué)院水產(chǎn)研究所,合肥 230031;2. 安徽省鱉類養(yǎng)殖工程技術(shù)研究中心,蚌埠 233040;3. 安徽省喜佳農(nóng)業(yè)發(fā)展有限公司,蚌埠233040;4. 六安市幫群水產(chǎn)養(yǎng)殖有限公司,六安237001)
為了滿足稚幼中華鱉工廠化養(yǎng)殖的需求,響應(yīng)減少CO2排放的政策,設(shè)計(jì)建造了符合其生活習(xí)性的環(huán)保型溫室。該溫室使用地源熱泵空調(diào)系統(tǒng)控溫,底部排污系統(tǒng)排出殘餌和排泄物,養(yǎng)殖池內(nèi)配置網(wǎng)片隱蔽巢供稚幼鱉棲息,采用微孔增氧裝置和微生物制劑調(diào)控水體中溶解氧、氨氮和亞硝態(tài)氮含量。結(jié)果表明通過使用地源熱泵空調(diào),1棟占地780 m2的溫室在10個(gè)月的生產(chǎn)期內(nèi)減少使用燃煤約35 t,減少CO2排放約84.01 t。養(yǎng)殖水體中溶解氧質(zhì)量濃度5.83~7.68 mg/L,氨氮和亞硝態(tài)氮質(zhì)量濃度分別在0.39~0.83 mg/L和0.14~0.16 mg/L范圍內(nèi)。經(jīng)過約10個(gè)月的養(yǎng)殖(放養(yǎng)質(zhì)量約為3.5 g,密度為50只/m2),平均質(zhì)量為581 g,存活率86.2%,飼料轉(zhuǎn)化率1.18,特定生長率1.77,1棟溫室年利潤為157 870元。綜上,該工廠化養(yǎng)殖稚幼鱉的環(huán)保型溫室能為其提供舒適的生活環(huán)境,表現(xiàn)出良好的經(jīng)濟(jì)效益和社會(huì)效益,有很大的推廣價(jià)值和實(shí)際意義。
環(huán)保;溫室;試驗(yàn);稚幼鱉;經(jīng)濟(jì)效益;社會(huì)效益
中華鱉()屬變溫動(dòng)物,溫度低于12 ℃,即進(jìn)入冬眠[1],消耗體重的10~15%維持生命[2]。另外,稚鱉一般在6-10月份孵化出殼,體質(zhì)較弱,自然越冬成活率低,直接影響商品鱉的養(yǎng)殖。溫室內(nèi)溫度適宜,生長環(huán)境穩(wěn)定,能顯著提高成活率,縮短養(yǎng)殖周期,是目前養(yǎng)殖稚幼鱉最常見的方法[3-8]。安徽省是中華鱉主產(chǎn)區(qū),溫室養(yǎng)殖主要面臨兩大問題:供暖方式和水質(zhì)調(diào)控。
目前,溫室供暖多以鍋爐為主[9],但煤炭價(jià)格的逐年增加和CO2排放的限制是養(yǎng)殖戶必須面臨的問題?!栋不帐 笆濉笨刂茰厥覛怏w排放工作方案》明確指出“推進(jìn)太陽能、淺層地?zé)崮艿瓤稍偕茉丛诮ㄖ幸?guī)?;瘧?yīng)用”[10]。清潔可再生能源—太陽能已經(jīng)廣泛應(yīng)用于溫室加熱[11-12],但皖北地區(qū)太陽能提供的熱量不足以使養(yǎng)殖池水溫保持在30 ℃。地源熱泵是1種利用地下淺層地?zé)豳Y源的高效節(jié)能環(huán)保型空調(diào)系統(tǒng)[13]。通過輸入少量電能,將地下水熱量通過換熱系統(tǒng)輸向空氣,從而達(dá)到加熱的目的[14]。使用過程中不會(huì)直接產(chǎn)生CO2等污染性氣體,對(duì)環(huán)境的影響遠(yuǎn)遠(yuǎn)小于煤炭[15-16]。
工廠化養(yǎng)殖中華鱉,水質(zhì)惡化快,潑灑微生物制劑和換水目前是水質(zhì)調(diào)節(jié)的有效手段。換水方式多為每7~15天換水1次,每次換水1/2~1/5[1,17]。但長期不換水,水體中氨氮和亞硝態(tài)氮積累較多,且一次性換水量大,中華鱉容易患皮膚病。構(gòu)建方便快捷的排水系統(tǒng),及時(shí)有效的排出殘餌和排泄物,可減少潛在病原體的擴(kuò)散,有效降低水質(zhì)惡化程度[18]。
本文將重點(diǎn)介紹工廠化養(yǎng)殖稚幼鱉的環(huán)保型溫室構(gòu)建以及經(jīng)濟(jì)和社會(huì)效益。溫室采用地源熱泵空調(diào)系統(tǒng)加熱,通過便利排水系統(tǒng)將殘餌和排泄物排出養(yǎng)殖池,以保持良好的水質(zhì)。
該溫室位于安徽省蚌埠市(117.38°E,32.95°N)。1棟溫室占地約780 m2(60 m×13 m),主要由溫控系統(tǒng),排水系統(tǒng)和增氧系統(tǒng)等組成。內(nèi)部結(jié)構(gòu)如圖1a所示,室內(nèi)有9個(gè)70 m2(約11.5 m×6 m)、1個(gè)35 m2的養(yǎng)殖池(約5.8 m×6 m)和1個(gè)35 m2的蓄水池(約5.8 m×6 m)。養(yǎng)殖池墻體為磚砌實(shí)墻,高1 m,最上端為“T”型防逃檐。
1.羅茨鼓風(fēng)機(jī) 2.小型污水池 3.保溫層 4.水下食臺(tái) 5.水泵 6.大污水池7.地源熱泵空調(diào) 8.網(wǎng)片隱蔽巢
1.Roots blower 2.Small sewage tank 3.Insulation layer 4.Underwater feeding platform 5.Pump 6.Big sewage tank 7.Ground-source heat pump air-conditioning system 8.Shelter
a. 環(huán)保型溫室的3D模型圖
a. 3D model of environmentally-friendly greenhouse
b.“?”型排水管示意圖
1.1.1 溫控系統(tǒng)
溫控系統(tǒng)由地源熱泵空調(diào)系統(tǒng)和保溫層2部分組成。地下水通過水泵抽至地源熱泵空調(diào)(NAFD-200),經(jīng)熱交換器與溫室內(nèi)空氣進(jìn)行熱能轉(zhuǎn)換,溫度由自動(dòng)控溫裝置控制。如圖1a所示,1棟溫室內(nèi)配備2臺(tái)地源熱泵空調(diào),分別裝在對(duì)角線位置,使溫室內(nèi)空氣對(duì)流,溫度均勻。相對(duì)于鍋爐系統(tǒng),采用空調(diào)系統(tǒng)加熱,室內(nèi)氣溫高于水溫約2 ℃,避免了因水分過度蒸發(fā)而引起的透明度差的問題。
針對(duì)稚幼鱉“喜靜怕驚,喜陽怕風(fēng)”的生活習(xí)性,屋頂為全封閉不透光的保溫層,由內(nèi)至外依次為:聚乙烯塑料薄膜,泡沫板,聚乙烯塑料薄膜,泡沫板,石棉,保溫棉和黑色抗氧化塑料薄膜。保溫層由鍍鋅管構(gòu)建的弧形框架支撐,最高點(diǎn)離地面2.9 m。
1.1.2 排水系統(tǒng)
排水系統(tǒng)由鍋底型底部和“?”型排水管組成。殘餌和排泄物在鍋底型底部聚集,經(jīng)“?”型排水管隨廢水排至室外小型污水池。如圖1b所示,短的一端與鍋底型底部通過地漏連接,長的一端位于室外。排水時(shí),將其拔掉,持續(xù)排水幾秒即可。殘餌和排泄物在小型污水池內(nèi)沉淀自然降解,廢水匯集至總污水池,最終流入種植蘆葦及其他水生植物的生態(tài)池進(jìn)一步凈化。該排水結(jié)構(gòu)相互獨(dú)立,容易操作,可及時(shí)將養(yǎng)殖池內(nèi)殘餌和排泄物排出,且在排水過程中,對(duì)稚幼鱉干擾小甚至無干擾。排水后,蓄水池內(nèi)的新水經(jīng)進(jìn)水管注入池內(nèi)。
1.1.3 增氧系統(tǒng)
使用三葉羅茨鼓風(fēng)機(jī)(2.2 kW)將空氣通過XD型高效節(jié)能微孔增氧裝置通入養(yǎng)殖水體(每棟溫室1臺(tái)鼓風(fēng)機(jī),每個(gè)飼養(yǎng)池配備3個(gè)增氧裝置)。PVC氣管進(jìn)入養(yǎng)殖池后,由分氣管通入分布在池底的3個(gè)微孔增氧裝置。該裝置是將微孔增氧管彎曲固定成圓盤狀,然后使用帶孔的塑料板覆蓋,防止稚幼鱉咬破增氧管,影響增氧效果。
1.1.4 其 他
中華鱉生性殘暴,高密度養(yǎng)殖環(huán)境下易相互撕咬引起傷殘,甚至死亡。在養(yǎng)殖池內(nèi)安裝隱蔽物,為其提供棲息藏身的場(chǎng)所,可降低傷殘率,提升品相等[19]。隱蔽物為邊長為1.2 m的聚乙烯無結(jié)網(wǎng),菱形網(wǎng)眼邊長0.5 cm,懸掛于水面上方約10 cm,2個(gè)隱蔽物之間距離約為20 cm。為了符合中華鱉水下吃食的習(xí)性,石棉網(wǎng)置于水面下10~15 cm作為水下食臺(tái)[20],每個(gè)養(yǎng)殖池配備6~7個(gè)。具體如圖2所示。
圖2 溫室內(nèi)部實(shí)拍圖
1.2.1 水質(zhì)調(diào)控和檢測(cè)
每天定點(diǎn)排放含有大量殘餌和排泄物的廢水,每個(gè)養(yǎng)殖池的日排放量隨稚幼鱉的生長逐漸增加,前5個(gè)月為0.11~1.11 m3,后5個(gè)月為1.11~2.78 m3。排水后,池內(nèi)水面下降0.15~3.75 cm,水質(zhì)變化小,不會(huì)對(duì)稚幼鱉產(chǎn)生影響。
殘餌和排泄物排出之前有部分營養(yǎng)物質(zhì)溶解至水中,滋生細(xì)菌,惡化水質(zhì)[17],影響稚幼鱉健康生長。采用微生物制劑(黑精靈、調(diào)水寶和生物底改)凈化水質(zhì),稀釋后,均勻潑灑至養(yǎng)殖水體。前期(2015年9月至12月)濃度均為5 g/m3,中期(2016年1月至3月)黑精靈潑灑濃度提高至10 g/m3,養(yǎng)殖后期(2016年4月至6月)調(diào)水寶和生物底改亦調(diào)至10 g/m3。
養(yǎng)殖池內(nèi)水溫、溶解氧、氨氮和亞硝態(tài)氮濃度使用物聯(lián)網(wǎng)實(shí)時(shí)監(jiān)控記錄。探頭在養(yǎng)殖池中央水面下40 cm處,所有數(shù)據(jù)通過互聯(lián)網(wǎng)在電腦上記錄保存。
1.2.2 稚幼鱉的生長性能
將粉狀復(fù)合飼料(粗蛋白≥48%)加工成直徑是2.0~5.0 mm的圓形軟顆粒。制備過程中,定期交替添加有益菌和維生素C,中上旬添加有益菌,下旬添加維生素C,添加量分別為飼料質(zhì)量的1%和0.2%。每天定時(shí)投喂3次,分別在5:40,11:30和19:30。日投喂量約是鱉質(zhì)量的3%,具體情況視吃食量而定,一般在30 min內(nèi)吃完。稚幼鱉的生長參數(shù)計(jì)算方法如公式(1-4)所示
圖3展示了從2015年9月到2016年6月期間養(yǎng)殖池內(nèi)氨氮、亞硝態(tài)氮、溶解氧和水溫的月平均值。從圖中可以看出水溫一直保持在31±0.5 ℃范圍內(nèi),幅度波動(dòng)小,是稚幼鱉生長最舒適的溫度范圍,生長速度最快[21]。
a. 氨氮
a. Ammonia nitrogen
b. 亞硝態(tài)氮
b. Nitrite
c. 溶解氧
c. Dissolved oxygen
d. 水溫
氨氮和亞硝態(tài)氮是水產(chǎn)養(yǎng)殖重要的水質(zhì)參數(shù),其含量過高會(huì)減少進(jìn)食量,降低生長速度,甚至導(dǎo)致死亡[22-23]。從圖3可以看出二者質(zhì)量濃度分別在0.39~0.83和0.14~0.16 mg/L范圍內(nèi)。隨著稚幼鱉的生長,殘餌和排泄物增加,水體中氨氮和亞硝態(tài)氮濃度隨之增加,但是從圖3中僅觀察到氨氮濃度的增加,亞硝態(tài)氮濃度上升趨勢(shì)并不明顯,主要是由于水體溶解氧充足。養(yǎng)殖池日曝氣時(shí)間隨稚幼鱉的生長從1 h逐漸增加至14 h,溶解氧質(zhì)量濃度控制在5.83~7.68 mg/L范圍內(nèi),足以保證養(yǎng)殖對(duì)象和微生物生長的需求,使有毒的亞硝態(tài)氮轉(zhuǎn)化為低毒的硝態(tài)氮[24]。另外,及時(shí)排出殘餌和排泄物也在一定程度上減少了養(yǎng)殖池內(nèi)的氨氮和亞硝態(tài)氮濃度。經(jīng)曝氣、微生物調(diào)控和及時(shí)排污三者相結(jié)合,氨氮濃度在稚幼鱉安全生長的范圍內(nèi)(≤3.0 mg/L)[25]。
表1是100個(gè)面積為70 m2養(yǎng)殖池內(nèi)稚幼鱉生長性能的平均數(shù)和標(biāo)準(zhǔn)差。放養(yǎng)密度為每平方米50只。經(jīng)過約10個(gè)月的養(yǎng)殖,存活率為86.2%。即每平方米可收獲43.1只,相對(duì)于張平等報(bào)道的成活率80%高6.2%[26]。表明該密度在溫室的合理承受范圍內(nèi)。平均質(zhì)量為581 g,特定生長率為1.77,平均每天可增質(zhì)量1.93 g。另外,飼料轉(zhuǎn)化率在水產(chǎn)養(yǎng)殖中是一個(gè)很重要的參數(shù),該溫室內(nèi)水溫一直保持在最適合稚幼鱉生長的溫度范圍內(nèi),另溫室內(nèi)的各項(xiàng)裝備均符合稚幼鱉的生活習(xí)性,使平均飼料轉(zhuǎn)化率為1.18,遠(yuǎn)遠(yuǎn)低于Lin等所報(bào)道的2.1±0.2[27]。
表1 稚幼鱉的生長性能參數(shù)和成活率
注:SGR、FCR、WG分別為特定生長率、飼料轉(zhuǎn)化率和增質(zhì)量率。
Note: SGR, FCR, WG mean specific growth rate, feed conversion rate, weight gain.
2.3.1 經(jīng)濟(jì)效益
1棟溫室在10個(gè)月生產(chǎn)期內(nèi)的經(jīng)濟(jì)效益如表2所示。生產(chǎn)成本約為379 410元,其中飼料消耗為265 785元,占生產(chǎn)成本的70%。故降低飼料轉(zhuǎn)化率,能有效提高經(jīng)濟(jì)效益。該溫室水溫保持在稚幼鱉生長舒適的范圍內(nèi),隱蔽物提供棲息的場(chǎng)所,氨氮和亞硝態(tài)氮的含量在曝氣,微生物和及時(shí)排水的綜合作用下,保持在良好的范圍內(nèi),故稚幼鱉在該條件下能健康生長,且生長速度快,發(fā)病率低,飼料轉(zhuǎn)化率較低。另外,該溫室操作方便,溫度由地源熱泵空調(diào)自動(dòng)控溫單元控制,水質(zhì)由物聯(lián)網(wǎng)監(jiān)控,在很大程度上減少了勞動(dòng)量,1個(gè)工人可管理4棟溫室,操作成本低,人力成本僅占總成本的2.6%。1棟占地780 m2的溫室可生產(chǎn)中華鱉16 790 kg,按均價(jià)32元/kg的市場(chǎng)價(jià)格,可盈利157 870元。
表2 經(jīng)濟(jì)效益
2.3.2 社會(huì)效益
2015年12月10日至2016年1月27日,安徽省蚌埠市最低氣溫連續(xù)49 d在0 ℃以下[28],但該時(shí)間段的用電量并未增加,證明該溫室保溫效果良好,需要少量熱量即可維持水溫的穩(wěn)定。如表3所示,10個(gè)月生產(chǎn)期內(nèi),使用地源熱泵空調(diào)的耗電量為56 818 kW·h,沒有直接排放CO2。但考慮到電力由燃煤電站供應(yīng),每發(fā)1 kW·h電的用煤量為315 g,1 g燃煤釋放CO22.4 g[16,29],故相當(dāng)于耗煤17.9 t,產(chǎn)生CO244.6 t。而根據(jù)前期使用傳統(tǒng)鍋爐供暖的記錄,1棟溫室在10個(gè)月生產(chǎn)期內(nèi)的耗煤量為52.9 t,直接釋放CO2126.96 t,是使用地源熱泵空調(diào)排放量的2.85倍。另外,相對(duì)于燃煤系統(tǒng),使用地源熱泵空調(diào)系統(tǒng)控溫可減少投入11 086元(僅含電力或煤炭成本,不含設(shè)施成本)。
表3 每棟溫室生產(chǎn)期(10個(gè)月)內(nèi),使用鍋爐和地源熱空調(diào)供暖的耗煤,CO2排放和成本對(duì)比
1)1棟溫室占地面積約780 m2,室內(nèi)有9個(gè)70 m2的養(yǎng)殖池,1個(gè)35 m2的養(yǎng)殖池和1個(gè)35 m2的蓄水池。養(yǎng)殖池內(nèi)安裝水下食臺(tái),人工隱蔽物等符合中華鱉生活習(xí)性的設(shè)施。
2)溫室采用地源熱泵空調(diào)系統(tǒng)控溫,不會(huì)直接排放CO2,且電力投入小。相對(duì)于鍋爐系統(tǒng),在生產(chǎn)期內(nèi),每棟溫室減少耗煤和CO2排放量分別約為35和84.01 t,減少經(jīng)濟(jì)投入11 086元。
3)排水系統(tǒng)便利,每天定點(diǎn)排水,養(yǎng)殖池內(nèi)水質(zhì)變化不大,加之微生物的調(diào)控,使水中氨氮,亞硝態(tài)氮和溶解氧含量分別控制在0.39~0.83,0.14~0.16和5.83~7.68 mg/L內(nèi),水溫為31±0.5 ℃。
4)中華鱉放養(yǎng)密度為50只/m2,經(jīng)過約10個(gè)月的生長期,存活率為86.2%,質(zhì)量581 g,飼料轉(zhuǎn)化率1.18,經(jīng)濟(jì)效益高達(dá)202元/m2。養(yǎng)殖過程中未發(fā)現(xiàn)白點(diǎn)病,腐皮,疥瘡等皮膚類疾病發(fā)生。
綜上所述,該溫室既能為中華鱉提供良好的生活環(huán)境,又不會(huì)對(duì)環(huán)境造成污染,經(jīng)濟(jì)效益和社會(huì)效益良好,有很大的推廣價(jià)值。
[1] 黃杰,羅福廣,文衍紅,等. 中華鱉苗種溫室越冬培育技術(shù)研究[J]. 現(xiàn)代農(nóng)業(yè)科技,2014,17:287-288.
Huang Jie, Luo Fuguang, Wen Yanhong, et al. Study on wintering cultivation techniques of juvenile Chinese soft-shelled turtle,, by greenhouse[J]. Modern Agricultural Science and Technology, 2014, 17: 287-288. (in Chinese with English abstract)
[2] 翁忠惠,王武,李應(yīng)森. 控溫快速養(yǎng)鱉設(shè)施的設(shè)計(jì)[J]. 漁業(yè)機(jī)械儀器,1995:3:7-9.
Weng Zhonghui, Wang Wu, Li Yingsen. The design of the greenhouse for Chinese soft-shelled turtle cultivation[J]. Fishery Mechanical Facility, 1995, 3: 7-9. (in Chinese with English abstract)
[3] Wu X, Wu H, Ye J. Purification effects of two eco-ditch systems on Chinese soft-shelled turtle greenhouse culture wastewater pollution[J]. Environmental Science and Pollution Research International, 2014, 21(8): 5610-5618.
[4] 占秀安. 池塘鱉與溫室鱉體組成和生化組成的比較研究[J]. 大連海洋大學(xué)學(xué)報(bào),2001,16(4):269-273.
Zhan Xiuan. Comparative study on weight proportion of various body parts and chemical compositions of turtles raised in ponds and in green houses[J]. Journal of Dalian Fisheries Uniersity, 2001, 16(4): 269-273. (in Chinese with English abstract)
[5] 錢國英,朱秋華. 仿生養(yǎng)殖鱉與溫室養(yǎng)殖鱉形態(tài)特征的比較[J]. 動(dòng)物學(xué)雜志,2002,37(2):52-54.
[6] 章劍. 佛羅里達(dá)鱉溫室養(yǎng)殖關(guān)鍵問題[J]. 漁業(yè)致富指南,2009(10):43-43.
[7] 李立夫,張公能,黃利權(quán),等. 兩種鱉“溫室-外塘”二段式養(yǎng)殖對(duì)比試驗(yàn)[J]. 科學(xué)養(yǎng)魚,2012(5):34-35.
[8] 郝玉江,安瑞永,賈艷菊,等. 能量生態(tài)學(xué)思想在養(yǎng)鱉溫室設(shè)計(jì)中的應(yīng)用[J]. 河北漁業(yè),2001(3):8-10.
[9] 鄭榮進(jìn),孫文君,張建高,等. 基于可再生能源供熱的設(shè)施水產(chǎn)養(yǎng)殖試驗(yàn)溫室設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(10):218-221.
Zheng Rongjin, Sun Wenjun, Zhang Jian’gao, et al. Field test building design for controlled aquaculture based on renewable energy heating system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(10): 218-221. (in Chinese with English abstract)
[10] 安徽省人民政府辦公廳關(guān)于印發(fā)安徽省“十三五”控制溫室氣體排放工作方案的通知(皖政辦〔2017〕27號(hào)). http://xxgk.ah.gov.cn/UserData/DocHtml/731/2017/4/18/887887002345.html, 2017-04-05.
[11] Li S, Willits D H, Browdy C L, et al, Thermal modeling of greenhouse aquaculture raceway systems[J]. Aquacultural Engineering, 2009, 41(1): 1-13.
[12] 朱芳,朱松明,葉章穎,等. 密閉遮光型甲魚溫室熱環(huán)境模擬與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(10):182-192.
Zhu Fang, Zhu Songming, Ye Zhangying, et al. Thermal simulation and test in closed-shading turtle greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) 2014, 30(10): 182-192. (in Chinese with English abstract)
[13] Lund J W, Boyd T L. Direct utilization of geothermal energy: 2015 worldwide review[J]. Geothermics, 2016, 60: 66-93.
[14] 季曙春,陳德貴,項(xiàng)旭東,等. 基于地源熱泵技術(shù)的龜鱉溫室供熱系統(tǒng)應(yīng)用研究[J]. 安徽農(nóng)業(yè)科學(xué),2013,41(34):13423-13425.
Ji Shuchun, Chen Degui, Xiang Xudong, et al. Research on application of terrapin greenhouse heating system based on ground source heat pump technology[J]. Journal of Anhui Agricultural Science, 2013, 41(34): 13423-13425. (in Chinese with English abstract)
[15] Ozgener L, Hepbasli A, Dincer I, A key review on performance improvement aspects of geothermal district heating systems and applications[J]. Renewable and Sustainable Energy Reviews, 2007, 11(8): 1675-1697.
[16] 王美芝,劉繼軍,吳中紅,等. 地源熱泵技術(shù)對(duì)規(guī)模化豬場(chǎng)節(jié)能減排的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(4):251-254.
Wang Meizhi, Liu Jijun, Wu Zhonghong, et al. Effect of ground-source heat pump applied to piggery on energy saving and emission reduction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) 2011, 27(4): 251-254. (in Chinese with English abstract)
[17] 楊玉林,中華鱉“黑暗溫室+露天池塘”生態(tài)高效養(yǎng)殖技術(shù)[J]. 天津農(nóng)林科技,2015,5:24-26.
Yang Yulin, The cultivation techniques of Chinese soft-shelled turtle,, by “dark greenhouse + pond”[J]. Science and Technology of Tianjin Agriculture and Forestry, 2015, 5: 24-26. (in Chinese with English abstract)
[18] Sharrer M J, Summerfelt S T. Ozonation followed by ultraviolet
irradiation provides effective bacteria inactivation in a freshwater recirculating system[J]. Aquacultural Engineering, 2007, 37(2): 180-191.
[19] 蔣業(yè)林,李翔,陳華良,等. 不同生態(tài)裝備對(duì)中華鱉稚幼鱉生長·抗病力和品質(zhì)的影響[J]. 安徽農(nóng)業(yè)科學(xué),2011,39(34):21042-21044,21058.
Jiang Yelin, Li Xiang, Chen Hualiang, et al. Effect of different ecological equipments on the growth, disease resistance and quality of juvenile trionyx sinensis[J]. Journal of Anhui Agricultural Science, 2011, 39(34): 21042-21044, 21058. (in Chinese with English abstract)
[20] 安徽省喜佳農(nóng)業(yè)發(fā)展有限公司. 甲魚養(yǎng)殖池喂食裝置:201220215224.0[P]. 2012-12-19.
[21] Zhang Y P, Du W G, Shen J W, et al. Low optimal temperatures for food conversion and growth in the big-headed turtle,[J]. Aquaculture, 2009, 295(1/2): 106-109.
[22] Meinelt T, Kroupova H, Stüber A, et al. Can dissolved aquatic humic substances reduce the toxicity of ammonia and nitrite in recirculating aquaculture systems[J]? Aquaculture, 2010, 306(1-4): 378-383.
[23] Jia R, Han C, Lei J L, et al. Effects of nitrite exposure on haematological parameters, oxidative stress and apoptosis in juvenile turbot (Scophthalmus maximus)[J]. Aquatic Toxicology, 2015, 169: 1-9.
[24] Boyd C E, Guidelines for aquaculture effluent management at the farm-level[J]. Aquaculture, 2003, 226(1-4): 101-112.
[25] 蔣國民. 水質(zhì)對(duì)中華鱉養(yǎng)殖的主要影響[J]. 廣西水產(chǎn)科技,2015(1):42-45.
Jiang Guomin, The main effect of water quality to the culture of Chinese soft-shelled turtle[J]. Fisheries Science and Technology of Guangxi, 2015(1): 42-45. (in Chinese with English abstract)
[26] 張平,楊雪,張磊磊,等. 中華鱉工廠化溫室養(yǎng)殖技術(shù)示范推廣[J]. 中國畜牧獸醫(yī)文摘,2017,33(3):107,135.
Zhang Ping, Yang Xue, Zhang Leilei, et al. Demonstration and extension of techniques for industrialization of cultivation of Chinese soft-shelled turtle[J]. China Abstracts of Animal Husbandry and Veterinary Medicine, 2017, 33(3): 107, 135. (in Chinese with English abstract)
[27] Lin W Y, Huang C H. Fatty acid composition and lipid peroxidation of soft-shelled turtle,, fed different dietary lipid sources[J]. Comparative Biochemistry and Physiology. Part C, 2007, 144 (4): 327-333.
[28] 中國天氣,http://www.weather.com.cn/weather40d/ 101220201.shtml, 2016-11-23.
[29] 國家能源局發(fā)布2015年全社會(huì)用電,http://www.nea.gov.cn/2016-01/15/c_135013789.htm, 2016-01-15.
Construction and performance experiment of environmentally-friendly greenhouse for culturing juvenile Chinese soft-shelled turtle ()
Jiang Yelin1,2, Zhang Jing1,2, Hou Guanjun1,2, Cheng Yunsheng1,2, Li Xiang2,3, Ji Suofei1, Zhang Taixiang4
(1.,230031,;2.,233040,;3..,233040,;4.’’237001,)
Due to its high nutritional and medicinal value, Chinese soft-shelled turtle, pelodiscus sinensis, is a favorite food in many parts of Asia. Consequently, the cultivation of it has become commercial. Large-scale farming of turtle in Anhui province has been growing rapidly, and the production was about 40 000 t in 2015. As a poikilothermal animal, the juvenile is hard to survive in the cold winter. Over-winter in greenhouse is necessary for it. Considering high fuel prices and limitation of pollutant emissions, an environmentally-friendly greenhouse was designed and constructed to satisfy the demand of the intensive cultivation of Chinese soft-shelled turtle, and to reduce the use of fuel and the pollutant emissions. One greenhouse was approximately 780 m2, including nine 70 m2culture tanks, one 35 m2culture tank and one 35 m2reservoir. Every culture tank was connected to a settling tank through underground pipe. Ground source heat pump was used for heating, wok shape tank bottom with “?”-tape central drainage was used to discharge the residual feeds and faeces timely, and the culture tank skirt shape 3-D shelter, under water feeding platform were equipped to satisfy the living habits, which could reduce the fighting probability and mortality in a great degree. For one greenhouse within the cultural period of 10 months, coal consumption and CO2emissions were reduced by about 35 and 84.01 t, respectively, by using ground source heat pump compared to fossil fuel (coal) boiler. Additionally, the cost was decreased by about ¥ 11086 during the ten months culturing period. At the start, 3500 juveniles were stocked in one 70 m2culture tank with an average weight of 3.5 g. Effective microorganisms and vitamin C were added into feed to increase the resistance during feed preparation. The culture water quality was controlled by microorganisms and parameters were monitored and recorded every several seconds by Internet of Things. During the culturing process, dissolved oxygen concentration was maintained in the range of 5.83-7.68 mg/L, water temperature was kept at 31±0.5 ℃, the monthly mean content of ammonia was kept at 0.39-0.83 mg/L and the nitrite was 0.14-0.16 mg/L. After cultivation for about 10 months, the weight of juvenile could increase to about 581 g from 3.5 g, the survival rate was 86.2%, feed conversion rate was 1.18, and specific growth rate was around 1.77, which meant that 43.1 turtles were obtained in per square meter and the average daily weight gain of one turtle was 1.93 g. Good growth performance meant high economic benefits, especially survival rate and feed conversion rate, because the cost of feed accounted for 70% of total investment. The economic return of a greenhouse was about ¥ 157 870. Therefore, it is promising to construct the greenhouse for its significant environmental and economic benefit. The results provided a great theoretical and practical significance for the cultivation of juveniles in greenhouse. In summary, the environmentally-friendly greenhouse for culturing juveniles could provide comfortable living conditions, showing high economic and social values. So the greenhouse has a great popularization value and practical significance.
environmentally protection; greenhouse; experiments; juvenile Chinese soft-shelled turtle; economic value; social value
10.11975/j.issn.1002-6819.2017.17.022
S2; S625.1
A
1002-6819(2017)-17-0167-06
2016-11-15
2017-08-09
安徽省科技重大專項(xiàng)(16030701065);安徽省國際合作項(xiàng)目(1604b0602019);安徽省院士工作站(科人[2014]12);國家外專局示范項(xiàng)目(Y20153400009)和國家星火計(jì)劃(2014GA710011)聯(lián)合資助
蔣業(yè)林,研究員,國際龜鱉組織(TSA)成員,中國水產(chǎn)學(xué)會(huì)淡水養(yǎng)殖分會(huì)委員,安徽省鱉類工程技術(shù)研究中心首席專家,安徽省院士工作站負(fù)責(zé)人,主要從事龜鱉等良種選育和生態(tài)養(yǎng)殖。Email:jiangyelin@qq.com
農(nóng)業(yè)工程學(xué)報(bào)2017年17期